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We present a formal thermodynamic treatment of the Josephson effect. We show that the
current I, and the phase difference ¢ are thermodynamic conjugate variables.
Quantitative expressions for the fluctuations in I, and ¢, as well as their power spectral

densities, are derived. With these, we explain why the Josephson effect is observable in a
“He near the lambda transition despite the presence of strong fluctuations there.
Treatment of thermodynamic stability and the thermal activation to the region of

instability are also presented.
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One of most astounding accomplishment of modern physics is the establishment

that all the condensates in a Bose liquid can be represented by a single wave function
w =ne'® with only two parameters — an amplitude 77, and a quantum phase ®. In
superfluid *He, 7 is related to the superfluid density by p, =#’m, and the superfluid
velocity is related to V& by: u, = (#/m)V®, where m is the mass of a *He atom. With

this, many interesting quantum phenomena such as flux quantization, quantized vortices
and the Josephson effect can be explained.

Although a lot is known about quantum fluid at very low temperature 7 where the
effects of thermodynamic fluctuations are small, there are still unresolved questions near
the lambda transition temperature T,. For example it was suspected that the Josephson

effect in “He would be washed out by fluctuations near T, . Its recent observation [1] was

therefore quite surprising and motivated us to take a closer look at the fluctuations in the

junction. We are able to derive quantitative expressions for the fluctuations in 7, and ¢.

With these expressions, the existence of the effect is explained.

Zimmermann [3] gave an argument of why the Josephson effect might not be

observable near 7,. Consider a junction consisting of a single orifice of size {X{XZ.

The junction obeys the Josephson relation: i, =i, sin¢, where i, is the critical current.
The Josephson coupling energy is given by: E}(¢) = (hic /m)(l—cos ¢). It is generally
accepted that [2] the condition for existence of the Josephson effect is "E} " > k,T , where

"E} " = hi_/m is the amplitude of E| (@), k, is Boltzmann’s constant. We evaluate the

quantity: "E}"/(kBT)=hi(,/(kaT) by noticing that i = pu ¢®, where p, is the



superfluid density in the junction, which is different from its bulk value - p®*, due to

finite size effect; u, is the superfluid velocity in the junction when ¢=7/2 and therefore
u, =7h/(2¢m) . In *He, there is also the relation that: £0%* =m?k,T/h*, where & is

the correlation length. Thus:

[E] (=) ( o,
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One condition required for the DC Josephson effect is £ <&, and when this is met,

P, < p* due to finite size effect. Therefore the two conditions £ <& and "E} “ >k, T

cannot be simultaneously met, both of which are required.

One simple way to reconcile this is the observation that many orifices were used
in the experiment. Furthermore, each orifice is a slit of area ¢, x ¢ rather than a square of
size £x{. This greatly increased the total critical current and the Josephson coupling

energy due to the increase in the cross section area. Let N, be the number of slits. We

define an effective number N = N, ¢, /¢ to account for the increase in the cross section

slit
area. Thus N can be thought of as the effective number of £x¢x /¢ orifices in parallel.

Here we neglect the small difference in confinement geometry between square holes and
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slits. The Josephson energy of the array is £, = NE, and =N|— || =55 |- For
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large N, both ¢<¢& and |E,|> k,T can be satisfied, and Josephson effect is possible.

This explanation is consistent with the results of ref. {1], where the measurement shows



that |E, |/k,T are 220 and 39 for T ~T, of 61 and 28 uK respectively. While this is a

plausible explanation, it does not explain why all the orifices should function together

and behave as a single junction with an enhanced critical current I, = Ni_. It gives no
hint as to what would happen when one gets even closer to T, so that even with the large
N, |E,||/*5T <1. To gain further insight, we examine the thermodynamics of the system.

The thermodynamics treatment begins with the realization that there is a different
way to do work in superfluid. It is possible to move a porous material with the normal
fluid locked inside. Therefore work is done only to the normal component while the

superfluid passes through unaffected. One can write: d(Work) = (Force)dz = (dJ, [dt)dz =
(dz/dt)d], =u,dJ,, where z is the distance moved,J, = p,u,V is the normal fluid
momentum, «, is the normal fluid velocity and V is the volume of the sample. Thus the
first law of thermal dynamics in the superfluid frame is [4]: dE° =7dS +u,dJ,. Most

experiments are performed in a frame where the normal component is at rest. Using

Galilean transformation E" = E* +Vo(u, —u,)*/2~J,(u, —u,), the first law in the
normal fluid frame is: dE" =TdS+J du,, where J =Vpu,  is the superfluid

momentum. For an orifice with cross section area A and thickness ¢, it is more

convenient to use I, = p.u A and @¢=(m/h)u ¢ as the conjugate variables. The free
energy, dF(T,u,)=-SdT +J,du,, becomes: dF(T,p)=-SdT +(hl,/m)dp, where
I,/m is also the particle current, which in superconductor can be written as I, /2e,
where I, is the electrical supercurrent. Thus most of the calculations here can be

adapted to superconductor by replacing [ /m with I . /2e.



