TO: D. Shaddock
FROM: Logistics and Technical Information Division
SUBJECT: Notification of Clearance - CL#02-1951

The following title has been cleared by the Document Review Services, Section 274, for public release, presentation, and/or printing in the open literature:

Bench Top Interferometric Test Bed for LISA

This clearance is issued for the full paper and is valid for U.S. and foreign release.

Before publishing, add the following acknowledgement: The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Clearance issued by

David Fulton
Document Review Services
Section 644
JPL AUTHORIZATION FOR THE EXTERNAL RELEASE OF INFORMATION

Submit web-site URL or two copies of document with this form to Document Review, 111-120, or email them to docrev@list.jpl.nasa.gov.

<table>
<thead>
<tr>
<th>LEAD JPL AUTHOR</th>
<th>MAIL STOP</th>
<th>EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniel Shaddock</td>
<td>171-113</td>
<td>37256</td>
</tr>
</tbody>
</table>

The Document Review approval process applies to all JPL information intended for unrestricted external release via print or electronic media. See explanations on page 3 of this form and the Distribute Knowledge documents available through http://dmie.

I. DOCUMENT AND PROJECT IDENTIFICATION - To be completed by Author/Originator

- **ABSTRACT** (for publication)
- **FULL PAPER** (including poster, video, CD-ROM)
- **WEB SITE**
- **ORAL PRESENTATION**
- **OTHER**

TITLE
Bench Top Interferometric Test Bed for LISA

OTHER AUTHORS
B.C. Young and A. Abramovici

KEY WORDS FOR INDEXING (Separate terms with commas)
LISA optical bench, optical contacting, heterodyne interferometer

THIS WORK:
- Covers new technology not previously reported
- Covers work previously reported in New Technology Report (NTR) No. ____________
- Provides more information for earlier NTR No(s). ____________
- Contains no new technology

LEAD JPL AUTHORS SIGNATURE

<table>
<thead>
<tr>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/23/02</td>
</tr>
</tbody>
</table>

SECTION OR PROJECT LEVEL APPROVAL - I attest to the technical accuracy of this document/web site.

<table>
<thead>
<tr>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/23/02</td>
</tr>
</tbody>
</table>

ORIGINATING ORGANIZATION (Section, Project, or Element Number)
3834

PERFORMING ORGANIZATION (if different)

ACCOUNT CODE OR TASK ORDER (For tracking purposes only)
100581 A.C.10.03

DOCUMENT NUMBER(S), RELEASE DATE(S) DATE RECEIVED
7/21/02 07/29/2002

For presentations, documents, or other scientific/technical information to be externally published (including via electronic media), enter information—such as name, place, and date of conference; periodical or journal name; or book title and publisher—in the area below.

- **Web Site:** Preactermission URL (JPL internal)
- **Postclearance URL (external)**

- **Brochure/Newsletter**
- **JPL Publication Section 274 Editor (If applicable)**

- **Meeting Title** Astronomical Telescopes and Instrumentation
- **Meeting Date** 08/22/2002
- **Location** Waikoloa, HI
- **Sponsoring Society** SPIE
- **Book/Book Chapter**
- **Assigned JPL Task**
- **Private Venture Publisher**

If your document will not be part of a journal, meeting, or book publication (including a web-based publication), can we post the cleared, final version on the JPL worldwide Technical Report Server (TRS) and send it to the NASA Center for Aerospace Information (CASI)?

- **Yes**
- **No**

(For more information on TRS/CASI, see http://techreports.jpl.nasa.gov and http://www.sti.nasa.gov.)

If your document will be published, the published version will be posted on the TRS and sent to CASI.

