
MDS

MDS
State-Based Architecture

Bob Rasmussen
May 16,2001

JPt State-Based Architecture MDS

May 16,2001 2

State is Central
<””,

M D S

A system comprises project assets in the context of SOIY

The function of mission software is to monitor and contro
environment that influences them

meet operators’ intents

le external

‘ I a system to

May 16,2001 3

A High Level View
i

MDS

f --
May 16,2001 4

Types of State
Dynamics

Environment

Device status

Parameters

Resource usage and allocations

Data product collections

DM/DT Policies

Externally controlled factors

Attitude, position, gimbal angles, altitude, .. .

Ephemeris, light level, atmospheric profiles, terrain, . . .

Configuration, temperature, operating modes, failure modes, . . .

Mass properties, scale factors, biases, alignments, noise levels, .. .

Power and energy, propellant, data storage, bandwidth, .. .

Science data, measurement sets, ...

Compression/deletion, transport priority, . . .

DSN schedule and configuration, . . .

May 16,2001 5

State Determination
Makina S e n s e of the World

One can act only on one’s knowledge of the system
Knowledge is what you know, not how you know it
Observations (e.g., measurements) are not knowledge

Estimators find “good” explanations for observations,
given a model of how things work

Knowledge may be propagated into the future, given models and plans
All knowledge is uncertain

Judgment must be based both on what is known,
and on how well it is known

owever, loca consistency of knowledge is achievable (LzE2)

May 16,2001 6

L

State Control
Closing the Loop MDS

Operators express their intent in the form of goals
Goals declare what should happen, not how
Goals may be expressed at any level

High level goals are elaborated recursively into lower level goals
Elaboration may be conditional, in order to react to present circumstances
Coordination of activities is accomplished by scheduling
Conflicts are resolved, with priority as final arbiter

Knowledge of all states is maintained, as required to achieve goals
Knowledge is compared to goal constraints to test for compliance

Corrective action is applied, as required t
Alternate methods of achievement

Unachievable goals (and their elaborations)
may be applied at any level

are dropped individually without sacrificing others

Supports fault tolerance,
critical activities, in situ autonomy,
opportunistic science, and more

May 16,2001 7

State Timelines MDS

State timelines maintain the value or set of possible values (e.g., a

They capture both knowledge and intentions about state
range) of a state variable as a function of time

I
1

t I
ON I

I Time

8 May 16,2001

I

Value Histories
<-)

M D S

a

a

a

a

a

A container mechanism supporting functions that produce values over
time (state variable timelines, measurements, commands, . . .)
Encapsulate the interface to data management persistent storage
and data transport

Leverage the use of models to preserve continuous information using
less storage space
Can also simply store a set of discrete value instances
Controlled by storage and transport policies

Stored and transported as data products

New Entries

May 16,2001 9

State and Time Constraints
l _ l _

c ,)
1-

MDS

Control is exercised over the system by imposing . . .
Constraints on states, which limit the range of a state variable

Constraints on time, which limit the duration between two time points
State is allowed flexibility within these bounds

Time points are variable points in time
These times are allowed flexibility, but again, with constraints

A state constraint between two time points is called a goal
A time constraint between two time points is a temporal constraint

Goals and temporal constraints are expressions of intent

Success in constraint achievement is an objective matter
Criteria are explicitly expressed in constraint evaluation code
Directly verifiable during test, since constraints are explicitly evaluated

May 16,2001 10

Constraint Networks
Goals and temporal constraints each connect a pair of time points

Goal Temporal Constraint

Time points are often shared (e.g., one beginning as another ends)

A collection of connected goals and temporal constraints form a
constraint network

_"""--""- --"" " - - --""
e -
""

(O C C

0
0

0
0

0
0

I
I

/ I
c " - - - - - - " - . I I "

/

4" /
/

/
0

I
I

I
I

I
I

/
/

0
0

May 16, 2001 1 1

Resolving Conflicts
Three goals on the same state

The constraint 7 r- ~ ~. .

d-The time interval . ~~ ~~ 1-b

Crosshatched areas are
outside goal constraints c

= + Goals I and 2 overlap, so
they're compatible, as is \ Goal 3 is incompatible with Goal 2,

but it can wait

Time

May 16,2001 12

Timeline Execution
Goals are accepted if successfully placed on the timeline for the goal

Goals are frozen and acted upon when they appear on the timeline in

Goals are acted upon by achievers assigned to each state variable
Elaborators monitor execution and adapt plans, as necessary

state variable

the immediate future

Now, .. .