It is possible to write down the fluctuations of ¢ and the conditions of stability by

analogy to the gaseous system. In the case of a gaseous system, the work term is:
d(Work) = —PdV , where P is the pressure, V is the volume. When P is kept constant the
Gibbs free energy G,(T,P) can be expanded around its equilibrium value G, as [5],
G, =G, +(3G,/aV), AV +(1/2)0°G, /oV?),(AV)* +.... The condition for stability
requires G, to have a minimum at G,. Giving the condition
(0%G,/ avZ), =~(0P/0V), >0. The probability for finding the system with a volume
between V and V +dV is proportional to e @ %V7gy = leading to the volume
fluctuations: <5V 2> =—k,T(av/ dP)T . For superfluid flow in an orifice, the work term is:

d(Work) = (hl, /m)d¢ , thus one can make the substitutions — (I, /m)— P and ¢ —V .

When I is kept constant, the stability condition and the phase fluctuations are:

dl,/o¢ >0, 2

(00%) = k,T(m/n)- (a1, /de)" . 3)

When the ¢ is kept constant, the fluctuations in I, are ((57 f> =k,T(m/n)-(dl,/dp).
Let us first consider the region far below T, where £ < . In this region, the work

term can be integrated to give Work = p.u’V / 2, and therefore is just the kinetic energy
of superfluid flow. It is useful to define a hydrodynamic inductance L in such a way that

Work = LI /2. Thus L=¢/(Ap, ). Because L o< £/A, and the electrical resistance of a

resistor has the same geometric dependence, when orifices are connected in parallel or in



series, the resulting inductance is calculated the same way as electrical resistors. The
large open geometry in both sides of the orifices in ref. (1) ensures that the values of
inductance of the fluid connecting the orifices together are small compared to the
inductance of the orifices so that the orifices are indeed connected in parallel.

In the region of £ < ¢, the I, is proportional to ¢. The stability condition is

satisfied; (éYf) = (n/m)* -(£A/¢)- (pspf"”‘ ), and

(89%)=(&e/A)- (02 | p, ) = ELp 2 “)

Equation (4) above establishes that <§¢2> scales with L the same way Johnson

voltage noise scales with resistance, i.e. (5(Voltage)2> o< (R). The computation of the

phase fluctuations for a network of hydrodynamic inductors is analogous to the
computation of the Johnson noise from a network of resistors. The fluctuations in phase
in each side of the orifices are small (due to the small inductance) compared with the
ﬂuctﬁations in the phase difference across the junction. Therefore the phase on each side
of the orifices must be locked together at any instance in time. This is a formal derivation
of the assertion that a unique phase exists everywhere inside a bulk superfluid. With

£>10%cm, 9, /¢>10" for centimeter-size system. Such a large phase fluctuations is

quite surprising considering that for most other system the fractional fluctuations are

approximately 17N py e, =107".

We next turn to the more interesting case close to T,, where £<&. In this

region, I, =1 _sing, where I = Ni_ is the effective critical current through the array of



orifices. The stability condition given in Eq. (2) implies that I, (¢) is stable only in the
region where 0l /dp>0, ie. 0<p<z/2 and 37/2<¢<27z. In the range
wl/2<¢<37m/2, ¢ is not stable against small fluctuations due to the violation of Le
Chaterler’s principle. It is possible for I, and ¢ to traverse this region, but not dwell in
it in steady state. The fluctuations in I, and ¢ discussed in the following are only

defined in the stable region. Using Eq. (3), when I, = const.,

<5¢2> _ _keTm_ (5)

and when ¢ = const., <67s2> =kyTml cosg/h.
For a single ¢x¢x{ orifice, <§¢12> =k,Tm/(hi_cos¢). After N such junctions

are connected in parallel, the fluctuations should be reduced by a factor of JN as long as
the spacing between the orifices is larger than &, so that their fluctuations are

uncorrelated. Because the phases in each side of the orifices are locked together, it forces

the phase differences across all the orifices to be averaged together at any instance. Thus

when I = Ni_, Eq. (5) implies that <§¢2> is reduced by 1/N. The array behaves as one
single junction with I, =Ni, and E, =NE,. In the following, we show that the

reduction in phase fluctuations is responsible for making the Josephson effect observable.

