
. 
ISIT2001, Washington, DC. June 24-29, 2001 

A Novel Bit-Wise Adaptable Entropy Coding Technique 
Aaron  Kiely and Matthew  Klimesh 

Jet Propulsion Laboratory, California Institute of Technology 
4800 Oak Grove Drive, Mail Stop 238-420, Pasadena, CA 91109 

e-mail: {aaron,  k1imesh)Qshannon. jpl .nasa.gov 

Abstract - We present a novel entropy coding tech- 
nique which is adaptable in that each bit to  be en- 
coded may have an  associated probability estimate 
which depends  on previously encoded  bits.  The tech- 
nique may have advantages over arithmetic  coding. 
The technique can achieve arbitrarily small redun- 
dancy and  admits a simple  and fast decoder. 

I. INTRODUCTION 
We examine the problem of compressing a sequence of bits 

b l ,  bz,  . . . from a random source,  where  each bit  has  an associ- 
ated probability estimate pi = Prob[bi = 01 which may  depend 
on source bit values prior  to index i. This dependence encom- 
passes adaptive  probability  estimation  as well as correlations 
or memory in the source. Efficient compression requires a 
bit-wise adaptable  coder.  Arithmetic coding is the  traditional 
approach in this  situation; here we describe an  alternative. 

We present some highlights of our new compression tech- 
nique, which we call recursive  interleaved entropy coding. This 
technique generalizes methods described  in [l, 21. For more 
details  on  our technique,  including practical encoding and de- 
coding algorithms, see [3]. 

11. AN ENTROPY CODING TECHNIQUE 
Without loss of generality we 

assume that pi 2 1/2 for each in- 
dex i since the encoder and de- 
coder can  invert bi when this is 
not  the case. We partition  the re- 
gion [1/2,1] into several  narrow in- 
tervals, each of which has a  bin 
that  stores a list of bits. We place 
source bit bi into  the bin with  the 
interval that contains pi. Since 

Fig. 1. A possible tree 
for a bin with nominal 
probability 0.9. 

each  interval spans a small  range, we think of each bin as 
representing  some nominal probability value. 

Bits in the leftmost bin, which contains  probability 1/2, are 
transmitted  without  further processing. For every other bin 
we specify an exhaustive prefix-free set of codewords. When 
bits in a bin form one of these  codewords, we delete  these  bits 
and place new bits in other bins. (The rules for formation 
of codewords are  not  straightforward; see [3].) The  mapping 
from codewords to  output  bits  can  be described with a binary 
tree.  Each codeword is assigned to a terminal  node, non- 
terminal nodes are labeled with a destination  bin,  and  the 
branch labels (each a zero or one)  indicate  the  output  bits. 

For example,  Figure 1 shows a possible tree for a bin with 
nominal  probability 0.9 and codeword set  {00,01,1}. If the 
codeword 00 is formed in the bin (this occurs with probability 
approximately 0.81), we place a zero  in the bin  containing 
0.81. If instead  the codeword is 1, we place a one  in the bin 
containing  0.81, then we place a zero in the bin  containing 0.53 

The work described was funded by the TMOD  Technology Pro- 
gram  and  performed at the Jet Propulsion  Laboratory,  California 
Institute of Technology under contract with the National  Aeronau- 
tics  and  Space Administration. 

because, given that  the codeword is not 00, the probability 
that  the codeword is 1 is approximately 0.53. 

In  practice, bins are identified by indices rather  than nom- 
inal probability  values, starting  with index 1 for the leftmost 
bin. Our goal is to have bits flow into  this  bin, where they  are 
transmitted. To accomplish this, we impose the  constraint  on 
our  trees  that each output  bit from the  tree for bin j must be 
placed in a bin with index strictly less than j .  Although this 
mapping  can  be  made  without regard for nominal  probability 
values, one expects  better compression if (the  mapping causes) 
the  bits in a bin  all have nearly  the  same probability-of-zero. 
Thus, we would like the  tree for a bin with  nominal probabil- 
ity p to  produce  output  bits  that all  have  probability-of-zero 
in the  range  [1/2,p). Such a tree is said  to  be useful at p. 

Theorem 1 For any given probability value p E (1/2, l), 
there exists a tree that  is useful at  p. 

This can be proved by constructing  an infinite family of trees 
such  that for any p E (1/2,1)  there is a tree from the family 
that is useful at p. We say that  such a family of useful trees 
is complete. 

Theorem 2 Given a complete family of useful trees, for any 
E > 0 and 6 > 0 there exists a coder using only trees from 
this family and a constant c for  which the following holds: 
For any n and  any sequence of bits b l ,  . . . , b, whose associ- 
ated probability-of-zero estimates  pl , . . . , p, are  all  in the range 
[6,1 - 61, the sequence will be compressed to  at most 

111. PERFORMANCE 
In a test designed to  measure  the  speed of decoding when 

isolated  from  source  modeling, a 10-bin coder  provided about 
35% faster  decoding than a binary  arithmetic coder from [4]. 
Encoding is presently about  three  times slower than decoding. 
In  this  test,  redundancy was 0.0032 bits/source  bit for our 
coder,  and 0.0019 bits/source  bit for the  arithmetic coder. 
Details can  be found  in [3]. 

REFERENCES 
[l] F. Ono, S. Kino, M. Yoshida, and T. Kimura, “Bi-Level  Image 

Coding with MELCODE - Comparison of Block Type Code 
and Arithmetic Type Code,” Proc. IEEE Global Telecommu- 
nications  Conference  (GLOBECOM ’89), pp. 0255-0260,  Nov. 
1989. 

[2] P. G. Howard, “Interleaving Entropy Codes,” Proc.  Compres- 
sion  and  Complexity of Sequences 1997, pp. 45-55,  1998. 

[3] A. Kiely and M. Klimesh, “An Adaptable Binary  Entropy 
Coder,” Proc. 8001 IEEE Data  Compression  Conference, 
Snowbird, Utah, March  27-29,  2001. 

[4] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic Coding 
Revisited,” ACM  Transactions on Information  Systems, vol. 
16, no. 3,  pp. 256-294, July, 1998. 

http://jpl.nasa.gov