. . . achieve the goals.
present state, . . .

Time
May 16,2001 13

Putting It Together

Elaborators, scheduling, . . .
GoaVevent-driven
Planning and constraint
solving
Analogous to sequencing,
mode and configuration
control, fault responses

I
1-

Elaborators

I

Constraint Network
C " - - - - - - - " " .

\ I /

Executable
Goal

\ I 1
I I I

Achievers, DM/DT, . . .

Fairly conventional real-time monitoring and control processes
Managed via goals and temporal constraints
Provide system behaviors

4 DM/DT

May 16,2001 14

GroundoFIiaht Coordination
State knowledge
in both places

Common representation
Coordinated, consolidated
& maintained, as appropriate

Information exchanged
via state variable proxies

Ground based state determination
Typically things like orbit determination, calibration, .. .
Up-linked as necessary (trajectories, parameters, . . .)

Flight based state determination
Typically things like attitude determination, device states, faults, . . .
Down-linked as available (part of telemetry)

Similar story for goals, measurement, science data, .. .

May 16,2001 15

Systems Engineering
Systems and software engineering need to complement one another

Systems engineering must define the system structure and behavior
Software must understand the system structure and guide its behavior

State Analysis is a model-based process defined by MDS to aid
systems and software engineering

State analysis prompts comparatively methodical and rigorous analyses of

MDS permits the uniform expression of systems engineering concepts in

Resulting products map directly onto the MDS architectural elements
Most MDS adaptation requirements can be defined by state analysis

systems

software architectural terms

Collaboration and documentation are presently supported by a
web-based tool (the MDS State Database Server)

May 16,2001 16

Backbone Workflow & System Engineering

Sanford Krasner

0511 1/01 -1

System Engineering Objectives

MISSION DATA SYSTEM

Backbone Increment Objectives -> Collaborating Objects -> Scenario -
> Functional Requirements on Each Object -> Functional
Requirements on Frameworks
Increment Objectives -> Collaborating Objects -> Scenario ->
Functional Requirements on Each Object -> More Functional
Requirements on More Frameworks

0

05/11/01 -2

Backbone Workflow
MISSION

See spreadsheet at:

Backbone spreadsheet drives the following concurrently and
http://mds-lib.jpl.nasa.gov/mds-lib/dscgi/admi~py/Get~ile-639 l/EDL-Workflow-04-25-0 1 .xls

incrementally:
- EDL time order
- State Variable Development
- Data Management Development
- Simulation & Test Environment Development
- Component and Infrastructure Development

05/11/01 -3

MISSION DATA SYS

Backbone Themes

Create and Extrapolate States
Add measurements, estimators, fault detection from measurements
Add uncertainly and noise
Add controllers, commands and goals; add redundancy between
commands and measurements
Add redundant information
Add closed-loop control
Add 3D dynamics

05/11/01 -4

Create and Extrapolate States

I

I

05/11/01 -5

MISSION DATA SYSTEV,

A p L Create & Extrapolate States, Measurements & Estimators

Get initialized in a free fall
2 Update altitude from ground estimates

. 3 Make position 3-dimensional

. 4 Add Mars surface

. 5 Estimate altitude above Mars surface
0 6 Add ideal accelerometer

7 Add atmospheric drag

05/11/01 -6

MISSION DATA SYSTEM Add measurements, estimators, fault detection
from measurements

05/11/01
L

-7

Backbone Themes
MISSION DATA SYSTEM

, ‘ 1

Fault Detection
- 8 Fail accelerometer silent
- 9 Fail accelerometer flat-line
- 10 Fail accelerometer frozen