II. NATIONAL SECURITY CLASSIFICATION

- **SECRET**
- **SECRET RD**
- **CONFIDENTIAL**
- **CONFIDENTIAL RD**
- **UNCLASSIFIED**

III. AVAILABILITY CATEGORY - To be completed by Document Review

- **NASA EXPORT-CONTROLLED PROGRAM STI**

- **International Traffic in Arms Regulations (ITAR)**

- **Export Administration Regulations (EAR)**

CONFIDENTIAL COMMERCIAL STI

- **TRADE SECRET**
- **SBIR**
- **COPYRIGHTED**
- **COPYRIGHT TRANSFERRED TO:**

ADDITIONAL INFORMATION

- **Limited until (date) __________________**
- **Publicly available (but subject to copying restrictions)**

PUBLICLY AVAILABLE STI

Publicly available means it is unlimited and unclassified, is not export-controlled, does not contain confidential commercial data, and has cleared any applicable patent application.
If STI discloses an invention, Check box and send to SIAMO.

Comments

See ATTACHED

This document may be released on (date)

Strategic Intellectual Assets Management Office (SIAMO) Signature Date

V. BLANKET AVAILABILITY AUTHORIZATION (Optional)

All documents issued under the following contract/grant/project number may be processed as checked in Sections II and III. This blanket availability authorization is granted on (date) __________. Check one: [] Contract [] Grant [] Project Number

The blanket availability authorization granted on (date) __________

[] is RESCINDED - Future documents must have individual availability authorizations.

[] is MODIFIED - Limitations for all documents processed in the STI system under the blanket release should be changed to conform to blocks as checked in Sections II and III.

Signature

Mail Stop

Date

VI. PROJECT OFFICER/TECHNICAL MONITOR/DIVISION CHIEF REVIEW (Optional)

[] Approved for distribution as marked above [] Not approved

Name of Project Officer or Tech. Monitor

Mail Stop

Signature

Date

VII. EXPORT CONTROL REVIEW/CONFIRMATION

[] Public release is approved

[] Export-controlled limitation is approved

[] Public release not approved due to export control

[] Export-controlled limitation is not applicable

[] Export-controlled limitation (ITAR/EAR marked in Section III is assigned to this document)

USML Category Number (ITAR)

<table>
<thead>
<tr>
<th>USML Category Number (ITAR)</th>
<th>CCL Number, ECCN Number (EAR)</th>
<th>JPL Export Control Admin. Representative Signature Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

VIII. OTHER APPROVALS

[] Launch Approval

[] Office of Communications and Education

[] General Counsel

[] Budgetary/Cost Data

[] Vendor Data

[] Copyrights

[] Other ____________

[] Other ____________

Signature

Mail Stop

Date

IX. FINAL VERIFICATION, APPROVAL, AND DISPOSITION BY DOCUMENT REVIEWER

I have determined that this publication:

[] DOES contain ITAR/export-controlled, confidential commercial information, and/or discloses an invention and the appropriate limitation is checked in Sections III and/or IV.

[] Does NOT contain ITAR/export-controlled, confidential commercial information, nor does it disclose an invention and may be released as indicated above.

USML Category Number (ITAR)

[] 120.11 (8)

<table>
<thead>
<tr>
<th>USML Category Number (ITAR)</th>
<th>CCL Number, ECCN Number (EAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[] Public release is approved for U.S. and foreign distribution

[] Public release is not approved

Comments

Signature

Mail Stop

Date

[] Obtained published version Date ________

[] Obtained final JPL version Date ________

See page 3 for instructions for completing this form.
DOCUMENT AND PROJECT IDENTIFICATION - to be completed by Author/Originator.

ABSTRACT (for publication)

FULL PAPER (including poster, video, CD-ROM)

ORAL PRESENTATION

WEB SITE

OTHER

TITLES

Bench Top Interferometric Test Bed for LISA

OTHER AUTHORS

B.C. Young and A. Abramovici

RECEIVED

JUL 25 2002

LEAD JPL AUTHOR'S SIGNATURE

Daniel Shaddock

DATE

7/23/02

SECTION OR PROJECT LEVEL APPROVAL - I attest to the technical accuracy of this document/web site.

