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INTRODUCTION / MOTIVATION

Earth is a dynamic system:

e fluid, mobile atmosphere and ocean

. contlnually changing distribution of ice, snow, and ground water

e fluid core undergoing hydromagnetic motion

e a mantle undergoing both thermal convection and rebound from
glacial loading of the last ice age

e mobile plates

Processes affect the distribution of mass in the Earth and produce

variations in the Earth’s gravitational field on a variety of temporal and
spatial time scales

Observations of the Earth’s time varying global gravitational field allows
the isolation and subsequent investigation into the changing mass
distribution of the Earth and the processes involved



Earth System Science and Gravity

Among the different areas of scientific concern in the Earth System
Sciences, several would benefit from accurate measurements of the
Earth’s gravity field.

Gravity field measurements serve as integral constraints on mass
distribution and variations in the combined solid Earth, oceans and
atmosphere system.

Mapping of the Earth’s gravity field from space offers global,
continuous and homogeneous high quality monitoring of the static and
time variable components of the Earth’s gravity field.

Potential areas of impact include Oceanography, Hydrology, Glaciology,
the Solid Earth Sciences and Geodesy



Climate Change Prediction
InterGovemment;zl Panel o; Climate Change (1991):

“ ... The key areas of scientific uncertainty are:

* clouds: primarily cloud formation, dissipation, and radiative
properties, which influence the response of the atmosphere to
greenhouse forcing;

* oceans: the exchange of energy between the ocean and the
atmosphere, between the upper layers of the ocean and the deep
ocean, and transport within the ocean, all of which control the
rate of global climate change the patterns of regional change;

* greenhouse gases: quantification of the uptake and release of the
greenhouse gases, their chemical reactions in the atmosphere,
and how these may be influenced by climate change;

* polar ice sheets: which affect predictions of sea level rise.

Studies of land surface hydrology, and of impact on ecosystems, are also
important”

(“CLIMATE CHANGE: The IPCC Scientific Assessment: Executive Summary”)



Science Applications

STATIC GRAVITY FIELD

» Satellite Altimetry

* Absolute Surface Geostrophic Currents

* Upper Ocean Heat Content and Heat Flux

- % Long Term Sea Level Variations

» Solid Earth Science

* Mantle Structure and Density Variations

* Lithospheric Density Variations
e Geodesy

* Precise Positioning

* Improved Satellite Orbits (Re-Analysis of Historical Data)
e Mineral Exploration

*» Datum for regional gravitational variations



Science Applications

TIME VARIABLE GRAVITY FIELD

e Oceanography
* Ocean Bottom Pressure, and Deep Ocean Circulation
* Long Term Sea Level Change
* Separation of Steric & Non-Steric Variations using Altimetry

» Hydrology (Global Water Cycle)
* Large Scale, Continental Scale Water Storage Changes

* (e.g. Integrated effects of evapo-transpiration, soil moisture
change, aquifer depletion, etc.) »

* Glaciology
» Polar Ice Sheet Mass Variations
x Post-Glacial Rebound
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Grayjty Reéovery nd Climate Experiment

GRACE

Mission Objective

Produce a hew model of

the Earth's gravity field

with unprecedent accuracy

every 12 to 25 days for five years

208

GRACE unravels global climatic issues by:

- Enabling a better understanding of ocean surface currents
and ocean heat transport
« Measuring changes in sea-floor pressure
« Watching the mass of the oceans change
- Measuring the mass balance of ice sheets and glaciers
- Monitoring changes in the storage of water and snow on continents

November 10, 1997 ' John Wahr
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GRACE: Expected Results
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GRACE
Predicted 5-year Geoid Signals & GRACE Errors
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The Dynamic Atmosphere

* Knowledge of atmospheric variation is vital to .
unraveling the effects of the other subsystems: (such
as the hydrological cycle) involved in gravity

* Reliable extended-range forecasting which wauid-
require interactive coupling between the atmssphere
and water in soils and the ocean would benefit from
hydrological constraints and improved! inderstanding
of ocean dynamics |