Integrating the work term d(Work)=(h/m)de¢ from 0 to ¢ gives:

E,(¢) = (nl,/m)1-cos ¢). From Eq. (5) the condition for existence of the Josephson



effect: |E,|> k,T is the same as <5¢2> <1 at ¢ =0, suggesting that as dg,,, becomes

large, ¢ may fluctuate around a circle. When this occurs a large fraction of the time, ¢
averages to zero. Josephson effect would not be observable.

In the above analysis (J¢*) is assumed to be small enough that it is proportional
to the slope of a response function (d¢/dI ). But as <5¢2> — 1, this assumption is not

valid. To develop the thermodynamics of large fluctuations, we notice that at constant

current, the proper free energy to use is: G(T',1,) = F(T,9) -kl ¢/m, giving:

G(T,1,)=F(T,0)+ (kI /m)1-cos@)—hl .¢/m (6)

Thus when I, is held constant, the excess in the free energy when the phase deviates

from its equilibrium value of @, =sin™(Z,/I.) by an amount of &g is:

AG(T,1,)= (1, /m)1-cos(p, + 6p)|- 1, (¢, + 8¢)/m—(KI_/m)1~cos@, )+ kI @, /m

=AG(4,,6p) =|E, |[cos @, - (1-cos 8¢) +sin @, - (sin 5p — 5p)] (7)

Therefore the probability of observing a deviation of &g is: P.(g,,00)e e /%"  which
for large |E,|/k,T and small ¢,, gives a Guassian function with a width given by Eq.
(5) above. For ¢,>0, P (¢e,§¢) has a maximum at Jd¢ =0, and decreases
monotonically in the negative d¢ direction. In the positive d¢ direction, it decreases to

a minimum and then diverges for large d¢. Due to symmetry, only @, >0 is discussed



without lost of generality. This divergence is not of concern, because large d¢ brings the
phase into the unstable region where fluctuations is not well defined. But to continue the
discussion, one must establish the region of validity for P.(p,,5¢). This is best done by
analogy with the case of the rigid pendulum [6] shown in the inset of Figure 1. Here the
constant applied /; in the Josephson junction is analogous to a constant applied torque.
If a constant torque is applied to balance the pendulum ‘at an equilibrium angle 8, it is
stable against small perturbation for 0 <#, <z /2, but unstable for 7#/2<6, <37/4.
This is an analogy to the stability conditions discussed above. As long as the pendulum
is released at an angle & <@_, where 6, =7 -6, (or and angle of 7 — 26, away from 6,
in the positive direction), it will converge back to its original position of. If released at a
larger angle, it will roll around the circle. Therefore if fluctuations 6ccasi0nally bring the
pendulum to a position larger than @, it will occasionally roll around. The behavior thus
becomes intermittent. The intermittency increases with fluctuations until the motion
becomes chaotic. Thus the condition for well-behaved fluctuations is d¢ < 7 —2¢, .
Because P.(@,,00)— 0 for negative 8¢, the exact choice of the minimum &g is
not important as long as the probability density is small - - there. We choose —7 < d¢
for convenient. With the range of validity set at —7 <d¢ <7 —2¢,, P, (¢e,§¢) can be

computed as: P.(p,,0p) = e *®'%T D (p,), where D(p,) is the normalization

”‘2¢r
constant given by D(g,)= Ie‘AG’k”Td§¢. For small P.(g,, 7 —2¢,), the above

normalization introduces small error. But P.(@,, 7 —2¢,) determines the probability of

thermal activation into the unstable region. Therefore an experimenter can choose a



criteria of how long to wait before declaring the system stable. This is equivalent to

choosing a critical probability density P.. Thus the condition P, (¢ n-2¢.,..)=P

max ?
defines a maximum phase ¢_, and a maximum current I, =1 _sing,_, that can be
maintained across the junction under phase fluctuations. As T is raised and fluctuations
increases, ¢, and I, decreases, until they reach values of zeroes at T =7,. Above T,

but below T, although I, and ¢ undergo chaotic motions, our analysis implies thatv

quantum mechanical order is maintained, and the fluid in the orifice remains superfluid.