11 Compress accelerometer status
Add uncertainty

12
13
14
15

Add vehicle mass parameter
Add initial condition uncertainty
Add simple accelerometer noise
Add accelerometer sampling jitter

05/11/01 -8

Controller & Goal Increments

MISSION DATA SYS

More Backbone Themes

Goals, Controllers & Commands; redundancy of commands &
measurements
- 16 Add a simple pyro switch
- 17 Add supersonic chute
- 18 Fail the supersonic chute control switch
- 19 Make chute deployment switch redundant
- 20 Detect proper supersonic chute deployment point

05/11/01 -10

MISSION DATA SYSTEM

Add redundant commands
- 21 Add supersonic chute and backshell separation
- 22 Detect proper supersonic chute and backshell separation point
- 23 Add subsonic chute
- 24 Add heatshield separation
- 25 Add subsonic chute separation
- 26 Detect proper subsonic chute separ

Add redundant measurements
ation point

- 27 Add deployment and separation indicators
- 28 Improve altitude estimator
- 29 Add ideal altimeter
- 30 Estimate altitude and surface elevation from altimetry

05/11 /O 1 -1 1

Add closed-loop control

3 1 Add a descent engine
32 Detect proper time for descent engine firing
33 Add a descent engine cutoff
34 Add a descent engine controller
35 Add contact indicator

05/11/01 -12

3D World

MISSION DATA SYSTEM

36 Add vehicle rotation
37 Add an ideal 3 axis IRU
38 Add a set of ideal thrusters
39 Add an attitude control law
40 Add thruster history compression

054 1/01 -13

MISSION DATA SY S

0

0

0

0

0

0

0

0

0

0

0

0

EDL time order

1 -dimensional universe (straight down)
Create positiodaltitude state variable
Free-fall in vacuum
Update altitude from ground uplink
Add atmospheric drag
Fire pyro to release backshell & supersonic chute - increase
atmospheric drag
Release supersonic chute; deploy subsonic chute
Separate heatshield
Separate subsonic chute
Use Altimeter
Use descent engine to control descent
Shut-off engine on estimate or contact sensor.

05/11/01
v -14

State Variable Estimate and Control Del

, e

MISSION DATA SYSTEM.

Jelopment

0

0

0

0

0

0

0

0

0

0

0

0

0

Create state variable with time extraplolation model
Update model via uplink
Add “relative states” - spacecraft state wrt ideal, real surface
Add sensor (accelerometer), measurements, estimation
Add sensor failure mode detection, invalidate measurements
Add measurement noise, initial condition uncertainty
Add actuator (pyro switch), controller, command, discrete state
(separation)
Add goals, elaboration, execution
Uplink goals
Add actuator redundancy
Add redundant measurements (altimeter), change WRT topology
Add delegation Eramework (device control following descent profile)
Add redundant altitude sensor (contact indicator)

05/11/01 -15

Data Management Development

Initialization
Simple transport
State Estimate Transport
Log Events
Uplink and use products
Create & Initialize from persistent store
Transport measurements
Compress data

0511 1/01 -16

L

MISSION DATA SYSTEM. ’

Simulation & Test Environment Development

Representations compatible w/ ground
Virtual time
Simple acceleration model
Stop run under specified conditions (error)
Device simulation and interface
Simple drag model
Device failure models
Random initial conditions and noise

05/11 /O 1 -17

MISSION DATA SYS

Ground System Development

Uplink model update
Post-real time plotting
Co-plotting of Flight and Truth (Sim) data
Integrate to Third-party Software visualization tool
Real-time display of estimate functions, w/ uncertainty
Text display
Alarm display
Goal-net generation and uplink

05/11/01 -18

MISSION DATA SYSTEM

Component and Infrastructure Development

Single-threaded components
Multiple time kames
Multi-threaded execution, synchronous and asynchronous
communication
Cyclic, time-alarm and event-based execution

05/11/01 -19

Identify Objects in the Increment
MISSION DATA SYSTEM, ,., ,

1 : ewsl

2: ews2

PositionBasisStat
eVariable

+

I B9: run(RTDuration)

k3
3: Schedule() Scheduler PositionEstimator

User +
""""""""-

I
I

610: getNextMeasurementSince(t)