7/23/02

ORIGINATING ORGANIZATION (Section, Project, or Element Number)

3834

PERFORMING ORGANIZATION (If different)

ACCOUNT CODE OR TASK ORDER (For tracking purposes only)

100581 A.C.10.03

DOCUMENT NUMBER(S), RELEASE DATE(S)

7/24/02

DATE RECEIVED

07/29/2002

DATE DUE

FOR PRESENTATIONS, DOCUMENTS, OR OTHER SCIENTIFIC/TECHNICAL INFORMATION TO BE EXTERNALLY PUBLISHED (INCLUDING VIA ELECTRONIC MEDIA), ENTER INFORMATION SUCH AS NAME, PLACE, AND DATE OF CONFERENCE; PERIODICAL OR JOURNAL NAME; OR BOOK TITLE AND PUBLISHER - IN THE AREA BELOW.

Web Site: Preclearance URL (JPL internal)

Postclearance URL (external)

Brochure/Newsletter

JPL Publication

Section 274 Editor (If applicable)

Meeting Title

Astronomical Telescopes and Instrumentation

Meeting Date

08/22/2002

Location

Waikoloa, HI

Sponsoring Society

SPIE

Book/Book Chapter

Assigned JPL Task

Private Venture

Publisher

IF YOUR DOCUMENT WILL NOT BE PART OF A JOURNAL, MEETING, OR BOOK PUBLICATION (INCLUDING A WEB-BASED PUBLICATION), CAN WE POST THE CLEARED, FINAL VERSION ON THE JPL WORLDWIDE TECHNICAL REPORT SERVER (TRS) AND SEND IT TO THE NASA CENTER FOR AEROSPACE INFORMATION (CASI)?

Yes [] No []

(For more information on TRS/CASI, see http://techreports.jpl.nasa.gov and http://www.sti.nasa.gov.)

IF YOUR DOCUMENT WILL BE PUBLISHED, THE PUBLISHED VERSION WILL BE POSTED ON THE TRS AND SENT TO CASI.

SECRET

SECRET RD

CONFIDENTIAL

CONFIDENTIAL RD

UNCLASSIFIED

NASA EXPORT-CONTROLLED PROGRAM STI

Export-Controlled Document -- U.S. Munitions List (USML Category) ____________ or Export Control Classification Number (ECCN) ____________ from the Commerce Control List (CCL) ____________

CONFIDENTIAL COMMERICAL STI

(If applicable, indicate distribution limitation below and indicate distribution limitation if applicable.)

TRADE SECRET

Limited until [date]

SBIR

Limited until [date]

COPYRIGHTED

Limited until [date]

COPYRIGHT TRANSFERRED TO:

Publicly available (but subject to copying restrictions)

PUBLICLY AVAILABLE STI

Publicly available means it is unlimited and unclassified, is not export-controlled, does not contain confidential commercial data, and has cleared any applicable patent application.

ADDITIONAL INFORMATION

(If applicable, indicate distribution limitation below and/or limited until [date], if applicable.)

U.S. Government agencies and U.S. Government agency contractors only

NASCAR contractors and U.S. Government only

NASA personnel and NASA contractors only

Available only with the approval of issuing office

U.S. Government agencies only

NASA personnel only

NASA EXPORT-CONTROLLED PROGRAM STI

Export-Controlled Document -- U.S. Munitions List (USML Category) ____________ or Export Control Classification Number (ECCN) ____________ from the Commerce Control List (CCL) ____________
Authorization for Public Release and Transfer of Copyright

The contribution entitled "Bench Top Interferometric Test Bed for LISA" by D. A. Shaddock, B. C. Young, and A. Abramovici, submitted for publication in the Proceedings of the Astronomical Telescopes and Instrumentation Conference, has been cleared for public release by the Jet Propulsion Laboratory, California Institute of Technology. The copyright to the contribution is transferred to the Society of Photo-Optical Instrumentation Engineers (SPIE) when the contribution is published by the above-named publisher, with the following reservation of rights:

This Contribution was produced by (a) members(s) of the Jet Propulsion Laboratory, California Institute of Technology and is considered a work-for-hire. In accordance with the contract between the California Institute of Technology and the National Aeronautics and Space Administration, the United States Government and others acting on its behalf shall have, for Governmental purposes, a royalty-free, nonexclusive, irrevocable, world-wide license to publish, distribute, copy, exhibit and perform the work, in whole or in part, to authorize others to do so, to reproduce the final published and/or electronic form of the Contribution, to include the work on the NASA/JPL Technical Reports Server web site, and to prepare derivative works including, but not limited to, abstracts, lectures, lecture notes, press releases, reviews, textbooks, reprint books, and translations.

