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Abstract

This paper presents the development of a new type of
ultra-lightweight space boom, called the Self-
deployable Spring Strip Boom or simply the S’ Boom.
It describes the fundamental design concept and
several variations of design configurations. Test
results of proof-of-concept models are discussed and
compared with results obtained by analytical
simulations.

1.0 Introduction

Figure 1. Mars Pathfinder Lander
Deployable booms of various designs form an
important class of space structures. Booms deployed
by mechanical means have long been employed to
deploy solar arrays, antennas, sunshields, and various
science instruments such as magnetometers and
cameras. The use of deployable booms has become
so common that at least one was incorporated in
every flight system flown in the past. In fact, many
space missions were enabled by the innovative use of
deployable booms. For examples, short booms with
deployed lengths of less than a couple of meters were
used on the Mars Pathfinder to deploy an imager
(Figure 1) and on the Mars Global Surveyor (Figure
2) to deploy a X-band high-gain relay antenna,
Longer booms, which have extended lengths of
several meters, were incorporated in the
interplanetary spacecraft of Voyager (Figure 3) and
the Galileo (Figure 4) to deploy magnetometers and
other scientific sensors that need to be located far
away from the spacecraft bus for accurate
measurements.  The recently flown Shuttle Radar
Topography Mission (SRTM) also involved a highly
innovative application of a 60-meter-long deployable
space boom.

Figure 2 Mars Global Surveyor

The objective of the SRTM, launched in early 2000
for a ten-day LEO mission, is to obtain elevation
radar data on a near-global scale and generate the
most complete high-resolution digital topographic
database of the Earth. To achieve this goal, the

Figure 3. The Voyager Spacecraft



Figure 4. The Galileo Spacecraft

SRTM made use of radar interferometry. Two radar
images are taken from different vantagepoints.
Differences between these images allow for the
calculation of surface elevation. The SRTM flight
system payload was outfitted with two radar
antennas. One antenna was located in the Shuttle's
payload bay, the other, called the outboard antenna, is
attached at the end of a 60-meter-long deployable
boom that extended from the Shuttle’s payload bay
once the Shuttle was in space (see Figure 5). The
boom, known as the SRTM mast, was the largest
rigid structure ever flown in space and provided for
the SRTM mission the baseline distance between the
main antenna and the outboard antenna. This boom,
was an Able Deployable Articulated Mast (ADAM)
built by the AEC-Able Engineering Company. It was
basically a truss structure that consists of 87 cube-
shaped sections. Unique latches on the diagonal
members of the truss allowed the mechanism to
deploy section-by-section out of the containing
canister to its fully extended length of 60 meters.

Figure 5. The 60-M Mast on SRTM

In addition to the ADAM mast, there exist many
other types of off-the-shelf boom designs. These

include the collapsible booms, telescopic booms,
inflatable booms, and inflatable/rigidizable booms.

2.0 Design Considerations of Space Booms
and Masts

The cost for launching a space system onto its orbit is
substantial and is usually a significant portion of the
mission’s life-cycle cost. For a typical space
mission, two important drivers of launch cost are
mass and launch volume. To enable the use of a
smaller and usually cheaper launch vehicle, the flight
system must be made low mass and compact.
However, certain components, such as telescope
aperture, radar antenna, solar array, sunshield, and
solar sail, must have large in-orbit configurations to
perform their intended functions. These components
will need deployable booms to transform them from a
compact launch configuration to a larger in-orbit
configuration.

The design requirements for a space boom vary from
one specific application to another. However, to
avoid negative impacts to the launch cost, it must be
lightweight and have high packaging efficiency.
Additionally, a space boom usually needs to meet
most, if not all, of the following requirements:

- High deployment reliability

- High post-deployment stiffness

- High post-deployment dimensional stability
- Long-term space survivability

- Design simplicity

3.0 Space Inflatable/Rigidizable Booms

The space inflatable structures have received much
interest in the past few years. In particular, space
inflatable/rigidizable booms provide the most
impressive mass savings and packaging efficiency
and can potentially meet all of the above-listed
design requirements. A typical inflatable/rigidizable
boom has a tubular construction. The flexible boom
wall consists of three layers of membrane materials.
The inner layer, called the bladder, is made of thin
polyamide film and acts as the pressure barrier. The
outer layer, also made of thin film, forms the
enclosure for packaging and protection. The middle
layer usually made of a woven material, such as
graphite, Nylon, or Kevlar fabric. This middle layer
is the major load-carrying element of the boom and
can be coated or impregnated with selected resin that
is curable in space. Once rigidized, an inflatable
boom no longer requires inflation pressure to
maintain its stiffness. There are currently many
space rigidizable resins for inflatable booms. These



include hydro-gel, UV-curable, thermal set, and
thermal plastic resin [1].

