Autonomy for SOHO Ground Operations

Walt Truszkowski, NASA Goddard Space Flight Center (GSFC) Walt. Truszkowski@gsfc.nasa.gov
Nick Netreba, a.i. solutions, Inc. netreba@ai-solutions.com
Don Ginn, a.i. solutions, Inc. ginn@ai-solutions.com
Sanda Mandutianu, Caltech Jet Propulsion Laboratory (JPL) sanda.mandutianu@jpl.nasa.gov

Abstract

The SOLAR and HELIOSPHERIC
OBSERVATORY (SOHO) project [1] is being
carried out by the European Space Agency (ESA)
and the US National Aeronautics and Space
Administration (NASA) as a cooperative effort
between the two agencies in the framework of the
Solar Terrestrial Science Program (STSP) comprising
SOHO and other missions. SOHO was launched on
December 2, 1995. The SOHO spacecraft was built
in Burope by an industry team led by Matra, and
instruments were provided by European and
American scientists. There are nine European
Principal Investigators (PI’s) and three American
ones. Large engineering teams and more than 200 co-
investigators from many institutions support the PI’s
in the development of the instruments and in the
preparation of their operations and data analysis. .
NASA is responsible for the launch and mission
operations. Large radio dishes around the world,
which form NASA’s Deep Space Network (DSN),
are used to track the spacecraft beyond the Earth’s
orbit. Mission control is based at Goddard Space
Flight Center in Maryland.

SOHO is designed to study the internal structure of
the Sun, its extensive outer atmosphere and the origin
of the solar wind. That view of the Sun is achieved
by operating SOHO from a permanent vantage point
1.5 million kilometers sunward of the Earth in a halo
orbit. SOHO is commanded from NASA's Goddard
Space Flight Center (GSFC) in Greenbelt, Maryland
(USA). Its data is retrieved via the NASA Deep
Space Network (DSN) and routed to the
Experimenters’ Operations Facility (EOF) located at
GSFC. There the SOHO experimenters will be able

to display on their workstations the images and
measurements that are being produced by their
instruments. From the EOF the experimenters will
point the instruments aboard SOHO to a particular
region of the Sun, or change the operating mode of
the instruments. The SOHO scientists will use their
instruments very much as an observer would at a
ground-based observatory.

SOHO instruments produce a data stream of 200
kilobits per second, that can be transmitted
continuously to the DSN stations of Goldstone
(USA), Canberra (Australia) and Madrid (Spain),
when each is visible from SOHO due to the daily
rotation of the Earth.

The agent group at the NASA Goddard Space Flight
Center, in collaboration with JPL, is currently
involved with the design and development of an
agent-based system to provide intelligent interactions
with the control center personnel for SOHO. The
basic approach that is being taken is to develop a sub-
community of agents for each major subsystem of
SOHO and to integrate these sub-communities into
an overall SOHO community. Agents in all sub-
communities will be capable of advanced
understanding (deep reasoning) of the associated
spacecraft subsystem. Figure 1 gives a generic view
of a typical SOHO sub-community.

The Orbit Determination Problem

For real-time operations and mission planning
purposes, the orbit of the spacecraft needs to be
known. Orbit determination processes use theoretical
models to relate observations over time in order to
determine the position and velocity of the spacecraft

as a function of time. In the future, one might
dynamically adjust the orbit to meet some conditions.
Orbit determination is used by the navigation to
maintain and control the orbit. The output of the
procedure depends on the equation of motion used in
the evaluation process. The equations of motions will
be approximations due to modeling errors and
computing approximations. The same equations of
motions can be used to extrapolate in time. Because
of the inherent errors, the tracking data interval as
well as the extrapolation interval are limited. The
orbit is generally determined at regular intervals.

There are three aspects of the orbit determination

problem:

- the source and type of data,

- the algorithm for modeling the orbit,

- the computer system which processes the
observation.