I, as an author, represent that I am authorized to sign for and on behalf of all authors, and that this agreement is made on behalf of all the authors.

Authorized Representative

David Fulton
Logistics & Technical Information Division
Jet Propulsion Laboratory
California Institute of Technology

Signature: Daniel Shaddock
Date: 9-6-02
TRANSFER OF COPYRIGHT TO THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE)

Title of Paper: Bench Top Interferometric Test Bed for LISA
Author(s): D. A. Shaddock, B. C. Young and A. Abramovici

This signed statement must be returned to SPIE prior to the scheduled publication of the Proceedings or Journal in which the Paper will be published. The intent of this Agreement is to protect the interests of both SPIE and authors/employers and to specify reasonable rights for both parties related to publication and reuse of the material.

The undersigned hereby assign(s) to the Society of Photo-Optical Instrumentation Engineers (SPIE) copyright ownership in the above-titled Paper, effective if and when the Paper is accepted for publication by SPIE and to the extent transferable under applicable national law. This assignment gives SPIE the right to register copyright in the Paper in its name as claimant and to publish the Paper in any print or electronic medium.

Authors, or their employers in the case of works made for hire, retain the following rights:

(1) All proprietary rights other than copyright, including patent rights.
(2) The right to make and distribute copies of the Paper for internal purposes.
(3) The right to post a preprint or reprint of the Paper on an internal or external server controlled exclusively by the author/employer, provided that (a) such posting is noncommercial in nature and the Paper is made available to users without a fee or charge, and (b) the following statement appears on the first page, or screen, of the Paper as posted on the server:

Copyright xxxx (year) Society of Photo-Optical Instrumentation Engineers.
This paper was (will be) published in [add journal or proceedings bibliographic information] and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

(4) The right to use the material for lecture or classroom purposes.
(5) The right to prepare derivative publications based on the Paper, including books or book chapters, journal papers, and magazine articles, provided that publication of a derivative work occurs subsequent to the official date of publication of the SPIE publication in which the Paper appears.
(6) If the work that forms the basis of this Paper was done under a contract with a governmental agency or other entity that retains certain rights, this Transfer of Copyright is subject to any rights that such governmental agency or other entity may have acquired.

By signing this Agreement, the authors warrant that (1) the Paper is original and has not previously been published elsewhere; (2) this work does not infringe on any copyright or other rights in any other work; (3) all necessary reproduction permissions, licenses, and clearances have been obtained; and (4) the authors own the copyright in the Paper, are authorized to transfer it, and have full power to enter into this Agreement with SPIE.

WH0 SHOULD SIGN. This form must be signed by (1) at least one author who is not a U.S. Government employee and (2) the author's employer if the Paper was prepared within the scope of the author's employment or was commissioned by the employer. If not signed by all authors, the author(s) signing this Agreement represents that he/she is signing this Agreement as authorized agent for and on behalf of all the authors.

U.S. GOVERNMENT EMPLOYMENT CERTIFICATION

A work prepared by a U.S. Government employee as part of his or her official duties is not eligible for U.S. copyright. If all authors were U.S. Government employees when this Paper was prepared, and the authors prepared this Paper as part of the their official duties, at least one author should sign below. If at least one author was not a U.S. Government employee, the work is eligible for copyright and that author should sign the Transfer of Copyright form above.

By signing this Agreement, the authors warrant that (1) the Paper is original and has not previously been published elsewhere; (2) this work does not infringe on any copyright or other rights in any other work; and (3) all necessary reproduction permissions, licenses, and clearances have been obtained.