One major concern with inflatable booms rigidized
by curing resins is outgassing during curing. This
causes undesirable contamination and is unacceptable
for missions equipped with optics. Another concern
with the booms using thermal plastic and thermal set
resins is that they require substantial amount of
spacecraft power. Theses concerns have led to the
re-consideration of an old rigidization approach,
which was used on the ECHO balloon missions
flown in the 1960s. The skin of the ECHO balloons
was made of aluminum laminates, which is basically
a thin layer of soft aluminum bonded in-between two
constraining layers of Kapton film. An aluminum
laminate becomes rigid after being stretched over its
material yield point. Compared to the regidization
methods that use space curable resins, the stretched
aluminum laminate approach offer the following
advantages: (1) It does not require spacecraft power;
(2) It has low or no outgassing; (3) Its component
materials, Kapton and aluminum, have long space
heritage; and (4) It takes advantage of the inflation
system that is already required for inflation
deployment of the boom. However, the inflatable
booms rigidized by the stretched aluminum laminate
approach also have the following disadvantages: (1)
It requires very high inflation pressure to reach the
material yield; (2) It fails by local crippling and,
therefore, its buckling strength is inconsistent and
hard to predict; (3) Its load-carrying capability is too
low for most of space applications.

The Spring-Tape-Reinforced (STR) Aluminum
Laminate Boom, developed at the Jet Propulsion
Laboratory, has eliminated the disadvantages of the
stretched aluminum laminate boom while retaining
all of its advantages. The STR Aluminum Laminate
Booms have found several important applications to
radar antennas and arrays that require space booms of
lengths over 5 meters. Additional details on the
development and applications of the STR Aluminum
Laminate Booms can be found in [2 and 3].

4.0 The “Self-deployable Spring-Strip” Boom
(S*-Boom)

The basic construction of the Self-Deployable Spring
Strip Boom, simply called the S*> Boom, compose of a
number of axial spring tape strips connected by ring-
shaped circumferential reinforcements. The axial
spring strips have a curved cross-section and behave
nonlinearly under axial loading. A spring strip can
assume either of two bifurcation states, a stable state
or a semi-stable state. When an axial spring strip is

in its stable state and maintains its curved cross
section, it is capable to withstand high axial loading
without buckling. When the spring strip is flatten, it
is in its semi-stable state and can be easily rolled up
or folded up. A large amount of energy is required to
convert the axial spring strip from its stable state to
semi-stable state. This energy is stowed in the rolled-
up or folded-up spring strip as strain energy and is
later used for self-deployment.

The function of the ring-shaped circumferential
reinforcements is to connect the axial spring strips to
form a boom. A circumferential reinforcement
basically consists of two semicircular spring strips of
a flat cross-section. There are several ways being
investigated for joining the two semicircular spring
strips. One is to use two flat extensions that can
facilitate easy flattening of the circumferential
reinforcement for stowage. Because of the flat
extensions form a smooth transitions for the
semicircular  spring strips, a circumferential
enforcement of such a design can be completely
flattened without any plastic deformation of the
material. We designated the S*-Booms with this type
of circumferential reinforcements as the S°-FE
Booms. Figure 6 shows a typical the S°-FE Booms.

Figure 6. An S’ Boom Using Circumferential
Reinforcements With Flat Extensions (the S*-FE
Boom)

Because an S°-FE Boom does not experience any
material yield while being flattened and stowed, it is
very robust and strong. However, the flat extensions
have the issue of introducing extra boom mass and
volume. Also, the flat extensions can post potential
safety hazards during and after the deployment of the
boom. The second design approach, in which hinges,
instead of flat extensions, are used to join the
semicircular strips. The booms equipped with this
type of circumferential reinforcements are designated
as the Hinged S*-Booms. Figure 7 shows an S°-
Boom. The hinges employed are made of graphite



fibers which can be bent and straighten a few times
without breaking. Since these hinges are free to
rotate with respect to the boom axis, a Hinged S°-
Boom has considerably less load-carrying capability
than an S*>-FE Boom of comparable design.