Figure 1 shows a plot of P,(g,,dp) for several values of ¢, and |E, |/k,T. We
chose P, =0.1 /radian, and computed |E, ||/k,T as a function of ¢, . The results are
shown in Figure 2. From this plot, ¢, —0 when |E,|/k,T — 0.425, verifying the

general assertion that as "E f || / kzT — 1, Josephson effect becomes unobservable.

For small fluctuations the fluctuation dissipation theorem [7] gives the power
spectral density (PSD) of z as z,g, (f) = 2k,T Imlz(f)/F”"' (f)J/(ﬂf), where f is the
frequency, F* (f) is a small amplitude AC drive and z(f) is the AC response. An

example of its application is the spring-mass system with a viscous damper shown in the

inset of Figure 2. The solution z,g, is used in the design of vibration isolation system for

the detection of gravity wave [8]. This solution can be applied to the case of the
Josephson junction, since the equation of motion of a rigid pendulum [6], for small

amplitude oscillation, can be mapped to that of a the spring-mass. Here the small AC

driving torque I" about a constant torque I", for a rigid pendulum is analogous to the

10



small AC current I about a DC term / . of a Josephson junction, or the AC driving force

F of a spring-mass oscillator. The following is the generalized equation of motion.

(8)

where the subscripts n=1,2,3,4 denotes the spring-mass, the rigid pendulum, the

superconductor and the superfluid systems respectively. The first, second and third terms

originate respectively from the inertial force, the frictional force and the force F that
does work to the system. The external applied force F supplies the balance that
maintains a steady state oscillation. At resonance, F* and z are 90° out of phase,

giving a large Im(z/ F e’“) and thus a peak in the PSD. The generalize PSD is [8]:

_24,T/Q, , ©
i, £ ll- 21 £2F +(f1£,0,) ]

Zpsp (f) =

and Fpi, (f) = 25sp (F)K2. For f—0, 205 (f)=2k,T/(zx, f,,0,). Table I relates
the generalized variables to the experimental variables. Here f, is the resonance
frequency; 7 is the viscosity, A, and d are the surface area and gap size of the cylindrical

shell viscous damper as shown; R and C are the junction resistance and capacitance. The
inertia force for helium in a Helmholz oscillator is provide by the diaphragm with a

spring constant x, and area A,. Although the Q of the Helmholtz oscillator reported in

Ref. [1] is ~1, the dissipative mechanism responsible for such a low Q is not yet

11



identified. It is also not know if the new dissipative mechanisms reported in superfluid

*He system [9] are present here. To check consistency, we integrated Eq. (9) and showed
that <Az,f > = _[ Zpspdf = kT /K, as expected [10], providing another way to derive Egq.

(5). At low frequencies we also show that the current fluctuations for superconductor

reduces to the familiar Johnson current noise. Finally, the PSD of ¢ can be used to

determine the fundamental limit on the resolution of a superfluid gyroscope [11], and
may point out ways to reduce its noise.
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FIGURE CAPTIONS

Figure 1: A plot of F,(g,,d¢) as a function of ¢. Solid line is for |E,||/k,T = 40.63,
two values: ¢,=0 and ¢, =¢_ =0357r are plotted.  Dashed line is for
|E;||/*5sT =1.172, two values: ¢, =0 and ¢, =@__ = 0.1z are plotted. The inset is a

rigid pendulum model of the Josephson junction.

Figure 2: A plot of |E,|/k,T as a function of ¢, for a critical probability density of
P.=0.1/radian at 6¢p =m—2¢__ . The inset is a spring-mass oscillator model of the

Josephson junction driven to oscillate at a small amplitude.
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Table I: Relation between generalized variables and experimental variables.

Variables | Spring-Mass | Rigid Pendulum | Superconductor Superfluid
Ly 4 Zz=§ =9 2, =¢
F, F F,=T F, =(n/2e)I sing | F, =(n/m)I_sing
= MgR sind,
Fe | R =Fe* | Fr =T Fe =@2e)l” | B = (fm)
M, M, M2=MR02 M3=(£;éj M4=(P2?ZH2J
4e m Ky
K, k, =dF,[dz, | k, =dl/d@ K, =dF,[/d¢ k,=dF,/d¢
= MgR,cos6, | =(n/2)I’cosg = (a/m)I, cos¢
wjn w«flle/Ml w32=K'2/M2 w:3= 3/M3 2 ___mKdIcCOS¢
=(g/R,)cosb, | =(2e/hC)I  cos¢ o hp*A;
Y, nA, I(M.d) | nA,r* /(M,dR?) y =L .
3 RC !
Q, @, [1, 0,5/ JReR?CIR) cosg | @osl?s
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