Director of Publications, SPIE The International Society for Optical Engineering, P.O. Box 10, Bellingham, WA 98227-0010 USA
Phone: 360/676-3290 (Pacific Time) Fax: 360/647-1445 E-mail: spie@spie.org www.spie.org
Bench Top Interferometric Test Bed for LISA

D. A. Shaddock, B.C. Young and A. Abramovici
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

ABSTRACT

The optical paths on the LISA bench must have a length instability of less than 10 pm/√Hz over time scales of 1 s to 1000 s. A small rigid interferometer has been constructed to measure the optical path length changes using various bonding techniques. The interferometer was constructed entirely from ultra-low expansion (ULE) glass by optically contacting ULE beamsplitters to a ULE bench. Preliminary results taken with the interferometer operating in air indicate optical path length fluctuations of approximately 100 pm/√Hz or less for frequencies between 1 mHz and 1 Hz.

Keywords: LISA optical bench, optical contacting, heterodyne interferometer

1. INTRODUCTION

The present sensitivity goal of the LISA interferometer calls for a displacement resolution of 40 pm/√Hz between 1 mHz and 1 Hz. To achieve this level of performance optical path length fluctuations of the beams on the LISA benches should be kept to less than 10 pm/√Hz. Such path length fluctuations could be caused by bulk expansion of the bench and optics materials, and from motion in the bonds between the optics and the bench. The characterization of the latter noise source is the focus of the work presented here.

The LISA optics and optical bench are to be constructed from ultra-low expansion titanium silicate glass (ULE). ULE’s low coefficient of thermal expansion of 0 ± 30 ppb/K makes it a very attractive material for LISA. Several techniques are under consideration for bonding the beamsplitters and mirrors to the optical bench including optical contacting and hydroxy-catalysis bonding. This paper outlines the design and construction of an interferometer used to evaluate the dimensional stability of optical contacting.

2. RIGID INTERFEROMETER DESIGN AND READOUT SYSTEM

A small rigid interferometer was constructed by optically contacting four ULE beamsplitters to a ULE bench. A conceptual layout of the interferometer is shown in Figure 1. A heterodyne readout system was implemented allowing the relative positions of the beamsplitters to be inferred from the phases of the beat notes measured at the interferometer outputs. The rigid interferometer is actually composed of two separate interferometers. Individually each interferometer output is sensitive to laser frequency fluctuations, rf local oscillator fluctuations and changes in the optical paths of the input beams. However, these noise sources are common to both interferometer readouts and thus are cancelled when the signals from the two interferometers are subtracted. Two ensure a high degree of noise cancellation the arm lengths of the interferometer must be matched as closely as possible.

Each beam is split into two beams and traverses one of the arm lengths of the interferometer before being combined with the other beam on two separate beamsplitters. The interference at the beamsplitter ports is detected by four photodetectors whose outputs are proportional to the detected optical power, P_N, P_S, P_E, P_W. For notational simplicity all electric field amplitudes, E_j, are real and are expressed in units of $\sqrt{\text{Watts}}$.

E-mail: Daniel.Shaddock@jpl.nasa.gov
such that optical power is equal to E_1^2. Assuming all beamsplitters have a 50:50 splitting ratio the detected powers will be.

\[
P_N = \frac{E_1^2}{4} + \frac{E_2^2}{4} + \frac{E_1E_2}{4} \cos((\omega_1 - \omega_2)t + \phi_1 - \phi_2 + \phi_N - \phi_E) \quad (1)
\]

\[
P_E = \frac{E_1^2}{4} + \frac{E_2^2}{4} - \frac{E_1E_2}{4} \cos((\omega_1 - \omega_2)t + \phi_1 - \phi_2 + \phi_N - \phi_E) \quad (2)
\]

\[
P_S = \frac{E_1^2}{4} + \frac{E_2^2}{4} + \frac{E_1E_2}{4} \cos((\omega_1 - \omega_2)t + \phi_1 - \phi_2 + \phi_W - \phi_S) \quad (3)
\]