Figure 7. An S° Boom with Hinged Circumferential
Reinforcements (the Hinged S*-Boom)

The hinges in the Hinged S® Boom can be improved
by incorporating a self-locking feature. A self-
locking hinge is a hinge that can rotate while the
hinge is not fully opened. After the hinge is fully
opened, it becomes locked in that position and can
only be released manually. Because these self-
locking hinges rigidly connected two semicircular
spring strips after the boom is deployed, a self-
locking Hinged S* Boom is as strong and robust as
the S*-FE Boom.

Additional design improvements, including new
materials for the spring strips, of both the S*-FE
Boom and the Hinged S’ Boom are currently being
studied. We also observed that the self-deployment
of an S’ Boom by sudden release of stowed energy is
inherently violent and there is a need to control this
process.  Controllability of deployment can be
obtained by several methods, including the hook-and-
loop approach commonly used by other self-
deployment booms. Another approach under
consideration is to use a spool that has a metallic wire
rolled on it. The metallic wire must be plastically
deformed when it is rolled off the spool. One end of
the wire is connected to the top of the self-deployable
S* Boom and the other end to the spool that is fixed at
the bottom of the boom. During the self-deployment
of the boom, the top of the boom is moving away
from the bottom and the wire has to roll off the spool.
Plastic deformation of the wire absorbs a calibrated

portion of the deployment energy and, as a result,
regulates the deployment speed.

5.0 Experimental Studies of the S’~FE Boom

To facilitate laboratory testing, several S~FE Boom
samples with different composite materijals have been
made. We down selected one that is relatively
flexible and rolFit up onto a 2-inch diameter mandrel
for deployment, buckling, and dynamic tests. Table 1
lists the dimensions and mass of this boom sample.

Table 1. Dimensions and Weights of the S>-FE
Boom Test Sample

Overall boom diameter 5in
Overall boom length 36 in
Width of longitudinal spring-strips 1in
Number of longitudinal spring-strips 4
Width of circumferential spring- 0.251in
strips

Separation between circumferential 3in
spring-strips

Minimum diameter when rolled up 2in
Weight with endcaps 0.70 Ib
Weight without endcaps 0.151b

The sample boom was composed of three layers of
carbon fiber and its areal density is estimated to be 11
oz./yd’. The ratio of resin weight to total material
weight is about 36%. Table 2 gives details of the
composite material lay-ups.

Table 2. Composite Material lay-ups of the S*-FE
Boom Test Sample

ayer #1 | 1 layer 2.36 oz./yd” bidirectional
graphite fiber

0°-90° fiber orientation to axial
direction

ayer #2 | 1 layer 2.36 0z./yd” bidirectional
graphite fiber

0°-90° fiber orientation to axial
direction

ayer #3 | 1 layer 2.36 oz./yd” bidirectional
graphite fiber

0°-90° fiber orientation to axial

direction

After the sample boom was rolled up and deployed
several times, buckling tests were performed. The
buckling tests were conducted on a Chatillon TCM
1000-55 test stand, as shown in Figure 8. Speed was
set at 0.05 inches per minute, the slowest setting.
The sample boom was pin supported at each end.
The maximum value of the force right before the
collapse of the boom was read and recorded. This



buckling test was repeated four times. The test boom
consistently failed by Euler’s buckling and the results
are shown in Table 3. The average buckling load of
this boom is 7.6 Ibs. It is believed that, some fibers
might have been damaged in the first buckling test.
As a result, buckling loads obtained in the subsequent
tests were reduced to a consistent level of 7.5 lbs.
Figure 9 shows the buckled boom.

Figure 8. Cell Is

Located at The Top Of The Test Boom)

Table 3. Buckling Test Results of S’>-FE Boom

Hinged S® boom and Table 5 gives buckling test
results of the Self-locking Hinged S* boom.

Table 4. Buckling Test Results of the Hinged S’
boom

Test # Buckling foads (Ibs)
Test #1 8.8
Test #2 84
Test #3 84
Test #4 8.4
Average 8.5

Table 5. Buckling Test Results of the Self-locking
Hinged S* boom

Test # Buckling loads (Ibs)
Test #1 13.2
Test #2 13.2
Test #3 12.4
Test #4 12.8
Average 12.9

Test # Buckling loads (Ibs)
Test #1 7.9
Test #2 7.5
Test #3 7.5
Test #4 7.5
Average 7.6

Figure 9. A Buckled S°—FE Boom

One Hinged S’ boom has been manufactured and
tested. Another boom with rigid hinge has also been
manufactured to simulate the Self-locking Hinged
boom.  The self-locking hinge is still under
developing. Table 4 gives buckling test results of the

By comparing Table 3 with Table 4 and 5, one can
find that Self-locking Hinged S* boom has the highest
buckling load, Hinged S’ boom has the second
highest buckling load and S*-FE boom has the lowest
buckling load.