The observations used for orbit determination can be
obtained by:

- tracking from the ground,

- tracking from space,

- autonomous systems on the spacecraft.

Accurate orbit determination using ground stations
usually requires several passes. Observations are
repeated during a transit of the spacecraft over the
observation site, and the data collected is transmitted
to a computing facility for processing. Observations
from several tracking sites are usually necessary in
order to minimize errors that are correlated with the
location of the tracking station. Ground systems
operate on historical data and therefore use
propagated orbits.

When one attempts to determine an orbit for an
object, one will always find some difference between
the “observed” positions, and the ‘“computed”
positions (computed using the orbit having been
determined). These differences are known as
“residual errors”, or “residuals™. Ideally, they should
represent the random errors in observation that
inevitably happen in the real world. Estimation
algorithms wuse different techniques, including
Kalman filtering.

For orbit determination we are using ®FreeFlyer [2].

This is a comprehensive orbital dynamics suite of

software products developed by the a.i.solutions [3].

The main characteristics of ®FreeFlyer are:

- automated orbit determination that can be
optimized for real-time and product generation;

- precise measurement model supporting a wide
variety of antenna types;

- tracking data processor that supports a wide
range of tracking data types;

- advanced Kalman filter that automatically adapts
to un-modeled error sources;

- extensive solved-for capability including
tracking data, antenna, and satellite biases;

- automated tracking data editing including pattern
recognition and sigma editing;

- graphical Display and Editing of Tracking Data.

SOHO Agents Model

For the SOHO work an agent is considered as an
entity described in terms of common sense modalities
such as beliefs, or intentions. Intuitively, each agent
represents an independent problem solver.
Accordingly, an agent has a general problem solving
mechanism and more specialized problem oriented
capabilities. The agent has also to possess
communication capabilities that make it able to
communicate adequately with other agents. Agents
are deliberative, in the sense that they use their
knowledge in support of their reasoning.

The agent structure we use has been conceptually
inspired by Shoham’s agent-based programming
approach [4], with some additions from the BDI
(Beliefs, Desires, Intentions) model [5], although the
practical realization might differ in some aspects. The
main idea is an analogy to those conceptual
categories proved useful in designing the agent
control architecture. It is assumed that the agent has
to accomplish complex tasks that require higher level
abstractions extracted from its behavior in relation
with its environment, and with other agents.

The agent-based framework includes the agent state,

and an interpreted programming language used to

define agents. The agent state is defined by four basic

components:

= bpeliefs: the information that the agent has about
the environment and about some other agents;

® capabilities: the tasks that are supposed to be
accomplished by the agent under given
circumstances;

® commitments: the tasks that the agent is
committed to achieve (usually communicated to
another agent) at a particular time;

= intentions: the decisions about how to act in
order to fulfill its commitments. This concept is
necessary because it is assumed that the agent
wouldn’t be able in general to achieve all its
commitments (desires).

It is assumed that this set of concepts are necessary to
model agent behavior such as: deliberation,
reactivity, interaction, and are flexible enough to be
used at different levels of the agent architecture to
describe the agent state. To be realized, the above
mentioned concepts have to be represented by data
structures in the agent architecture. Besides what was
already mentioned, to complete the architecture, the
agent might also have a repository of recipes (plans
or rules) which specify the courses of actions that
may be followed by the agent to achieve its
intentions. The beliefs are updated from observations
made of the world and as the effect of the interactions
with other agents, generating new capabilities and
commitments on the basis of new beliefs, and
selecting from the set of currently active
commitments some subset to act as intentions. An
action has to be selected based on then agent’s
current intentions and knowledge (beliefs plus
plans/rules).

The agent behavior is expressed in a declarative
agent language, used by an interpreter that controls
the agent execution cycle. The agent execution cycle
consists of the following steps: processing new
messages, determining which rules are applicable to
the current situation, executing the actions specified
by these rules, updating the mental model in
accordance with these rules, and planning new
actions.