A4: run(RTDuration)
ewsl; Commad (via EWS) Scheduler to schedule PostitionEstimator
to run at the commanded rate (cycles per period) and phase
(executionsequence) from start time to stop time.
Estimator phase (executionSequence) shall be set so as to execute after
AcceleromterHwProxy has executed.

measurments
until no more measurments
available
for the time specified A8: update()

eWS2; Command (via EWS) Scheduler to schedule I

to execute at the commanded rate (cycles per period) and phase
(executionsequence) from start time to stop time.

! EWS calls are synchronized and Scheduler returns status of request I
rate = the execution frequency of this entity (cycle per period)
phase = an offset sequence that request where in the rate group the object/
component will execute (Sim uses executionSequence)

L

6

B1 1 : Each one of the getNextMeasurementSince(t)
I A calls automaticallv returns an

A7: x, y, z, I

L"1 AccelerometerMeasurement(
A5: getData(Acce1erometer) timestamp

duration
x, Y , 2)

4 A6: ews3

1 data 1 ews3; Request to SIM (via EWS synchronous
interface) for the latest Accelerometer data. SIM
returns sample

05/11/01 -20

MISSION DATA SYS
EDL Increment 4 Object Diagram

Flight Setup Deployment

05/11/01

Coordinator
to Test

State Query
to Dlsplay

Manager

to Test
Coordinator

! cnmmon to both k

Flight Deployment ~ the Flight Setup
j and Flight Data

i
Flight Data
Transpal

"1"
Ground Deployment

Ground Data
Transport

I " I

I

-2 1

3/29/01

EDL Increment 4 Object Diagram

Simulation Deployment

- 1 1 -

I 1 , I
I Test Coord/

Deployment
to Flight

Deployment
to Ground

1

/",
User

State Quen
to Ground

1 Sim Data Product

J

Display Deployment 1

L

r

MISSION DATA SYS

, . , ,

05/11/01 -22

3/29/01

mds accelerometer increment-6
sequence diagram (Ver-H)

PositionBasis
Statevariable Proxy Estimator

~ ~~~~

1) Initialize Scheduler prior to TO
2) ews l ; Commad (via EWS) Scheduler to schedule

distant future
Position Estlmator lo run at once per second from TO to

Estimator shall be set so a s to execute after
AcceleromterHwProxy has executed.

AccelerometerHwProxy to run at twice per second from TO+lO -~ 3) ews2, Command (via EWS) Scheduler to schedule

to distant future.

~

"

~

~ Schedule()