\[
P_W = \frac{E_1^2}{4} + \frac{E_2^2}{4} - \frac{E_1E_2}{4} \cos((\omega_1 - \omega_2)t + \phi_1 - \phi_2 + \phi_W - \phi_S) \quad (4)
\]

where the subscript denotes the North, East, South or West position as indicated in Figure 1 for the photodetectors and optical phase shifts. The laser frequencies are ω_1 and ω_2 and ϕ_1 and ϕ_2 are the total phase fluctuations of the fields at the interferometer inputs. The signals from adjacent photodetectors are combined with a subtraction to give S_1 and S_2. This eliminates excess intensity noise and enhances the interference signal.

\[
S_1 = P_N - P_E = E_1E_2 \cos((\omega_1 - \omega_2)t + \phi_1 - \phi_2 + \phi_N - \phi_E) \quad (5)
\]

\[
S_2 = P_W - P_S = E_1E_2 \cos((\omega_1 - \omega_2)t + \phi_1 - \phi_2 + \phi_W - \phi_S) \quad (6)
\]

The phases of these signals, $\angle S_1$ and $\angle S_2$, contain the laser frequency fluctuations, input phase fluctuations and phase shifts due to the interferometer optical paths. Measuring the difference between these phases cancels the common mode noise in the final output. The phase difference is proportional to the difference in arm lengths:

\[
\Delta \Phi = \angle S_1 - \angle S_2 = \phi_N + \phi_S - (\phi_W + \phi_E) \quad (7)
\]

As $\Delta \Phi$ is proportional only to the difference between the North-South and East-West beamsplitter separations this output is also insensitive to isotropic thermal expansion of the ULE bench when the interferometer has matched arm lengths. The change in relative separation of the beamsplitters can be inferred from this phase difference by multiplying $\Delta \Phi$ by $\lambda/(2\pi)$.

3. THE EXPERIMENT

The experimental layout is shown in Figure 2. The two interferometer inputs are derived from a 1 mW 633 nm Helium-Neon laser (Melles Griot 05-STP-901) operated in the frequency stabilized mode. The output of the laser is divided into two beams that are upshifted 40.000 MHz and 40.003 MHz by acousto-optic modulators (IntraAction AOM-40). This gives a heterodyne beat frequency at 3 kHz. Each beam is coupled into a
polarization maintaining fiber for spatial mode filtering. Eventually the measurement will performed in a vacuum chamber (currently the interferometer is operated in air). The outputs of the two fibers are then collimated and aligned into the interferometer using steering mirrors. The four interferometer output beams are aligned and focused onto photodetectors (Thorlabs PDA55) before the relevant electronic signals are subtracted using two low noise pre-amplifiers (Stanford Research Systems SR560). The outputs of the amplifiers are fed into a phasemeter with a phase noise floor of less than 10^{-6} cycles/$\sqrt{\text{Hz}}$, corresponding to a displacement noise floor of less than $1 \text{ pm/} \sqrt{\text{Hz}}$ from 1 mHz to 1 Hz.

3.1. Optical contacting and interferometer alignment

The beamsplitter substrates with dielectric coatings were provided by CVI Laser and were specified to each have a bottom surface with $\lambda/4$ flatness at an angle of $90^\circ \pm 1'$ to the front optical surface. The perpendicularity of these surfaces is critical to the vertical alignment of the interferometer.

Although it is possible to align the input beams to ensure correct alignment of one of the interferometer outputs the second output can only be aligned using the interferometer beamsplitters themselves. The first three beamsplitters (NW, NE and SE) were optically contacted in approximately the correct positions as determined by a visual inspection. The input beams were then aligned using steering mirrors to give maximum fringe visibility on the North and East photodetectors. Adjustment of the position and orientation of the fourth beamsplitter are enough to completely align the remaining interferometer outputs, as measured by the South and West photodetectors.