In order to achieve coordination in a multi-agent
system, the agents might have to negotiate, and they
have to exchange information, i.e. they need to
communicate. In multi-agent systems, the possible
solutions to the communication range from no
communication at all, ad hoc agent communication
languages, and standard agent communication
languages.

The de-facto agent communication language, used in
the existing multiagent systems is KQML
(Knowledge Query and Manipulation Language) [6].
KQML is both a language and a protocol. It can be
viewed as being comprised of three layers: a content
layer, a message layer and a communication layer.
The content layer is the actual content of the
message, in a particular representation language.
KQML can carry any representation language,
including logic languages, ASCII strings, etc. The
communicative actions such as asking for
information, making something true about the
environment, passing information to another agent,
passing information to all agents are expressed using

KQML performatives: ask, achieve, tell, broadcast,
etc.

The agents have the ability to participate in more than
one interaction with another agent at the same time.
The structure to manage separate conversations is the
protocol. The protocol provides additional structured
contextual information to disambiguate the meaning
of the message. In these conversations, an agent can
play different roles depending on the context of the
tasks or subjects. A role is the defined as a pattern of
communications of an agent when implementing a
protocol. An agent can assume several roles, when
appropriate, depending on the protocol. A protocol
state diagram can describe a protocol. Transitions in
the state of a protocol represent changes in the state
of a protocol, i.e. communications between agents.
Defining a transition translates into creating a
template for a KQML message that will be sent and
received by the agents implementing the roles. The
various fields in a KQML message will then be used
by the message sending and handling rules in the
appropriate agents. Inter-agent communication is
regulated by intercommunication protocols.

The agents are heterogeneous and distributed. This
means that they reside on different platforms and
have different domains of expertise. In the current
implementation, the interoperability is achieved by
the system infrastructure rather than by the agents
themselves. Agent interoperability is realized at two
levels: knowledge level and interoperability
mechanisms represented by the current distributed
objects middleware (i.e., CORBA, RMI).

At the knowledge level the agents share their
knowledge. They do this by interacting at run-time,
based on a common set of models, grouped in a
shared ontology. The substrate of this process is the
concept of virtual knowledge; each agent must
comply with the knowledge base abstraction when it
communicates with other agents. This technology
allows the agents to interact at the knowledge level,
independently of the format in which the information
is encoded. The ontology represents the formal
description of the model of the application domain.
The model specifies the object in the domain,
operations on them and their relationship. For a given
application, several ontologies might be defined. For
instance, ontology for navigation and control, a
telecom ontology and so forth. Ontology can be
represented as a semantic network, and has been
implemented as a library of shared objects.

For the initial prototype we chose to use
AgentBuilder [7], an integrated toolkit for
constructing intelligent software agents. The agents
have built-in capabilities for autonomous operation,
monitoring their environments, reasoning, and
communicating with other agents and users. The
interactions between agents are defined by agent
protocols. AgentBuilder, using specific protocol
generation tools can automatically generate the
protocols. The generated rules have to be further

External Process
(e.g. FreeFlyer)

SOHO Multi-agent System Architecture

The multi-agent system supporting the SOHO
autonomous operations has been conceived as
surrogate spacecraft subsystem analysts (agents) that
can intelligently interface with their human
counterparts in spacecraft management activities.
This SOHO application will be developed in three
phases: the Orbit Agent community, Attitude Agent

1
Gateway
Agent

Specific Agent
i

Coardinator
Agent

Specific Agent
2

Agent Community

Specific Agent
Specific Agent
a

Figure 1. Generic View of a SOHO Agent Sub-Community

completed with more specific information. The
protocols are implemented as behavioral rules, which
encode the preconditions and actions, associated with
state transitions in the state transition diagram of a
protocol.

community, and Telemetry Agent community. Other
communities will be subsequently added for other
spacecraft subsystems.