* Gravity data may serve as a proxy data type in-some
data-poor regions; however, it would be more efficient
to increase meteorological measurements (i.e.,
barometric networks) C
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Ocean Dynamics and Heat Flux

Several mission scenarios (SGG, SST, SSI, and SSE)
offer dramatic improvement in our knowledge of
absolute dynamic topography and surface circulation
from satellite altimetry, especially at basin scales
(~300-3000 km), effectively eliminating the geoid as
an error source on these spatial scales

Combination of gravity and altimetry data will provide
a powerful constraint on the ocean circulation and
allow for the separation of the time-dependent steric
and nonsteric components of sea level

A time-varying geoid would allow the determination of
sea floor pressure variations over the world oceans at
spatial scales of a few hundred km or longer and
thereby variable deep ocean currents could be
inferred
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Water and Energy Cycling

«  Variations in groundwater and soil moisture levels can
be potentially measured with a high level of accuracy
at subcontinental length scales

 (Great value in forecasting conditions for
agriculture, monitoring snow pack, assessing the
likelihood of floods and the runoff available for
~irrigation
e  Scientific insight into hydrologic cycle
*  Valuable for monitoring secular water level
decline in aquifers

e  Gravity measurements of changes in water storage
are important:

In hydrology: the connection between hydrological
processes at traditional hydrological length scales
(tens of km and less) and longer scales for estimating
global water and energy balances

In meteorology: these measurements reflect the
variations in soil moisture
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How well can GRACE recover the hydrology signal?
Construct monthly, synthetic geoids that include effects of:

(1) the "signal": soil moisture + snow cover (from Huang, et
al, 1996)

(2) redistribution of mass in the oceans (from POP ocean cir-
culation model of Dukowicz & Smith, 1994; data provided
by Frank Bryan and Mery Molenaar)

(3) errors in post-glacial-rebound model: uses difference
between model results for 1 x 1022 Pa-sec and for 5 x 10?2

Pa-sec lower mantle viscosity

(4) errors in atmospheric pressure: (NMC-ECMWF) / 2.
Assume inverted barometer response of ocean.

(5) simulated GRACE errors (from Thomas & Watkins, and
Bettadpur)

Use the geoid to find monthly values of surface mass on land, aver-

aged over regions

Compare with averages found directly from the soil moisture +

Snow cover data
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amount of water (thickness in cm)
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average water thickness (cm)

10

@ N
& O

N
o

IHIIIIHIHIH”Hlll”"lﬂ‘]IllllllllHHIIIH]"H

-t
o

- -
© © o o o

l"”l”lllll'lHH!'HHH]”IHHHHl(l””llll!lIH

W
o

-
o o

mass of soil moisture, averaged around
Manaus, Brazil (in the Amazon basin)
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Solid Earth Processes
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Rate of change in geoid due to 1 mm/yr rise in global sea level

.
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mm /v

Assumes sea level rise is due to addition of water to the oceans.

(Geoid maximum) - (geoid minimum) = 0.14 mm/yr
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Sea Level Change

Sources of global sea-level rise (1.0 to 2.5 mm/yr over
last century) not well understood

*  Most of the likely mechanisms involve mass
redistribution from the continents; gravity can
provide unique insights through the continual
monitoring of geoid changes both globally and
regionally (such as mass balance of individual
drainage system and regions characterized by
large numbers of glaciers and ice caps

The measurement and interpretation of changes in
Greenland and Antarctica is complex issue:
phenomena include:

*  Secular changes in ice-sheet mass

* Post glacial rebound

* Interannual variability of snowfall

* Effect of atmospheric pressure trends

Complimentary information important in separation of
signals .

* Network of GPS receivers on land, numerical
models of rebound with improved mantle
viscosity (provided by the gravity mission),
comparison with satellite altimetry

* Improving calculations of mass input to ice-sheet
surfaces from measurements of moisture-flux
divergence around increasing perimeter of the ice
sheets

* Network of automatic weather stations in the
continent interior
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