Vertical alignment was completely dependent on the perpendicularity of the beamsplitters and the flatness of the ULE bench. Initially very low fringe visibilities were obtained (7%) due to poor vertical alignment of the interferometer. Detailed measurements of the vertical angles of 10 beamsplitters allowed selection of appropriately-angled beamsplitters. After exchanging and realigning the beamsplitters the fringe visibility increased to greater than 65% on all four outputs simultaneously.

The optical contacting itself posed no problem as long as the optics and bench were sufficiently clean. Immediately before contacting both the bench and beamsplitters were thoroughly cleaned using Lens Clem no. 3 cleaning fluid for uncoated optics. One of the main difficulties encountered with the interferometer construction was optically contacting the fourth beamsplitter in the correct position. In general, once the beamsplitter had contacted to the ULE bench no further alignment was possible. However, it was realized that after placing a drop of cleaning fluid on the ULE bench adjacent to a previously contacted beamsplitter the fluid was absorbed into the bond interface. The beamsplitter could now be freely moved around without losing contact with the bench. Over a period of a few minutes the cleaning fluid evaporated and the beamsplitter
Figure 3. Measured mirror position over 30,000 s. Each measurement point is the result of 0.5 seconds of averaging.

gradually became harder to move until eventually it was rigidly contacted in place once again. This allowed the fourth beamsplitter to be aligned and the fringe visibility to be maximized. Note that in order to obtain a strong bond it was necessary to apply a small amount of pressure during the cleaning fluid evaporation. The bonds achieved by application of the cleaning fluid in many cases seemed stronger and more complete than the original bonds. Moreover, this alignment process could be repeated several times if necessary by re-adding fluid until the satisfactory alignment was achieved. Using this technique it was possible to align the interferometer almost perfectly in the horizontal dimension with the residual vertical misalignment limiting the fringe visibility to 65%.

4. RESULTS

For the results presented below the optically contacted ULE interferometer was operated in an ordinary atmospheric environment inside a class 100,000 clean room. A box was placed over the ULE interferometer to minimize air currents. Figure 3 shows the measured displacement over a 30,000 s period. Each data point represents the phase difference averaged for 0.5 s.

The data of Figure 3 exhibits a long term drift of nearly 3 nm over the 30,000 second run. The cause of this drift is currently unknown. Simultaneous measurements of the temperature of the ULE interferometer showed no correlation with the interferometer results. The laser frequency fluctuations were also considered although with an arm length mismatch of less than 1 mm this is an unlikely noise source. A frequency shift of more than 450 MHz would be required to account for the measured 3 nm change. Tests of the photodetection and phasemeter electronics were ruled out as the phase difference between the North and East photodetectors was measured to much better than this level over similar time scales. The most likely cause of the long term drift is misalignment of the input beams due to relaxation of the input beams' steering mirror mounts. This effect, which is normally of second order, was significant due to the imperfect initial alignment of the interferometer. For example, $\Delta \Phi$ could be varied by several degrees by adjusting the vertical alignment of the input beams.

The root power spectral density of this data is shown in Figure 4. The spectral density is at or below 100 pm/$\sqrt{\text{Hz}}$ for frequency between 1 mHz and 1 Hz. Although this is a factor of 10 above LISA requirements the results are encouraging when it is considered that the interferometer is operating in air. Note that the
Figure 4. Root power spectral density of the differential beamsplitter motion.

spectral density is flat for frequencies down to below 1 mHz and the long term drift appears as 1/f noise below about 0.5 mHz.

5. CONCLUSION

We have constructed a rigid interferometer entirely of ULE using optical contacting. Preliminary results taken with the interferometer operating in air using a heterodyne readout system show differential path length fluctuations of approximately 100 pm/√Hz or less over time scales of 1 to 1000 seconds. This performance is approximately a factor of 10 away from meeting the LISA specifications. Future tests will be performed with the interferometer operating in vacuum.

ACKNOWLEDGMENTS

The authors thank Andreas Kuhnert and Robert Spero for valuable discussions. Daniel Shaddock acknowledges the financial support of the National Research Council.

REFERENCES

2. ULE Corning Code 7972 Ultra Low Expansion Glass data sheet.