Run Estlmator at 1 Hz
~ ~~ - ~ -

NS1)
~

Run AccelerometerHw oxy at 2Hz (ews2)
~~~~~ 

:- 1 Schedule() 

. u 

~rn*L( 

TO+IO i 

T0+11 

~. 

nodata 1 

-t- 
I 

~~ -~~ 
run(RTDuration) 

,asurementSmce(t) 

"I 

~~ ~~ ~~ 

4) Estimator will  run  wlth the most recent evidence  and  w~ll 
retrleve measurements not older then 2 seconds 

WIN return no data 
request measurements from  proxy and proxy 

-~ ~~ 

5) At TO+lO the proxy w~ll run for the first time and 
~ ~~~ ~ -~ ~~~ 

bne measurement Estimator will  run after proxy and retrieve 
peasuremenxptnoshown m d i a g r ~ m ~  ~ ~ 

6 )  Scheduler sends run message to AccelerometerHwProxy run(RTDurat1on) 

7) AccelerometerHwProxy request SIM to get data vla  EWS 
synchronous interface for the latest Accelerometer data (ews3). 

SIM returns Accelerometer sample data 8s follows: 
-3 Integers representing delta veloclty since last sample 

X = DeltaV, (m/sec) 
Y = DeltaV, (mlsec) 
Z DeltaV, (m/sec) 

3r data (ews3) 
~-~~ . 

i- 

The device proxy automatlcally updates the measurement 
run(RTDuration) 

getData() 1 

L 

i ~- ~ _ _ _ _  ( x=o.y=o.z=o] 

8) Scheduler  executes Posltion Estimator after proxy fol 
concurrent intervals. 

Each getNextMeasurementSince(t) call to proxy automatically 
returns  a measurement a s  follows: 

AccelerometerMeasurement( 
ttmeStamp (inserted by proxy) 
duration (sample Interval  in seconds inserted by proxy) 
3 integers representing delta veloc~ty along x,  y, z axes ) 

The  behavior is  to  get measurements 
from proxy until no more  measurements 
available for the  time  specified 

updatestate() i 

measuremento: 

measurement()[ 

nodata 9) Update Position state knowledge 



MISSION DATA SYSTEM. 

Requirement Based on Increment Scenario 

Requirements to support Flight 
- .Increment-6 shall have the same  deployments as Increment-5. 
- .Component Scheduler  shall  accept  component commands via EWS 

synchronous interface that schedule  components to run at specified Rate 
and Phase offset. 

- .The Component Scheduler shall provide  a status return consequent to a 

- .The Component Scheduler  shall  invoke  run  methods on successfully 

- .Flight deployment shall  include  and  adapt an AccelerometerHwProxy 

component schedule command. 

scheduled components. 

from the DeviceHwProxy frameworks 

'1 1/01 -24 



Summary 
MISSION DATA SYSTEM. 

System Process goes from  simplified  mission scenarios to: 
- Capabilities allocated to implementable “units of work” 
- Capabilities allocated to framework capabilities. 

Scenarios, capabilities, frameworks  are  relevant to real  missions 
Frameworks are available for adaptations 
Reference adaptations are available for reference 
State Analysis process developed  based on Backbone 

05/11/01 -25 



MISSION DATA SYS 

State Analysis 

Sanford  Krasner 

12/11 /2000 SK -1 



MISSION DATA SYSTEM 

What is State Analysis? 

MDS Adaptation is  based  on  building Mission Software Systems out of MDS 
framework elements”: states, goals,  measurements, commands, estimators, 

controllers, etc. 
MDS Frameworks support these elements: 

cc 

- interconnections, notification, initialization, persistent storage, etc. 
MDS Adaptation primarily instantiating existing frameworks 
- Filling in adaptation specifics: 

Estimation and control Algorithms 
Which measurements are used 
Which other states are needed, etc. 

State Analysis is: Filling in adaptation specifics, in the pattern imposed  by the 
MDS frameworks. 
State analysis encourages reuse: 
- Of MDS frameworks 
- Of adaptations from project to project 
- Of adaptation types for multiple instances 
- Of adaptations between flight and ground 

12/11/2000 SK -2 



State Database Relations 
MISSION DATA SYS 

12/11/2000 
May 10,2001 

"""""""~"""~""~""""""~"""- -I I 
1 )  I 
I 
I Estimator 

4 .....................I T""' Instance 
I 
I ; '"1 
I evidence 

I 
I 

7ce I 

..... - 
Si 
es 
a 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

)plies 
value$ 
input 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



MISSION DATA SYS 

Simple State Analysis  Process 

Identify a state: Spacecraft Position 
Identify goals: Sitting at Target Landing Site 
How do you estimate it: 
- Propagate initial trajectory 
- Incorporate accelerometer measurements 
- Incorporate predicted effects of thruster commands 
- Incorporate altimeter measurements 

0 What other goals do  you  need (elaboration): 