The implementation of an entirely ground-based
guidance and control navigation system is both
expensive and straightforward. The main reason to
consider autonomous guidance and navigation is to
reduce mission cost and risk. Another effect could be
to extend the mission life, or to undertake missions
which would not be possible without onboard
autonomy.

JPL Agent
Community

External
Process
(e.g. satellite
bus)

Broker

External
Process
(e.g. FreeFlyer)

Agent

Operator Assistant

JPL Operator
Assistant Agent

Orbit Agent
Community

Attitude Agent
Community

Figure 2. Overview of the initially-planned SOHO community

The Orbit Agent Community is a ground-based agent
community. The agents within this community
control the orbit determination process at the highest
level. It has the following tasks:

e Detect and resolve tracking data errors

e Detect and correct errors in dynamics modeling

e Detect and report unplanned spacecraft

maneuvers
e Generate alerts for errors the agent cannot
resolve
e Provide orbit information to other agents in
community

¢ Generate and distribute orbit products

The Attitude Agent Community will be a ground-

based agent community. It will:

e Detect and resolve telemetry errors

e Detect and correct errors in dynamics modeling

¢ Detect and report unplanned spacecraft events

¢ Generate alerts for errors the agent cannot
resolve

e Provide attitude information to other agents in
community

e Generate and distribute attitude products

The Telemetry Agent Community will be an onboard

agent community. It will:

e Detect and resolve scheduling errors

e Monitor recorder for hardware errors

e Detect and reject abnormal command sequences

e Predict possible hardware failures based on
physical conditions

We have decided to use fine-grained agents and
develop communities because we want to be able to
demonstrate progressive autonomy concepts. This
demo system is available via the web. We plan on
demonstrating the migration of agents into the
planned communities.

The Orbit Determination Coordinator Agent
coordinates all high-level activities within the orbit
determination community. It monitors the overall
process from getting tracking data, processing it for
orbit determination and distributing the products of
the orbit determination to subscribed customers. Its
knowledge include the delivery schedule of the
tracking data and the delivery location of the tracking
data.

The Orbit Determination Process Agent monitors the
actual process of orbit determination. It is responsible
of the Kalman filtering process and can detect and

OD Agent T
Community “,."“

)
\)
‘illlllllilllllllll')

FreeFlyer
Gateway

FreeFlyer Server
Environment

Tracking II
Data

L}
h..
h..
a,

FreeFlyer

»
"y
LT »
M I T T L

Distribution

Operator
Assistant

]
aws?
Rl Y TP L L L

Publication
Service

\
=]

-
PP

obtain more accurate results. The agent is also able to
make decisions about the orbit determination
solutions that pertain to their age or the exact process

oD

Browser Displays

Fig. 3 Orbit Determination Community

handle certain process faults. For instance, when
range residuals become abnormal, it can enable
adaptive filtering and reprocess the data. If this is
successful, it can inform about the problem and its
resolution, for traceability and possible further
analysis. If the agent cannot resolve the problem, it
can choose to page a human operator.

The Solution Agent keeps track of the quality of the
orbit determination solution. The solution knowledge
for the spacecraft being monitored accumulates in its
knowledge base. This knowledge is mainly used to

by which they were arrived at.

The FreeFlyer Gateway Agent provides the interface
to the external FreeFlyer server. It abstracts the
services of the ®FreeFlyer software at the higher
level, as required by the agent community
communication protocols.

The Input Agent monitors the inputs to the orbit
determination process. If tracking data doesn’t arrive
on time or is of poor quality, this agent can notify the

community.