The S* Boom samples were also subjected to
dynamic testing on the same test stand employed in
the buckling tests. Textronix 2641 Fast Fourier
Analyzer was used for dynamic data acquisition. The
boom was securely bolted to the top of the stand and
an accelerometer was attached to the bottom to track
its lateral motion. Data was collected by setting the
analyzer to automatic triggering and tapping the
bottom of the boom with a special mallet. Each test
run consisted of five similar measurements, which
were averaged by the FFT analyzer. Figure 10 is a
picture of the dynamic test setup of the S>-FE boom.
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Figure 11 gives lateral responses both in time domain
and frequency domain. The excitation was also in
the lateral direction. It can be determined from this
figure that the lateral resonant frequency of the
sample boom is 7 Hz. Table 4 gives resonant
frequencies of these three kinds of S* boom.
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Figure I1. Time Domain And Frequeny Domain
Responses

Table 6. Resonant frequencies of three kinds of S°
boom.

Boom type Resonant
frequency (Hz.)

S°-FE boom 7.00

S” Hinged boom 7.15

S” Self-locking Hinged boom 8.35

It can be found from Table 6 that, the S° Self-locking
Hinged boom has the highest resonant frequency and
the S*-FE boom has the lowest resonant frequency.

6.0 Buckling Analysis

The S*-Boom is modeled as an assembly of Ns
linearly elastic shell strips and Nr circle Bernolli
rings. The axial springs of the boom are modeled as
longitudinal strips of a circular cylindrical shell (Fig.
12) while circumferential springs of the boom are
modeled as rings (Fig. 13). The Distributed Transfer
Function Method (DTFM) is used to carry out
buckling analysis of the S*-Boom as shell strips and
rings assembly. The DTFM is a recently developed
tool for modeling and analysis of complex flexible
structures. It is especially suitable and numerically
efficient for plate/shell structures. In the current
problem, the DTFM-based buckling analysis takes
the following three steps.
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Step 1. Distributed Transfer Function of Shell
Strips:

In this study, assume that there are Ns linearly elastic
shell strips with length L and thickness 4, and the i

strip’s width is from bl-l to biz. Donnell’s shallow

shell theory is applied. So, for the axial shell strips,
the strain-displacement relation is given by

{80}={8}+Z{K} 6))

With the in-plane membrane strains
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And the out-of-plane (bending) curvatures
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Therefore total potential energy of the shell strips is
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and circumferential traction loads that the A% ring acts
on the i shell strip respectively. The membrane

prebuckling force Nf can be expressed by the
load p as

0 y4
Ny =-gr—— ©)
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The displacements of a shell strip element
interpolated in the lateral ) — direction by

u(x, y)
v y) =[N )} 6
w(x,y)

where 2, v and W are the displacements of the
strip inthe X —, y— and z — directions (Fig. 1),
respectively, the vector {W(x)} contains the
unknown displacement parameters defined along the
two longitudinal sides of the strip (in x — directions),

and [N ( y)] is the matrix of polynomial shape

functions. The elements of { W(x)} shall be called

nodal line displacements. Substitution of the above
displacement interpolation into the total potential
energy of the shell strips (4) leads to a matrix

differential equation governing the nodal line
displacements as follows:

S =[P @0} + 3 {6,500} @

In which the state-space vector

W (x)
aw(x)/dx
d*W(x)/ dx*
d*w(x)/ ds’
The state matrix [F( p)] is a function of buckling

{nx)} = ®)

load parameter p, the vector { G(q,,S, )} is related

to the forces applied by the rings. The boundary
conditions of the shell strip at its two ends (sayx=0
and L) can be described as

[M,[{n(0)} +[N,){n(L} =0 )

Where the boundary matrices [M b] and [N b ]

specify arbitrary boundary conditions at the strip
ends.

Step 2. FEM Discretization of Rings:

The Ns shell strips are connected by the Nr ring-
shaped circumferential reinforcements at

X=x;,i =1+, Nr to form the S>-boom, here, we
model them as the circle Bernolli rings. Assume the

influence of the ring width be negligible, the total
potential energy of the A ring is

Ns
H:% fnR(EAsTe+E1KTK)dy-Z flz (qik ulxk +S,~k"r)a.'y
=1

(10

where / is the ring moment of inertia. The strain-
displacement relation is
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where e is the eccentricity of the centroid of the ring
from the middle surface of the shell strip.