- Set up attitude for entry 
- Chutes deployed at altitude/velocity 

Pyro(s) fired at altitude/velocity 
- Thrusters firing to control descent 

Thruster cat. bed heaters warm 
- Cat. bed switches on 

- Altimeter producing measurements 
- etc. 

What other states are implied? Repeat until  done 
12/11/2000 SK -4 





1 Estimator Types IAdd /Edit 
\Device Power Available 
TemDerature i-. 
IEDURover  Battery A Heater i Power Available 
/k3URover Battery A Bulk TemDerature 

.,., _. 

i IConfi  ure Powerto a Device Select Final  Control  Switch God'QpTypes Edit ... !!."-..-- ......... "- ..... ~ """ - [Maintain EDURover  Battery A Tem~erature 
.................................................. " " .............  ...... ".................",l"~.I.." __I I , I 

I /Trial State T w e  
IAltitude (distance,  metres1 

Sbte v d b  Types ;Add Edit ITemPerature, Dea. K 
i 
I [G (distance,  meters) 
1 /Attitude Iauaternion, non-dimensional) """,,_.I I 

.- 

.............................. ............... ........... I 

~ 

i 
Trial State 2 

............ - ........................................... ................. ............... 

I i I Trial State 

/State V d b  Instances 
I P - f , 

i [Mechanical: Basebody: Altitude W K  Landina Site i 
bechanical: Basebody: Horizontal Velocity w r t  Surface 

- 
I ~ ' - ' . , . ' . " ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ' _ _ _ - _ _ .  

" 

Subgod Networks / A d d  E iEDURover  Battery A Heater 1 Power  Contiauration 
7 

12/11/2000 SK -6 



STATE  VARIABLE  TYPE: 

(Link-S) 
(Link-RO) 

(Link-S) 

(Link-S) 

(Link-S) 

(Link-S) 

(Link-S) 

(Link-S) 

(Link-S) 

(Link-S) 

(Link-S) 

State Type Name 
State Type Description 
BasisDerived 
Derivation (Conditional: only i fa  derived state variable) 
Initialization Process 

Default State Type  Storage Policy 
Default State Type  Transport Policy 
Default Value History Initialization Process 

State View Name 
State View Description (includes range) 
Parameters 
Return Value Type  (includes represenation of uncertainty) 

State Views 

State Variable Instance: State Variable Instances - [list of stae instances of this type] 
State Variable Type: Parent State Variable Types - [list of state variable types this state 
variable  type is derived froduses  to perform derivation] 
Conditional: only ifa derived state variable 
(For each State Variable Type define its role. Prompt use to enter role name.) 
State Variable Type:  Dependent State Variable Types -[list of derived state variable types that 
use this state variable type in their derivation] 
Goal  Type:  Applicable  Goal  Types -[list of types of goals that can be applied to this type of 
state variable] 
State Function Type: State Function Types - [tlist of types  of state functions that will be used 
for this state variable  type] 
(For each  statefunction type there  is a specrfic return type which  is dejned in statefunction 
type and  displayed here. Link decorated with return type) 
Command  Type:  Command  Types - [list of types of  commands which affect this state 
variable type] 
Command  Type:  Command  Types- [list of types of  commands whose effects model use this 
state variable  type] 
Measurement  Type: Measurement Types - [list of types of measurements which measure this 
state variable type] 
Estimator Type:  Evidence Receivers - [list of estimator types which use this state variable 
type  for estimation] 
Estimator Type: Estimators - [list of  estimator  types that may compute estimates of this state 
variable type] 
Conditional:  only i fa  basis state variable 
Controller  Type:  Controllers - [list of controller types which use this state variable type  for 
control) 

(Link) Hardware Proxy Type: Hardware Proxy Types - [list of hardware proxies types 
which can be used to measure or command this state. Referenced in 
measurement model or effects model] 
(Hardware Proxy Types are sublists under the controller and estimator links 
listed above. They show up automatically and are viewable only under each 
contoller and estimator link.) 



STATE  VARlABLE INSTANCE: 

(Link-S) 

(Link-S) 

(Link-S) 

(Link-RU) 

(Link) 

(Link) 

(Link) 

(Link-S) 

(Link-S) 

(Link) 

Basis/Derived/Proxy 
(Conditions: YState Variable Type not derived then select basis orproxy, 

else ifstate Variable Type is derived then derived 
else ifstate Variable Type not yet defined then select basis, derived orproxy) 