Agent Messages:

Supervisor: Starting Agent Community
Distribution: Hello

Input: Hello

Process: Hello

Solution: Hello

Gateway: Hello

Gateway: Starting Orbit Determiination
Process: Residuals Too High

Pracess; Request Adaptive Solution
Supervisor: Restart OD'with Adaptive Filter

Poker Flats Rings:Residual

Poker Flats Range Residuals
WIRE Spaieci’

Lol

NGNS SRS E RS EER Rt B R UL SUE NN NN Lonbeche

2164675 2164700 2164725 1164750 2164775 2164800 2164525 2164850 2164875
WIRE Epoch (Daye)

Sinpation sises datu from WIRE Spacecrisft

Fig. 4 A SOHO Prototype Screen

The Distribution Agent responsibilities are the
generation of orbit determination products and the
subsequent delivery to external entities. A typical
orbit determination product could be an ephemeris
file needed by another agent community or an
external user. An ephemeris file is a time history of a
spacecraft’s position and velocity. This agent controls
processes associated with the delivery of the products
and detects failures and attempts corrective actions
and request operator intervention where appropriate.

The Operator Assistant Agent acts as a liaison
between the agent community and the human
operators. Its responsibilities are: monitor the overall
orbit determination process, ensures the appropriate
feedback to the operator, facilitates the transmission
of the operator’s commands.

Final Remarks and Future Work

A generic architecture for a multi-agent system for
SOHO mission operations has been presented. A
prototype for the Orbit determination community has
been currently implemented. The approach described
in this paper has proven to be an efficient, flexible
and robust way to manage the complexity of the
problem of orbit determination. The tools used to
build the prototype, i.c. Agent Builder, have well
served the purposes of a rapid prototyping
development cycle. We are currently investigating
agent building FIPA-compliant tools for further
development, such as JADE [8].

Orbit and attitude sensing are inherently related. In
many cases, they are using the same sensors and the
same actuators. The attitude control sensors control
the spacecraft during orbit maneuvers. In addition,

orbit and attitude requirements are often combined to
produce pointing and mapping results to satisfy
mission requirements. Our goal should be to reduce
the total cost and risk of attitude and orbit
determination.

Traditionally attitude determination and control and
the guidance and navigation systems are separate
functions, realized by different systems. Getting these
functions to work together constitutes one of the
main challenges of developing autonomous
navigation and orbit control, and therefore, fully
autonomous spacecraft. The planned addition of the
other agent communities will help to address this
integration.

We also plan to develop the requirements and
operational scenario for a Reusable Agent Repository
(RAR). The RAR will support the cost-effective
development of agent-based communities to support
future mission operations systems. A generic version
of the agents developed for the SOHO multi-agent
system will be used to initially populate the RAR.

Acknowledgements

This work has been performed by the agent group at
the Goddard Space Flight Center, and a.i.solutions in
collaboration with Caltech-Jet Propulsion Laboratory,
under contract with the National Aeronautics and
Space Administration.

References

1. SOHO, http://schowww.estec.esa.nl/

2. ®FreeFlyer, http://www.ai-solutions.com

3. ad. solutions, http://www.ai-
solutions.com/freeflyer/index.asp

4. Shoham, Y.: CSLI Agent-oriented
Programming Project: Applying software
agents to software communication,
integration and HCI (CSLI home page),
Stanford University, Center for the Study of
Language and Information, 1995.

5. Rao, A., Georgeff, M.: BDI Agents: From
Theory to Practice. In Proceedings of the
First International Conference on Multi-
Agent Systems (ICMAS-95), San Francisco,
June 1995.

6. Finin, T., Weber, J., Wiederhold, G.,
Genesereth, M., Fritzson, R., McGuire, J.,
McKay, D., Shapiro, S., Pelavin, R., Beck,
C.: Specification of the KQML Agent
Communication Language (Official
Document of the DARPA Knowledge

Sharing Initiative’s External Interfaces
Working Group), Technical Report 92-04,
Enterprise Integration Technologies, Inc.,
Menlo Park, California, 1992.
AgentBuilder- User's Guide, Reticular
Systems, Inc., 1999.

JADE, http://sharon.cselt.it/projects/jade/