Through the general finite element discretization
procedure, we have

[Kk]{Uk} Z{B(qik’Sik)} (12)

[K k] is the global stiffness matrix of the ™ ring,
{U k} is the global displacement matrix of the ™

ring, {B(qik,Sik)} is the global external loads

which is relate to the applied traction with the Ns
shell strips.

Step 3. Assembly of the Shell Strips and Rings:

Substituting the equation (12) into the equation (7),
eliminate the applied traction forces between the shell
strips and the rings, then obtain

2 )} =[F(p)) o) + k%l [, J{n()} 8¢x-x,)
a3)

where O(x—x,) is the delta function, [H k]

include the 4™ ring state parameters.
The solution of the (13) is

()} = % [0 (P05} +Co (. 3) {n(O))
(14)

where [Qk (p, x)] =l (Px=3) [Hk]us(x -X),

Co(p,x)=e" P~ u (x—x,)is the unit step
function. By the expression (14), we found that

n(x,)
=[l71-[e@]] {C} {ny} (19
M)

where [[ ] is the identity matrix,

{E(p)} = {CO(p> xl)""aco(p: er)}T , for the
matrix [Q( p)], the element Q. (p) = 0, (p,x,).

Finally by substituting (15) into (14), then untilizing
the boundary condition state function (9), we obtain
the following characteristic equation.

[K.(p)]{n(0)} =0 (16)

Where

[&.@)]=| [ ][ 1-[ow]]" (T [Fw]

[M(p) | =[MQ,(p,0)+ NO(p.1).+++, MOy, (p,0)+ NOy, (p,1)]»
[ N(p)]=[MCy(p,0)+ NC,(p,D)]

So the buckling load p,, of the boom is the smallest
root of the characteristic equation

det[ K, ( p)]=0 amn

Once the buckling load is known, the associate mode
shape can be determined as follows: first from the
homogenous albraic equation (16) determine the

vector {n(O)}, secondly with the known p_. and

the known {T](O)} obtain the mode shape

distribution M(x;),...,N(xy,) by Equation (15),
then the configuration of each shell strips can be
expressed by w.

A Matlab program has been developed and analyzed
the Self-lockling Hinged S® boom. The result is 18.3
lbs. From Table 5 we know that the experimental
result is 12.9 Ibs. The noticeable difference between
experimental result and analysis result is believed to
be caused by the different failure patterns. The
analysis addressed Euler buckling while the booms
tested failure by local crippling. Local crippling,
controlled by material imperfections and geometrical
singularities (such as bonded joints in this case) of
individual booms, is difficult to predict.

7.0 Conclusions

An innovative concept of self-deployable ulira-
lightweight space booms, i.e., the concept of S°
Booms, has been proposed. Three design
configurations based on this concept, the S°>-FE
Boom, Hinged S* Boom, and Self-locking S* Boom,
have been developed. Proof-of-concept prototype
booms have been fabricated and buckling and
dynamic tests conducted on these booms. The test
results showed that the Self-locking Hinged S* Boom
has the highest resonant frequency and the buckling
capability and the S’-FE Boom has the lowest
resonant frequency and buckling capability. A



DTFM-based Euler buckling analysis procedure for
the S* boom has also been developed. However, he
obtained analysis results did not correlate well with
the test results. This was due mainly to the fact that
the tested booms were too short and failed by local
crippling. For future development of the S* booms,
another set of longer (much slender) boom samples
will be fabricated, re-tested, and test results
correlated with analytical predictions.

8.0 Acknowledgement

The work described was performed at Jet Propulsion
Laboratory, California Institute of Technology under
contract with the National Aeronautics and Space
Administration.

9.0 References

1. Lou, M., “Development and Application of
Space Inflatable Structures,” Proceedings of the
22" International Symposium on Space
Technology and Science, Morioka, Japan, May
28 — June 4, 2000.

2. Yang, B., Ding, H., Fang, H., and Lou, M.
"Buckling Analysis of Carpenter-Tape-Spring
Reinforced Inflatable Struts," AIAA paper 2000-
1725, Proceedings of the 41st
ATAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference,
Atlanta, GA, April 3-7, 2000.

3. Lou, M, Fang, H., and Hsia, L., "A Combined
Analytical and Experimental Study on Space
Inflatable Booms," presented at the 2000 IEEE
Aerospace Conference. Big Sky, Montana,
March 18-25, 2000.

4. Yang, B., and Zhou, J., 1995, “Analysis of Ring-
Stiffened Cylindrical Shells,” ASME Journal of
Applied Mechanics, Vol. 62, No. 4, December,
pp. 1005-1014.