State Variable Instance Name (link ifproxy) 
State Variable Instance Description 
Supported Views (listfrom State Variable Type, check applicable views) 
Policy Notes  (how & when, including but  not limited to the following) 

Default State Type  Compression  Methods 
Compression Method Name 
Compression Method Description 
Compression Activation Method 

State Variable Instance: Proxy Instances - [list of proxies to this state variable instance] 
Conditional: only i fa  basis state variable. Decorated with deployment. 
State Variable Instance: Basis & Sibling Proxy State Variable Instances - [list of basis and 
sibling proxy state variable instances which this instance is a proxy to] 
Conditional: only ifaproxy state variable. Decorated with deployment. 
State Variable Instance: Dependent State Variable Instances--[list of derived state variable 
instances that use this state variable instance in their derivation] 
State Variable Instance: Parent State Variable Instances - [list of state variable instances this 
state variable instance is derived from; associated in some way (ordered as keyword)  to 
derivation arguments] 
Conditional: only i fa  derived state variable. 
(For each State Variable Instance associate its role from its State Variable Type) 
Deployment Instance: Deployment Instance - [deployment where this state variable instance 
lives] 
State Variable Type: State Type - [type of state variable this state variable instance is  an 
instance of] 
Conditional: only ifbasis or derived. 
Controller Instance: Controller - [the controller instance that controls this state variable 
instance] 
Controller Instance: Controllers That Use - [list of controller instances this state instance 
supplies estimated values to] 
Estimator Instance:  Evidence Receivers - [list of  estimator instances which use estimated 
values of this state instance as evidence] 
Estimator Instance: Estimator - [estimator that  computes estimates of this Sate variable 
instance] 
Conditional: only i fa  basis state variable. 

(Link) Hardware Proxy Instance: Hardware Proxy Instances - [list of hardware  proxies 
which can be used to measure or command this state. Referenced in 
measurement model or effects model] 
(Hardware Proxy Instances are sublists under the controller and estimator links 
listed above. They show up automatically and are viewable only under each 
contoller and estimator link.) 



Goal Elaboration 
MISSION DATA SYS 

~ ~~~ ~ 

Each goal may  have  other (sub)goals that have to happen: 
- Before (preparation - warm cat. bed heaters for  90 minutes before using) 
- During (keep accelerometers powered on during descent) 
- After (safely shut-down engine after landing) 

Elaboration adds subgoals to support parent goal (and so on 

Working on Goal Elaboration Tool to support elaboration drawings, 
recursively) 

integrate to State Database 

12/11/2000 SK -9 



I Everything below this dashed line is created by elaboration of the goal above the dashed line. 

in time (e.g., 1/1/1958). Absorute 
temporal constralnt are  speclfled 
as relative temwral constraints 

A dotted line between two time 
points is used to indicate that the 
two time points at  either end are 
really the same time point. J 

I with respect td the Epoch. 
Before 

All or part of an 
elaboration can be 
conditional 

Goals with no elaboration are called 
"terminal". This is indicated simply by 

',..; showing nothing below this dashed line 

Elaborations can introduce new 
goals.  These are called subgoa 

Item Name: 
S t a t e  Name: 

Subqoal Name [pa rame te r s ]  
7- r 

A temporal constraints specifies the 
minimum and maximum acceptable 
duration of the interval between two time 
points. The following shorthand is used: 

Delay D = [D,D] 
Precedes = [O,m] 

A t  least L = [L,m] 
A t  most M = [ O , M J  

Absolute  (relative to Epoch): 
A t  T = [T ,T]  
After T = IT ,  m]  
Before  T = [0, TI 

h 



Precondition  invokes  required 
initial conditions wrt altitude, 

Basebody: Six DOF 
State: In Terminal 

V e l o c i t y  w r t  Torque:  Following 

Free Loca t ions :  Known 



( Basebody: Horizontal 
Velocity wrt Landing 
Site: Is Being Damped 

Thrus t e r   (Descen t ,  A l l )  : Force I 
and  Torque:  Following 

Hor i zon ta l   Ve loc i ty  w r t  Landing 

V e l o c i t y  w r t  Landing S i t e :  
Is Known t o  [TBD m / s ]  

( Basebody:   Horizontal  / 


