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Abstract

This paper derives and analyzes optimum and near-optimum structures for detecting
frequency-hopped (FH) signals with arbitrary modulation in additive white Gaussian noise.
The principal modulation formats considered are M-ary frequency-shift-keying (MFSK) with
fast frequency hopping (FFH) wherein a single tone is transmitted per hop, and slow
frequency hopping (SFH) with multiple MFSK tones (data symbols) per hop. The SFH
detection category has not previously been addressed in the open literature and its analysis
is generally more complex than FFH. A special subset of the SFH/MFSK format that receives
particular attention in this paper is the case of continuous-phase modulation (CPM) for which
the carrier phase is assumed to be constant over the entire hop.

The major contributions of this article are twofold. (1) It presents a detailed discussion
of the modeling assumptions involved in deriving optimum FH detectors in the classical,
average-likelihood ratio detection theory sense, relating them to previously published results
and clari~ing some persistent misconceptions about claims of optimality.  (2) It attempts the
most thorough performance evaluation of these structures to date by employing recently
developed novel techniques for accurate computer simulation of the true system
performance.

A fundamental conclusion is that SFH/CPM modulation is advantageous not only to
the communicator but also to a sophisticated noncoherent detector. By applying techniques
developed in this paper to exploit the continuous-phase characteristic, a detector of
reasonable complexity will perform appreciably better than traditional channelized  detectors
such as the filter-bank combiner.

‘This work was performed by the Jet Propulsion Laboratory, California Institute
Technology, under a contract with the National Aeronautics and Space Administration.
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1. Introduction

Within both the civilian commercial and tactical military arenas, there is a rapidly growing
trend toward the use of spread-spectrum (SS) communication systems in general and
frequency-hopped (FH) systems in particular because of their inherent anti-jam or anti-
interference and low-probability-of-intercept characteristics. There has been a concomitant
interest from both sectors in the ability of unauthorized receivers to detect FH emissions.
Many ad hoc FH detection structures have been proposed which typically incorporate a fast-
Fourier-transform (F~ or other channelized front-end preprocessor. The performances of
some of these signal processors have been tested in the field, simulated in computers or
occasionally analyzed, sometimes giving rise to questionable superiority claims. However,
these exercises generally neglect the issue of fundamental performance limits unrestricted by
practical implementation constraints and the notion of optimality  in the classical average-
Iikelihood ratio (ALR) detection theory sense [1], which is the subject of this paper.

The problem of detecting an FH signal imbedded in additive white Gaussian noise
(AWGN) based on the observation of a single received hop (dwell) is similar to the standard
radar problem of detecting a Doppler-shifted target return assuming that the unknown
frequency shift is discretized to a finite number of possible values [2], [3]. In this analogy,
the number NC of possible FH frequency channels (hop frequencies) corresponds.to the
number of Doppler frequency resolution cells, and both detectors could employ a
channelized  FIV front end with appropriate post-FIT processing.

However, there are some fundamental differences between the two problems that lead
to divergent solutions. [n particular, FH detectors typically observe many consecutive hops
wherein the carrier jumps pseudorandomly from one frequency channel to another, and the
detector is assumed to have no a priori information about this hopping pattern. Furthermore,
unlike the radar case, FH signals are often 10s or 100s of MHz wide, with NC on the order of
1000 or more. Another significant difference is that the FH carrier usually has data
modulation, which may be of value to a properly designed detector. In summary, the FH
detection problem is simultaneously more complicated than its radar counterpart, yet more
susceptible to exploitation by sophisticated signal processing techniques.

Many results have been published in the area of noncoherent (i.e., unknown carrier
phase) envelope detection of “narrowband” (fixed, known frequency) [3] - [5] and “wideband”
(unknown frequency) radar returns [2], [6], [7]. For a unity time-bandwidth product (TBP),
envelope detection is equivalent to radiometric (energy) detection. This has prompted
analysts to treat the latter as a common yardstick of minimum performance even for large
TBPs [8] for which radiometric detection has no other claims of suitability other than
simplicity and robustness to signal feature variations. (In fact, in the absence of any
knowledge about the received signal characteristics other than its frequency band, the
radiometer may be the only pragmatic detector available.) The general conclusions that have
emerged from this significant body of work are as follows. (1) Radiometric detection can be
quite inferior to channelized structures for large values of Nc (i.e., when the temporary
spectral occupancy of the signal is small compared to the total obsented bandwidth).
(2) Adaptive spectral estimation techniques can produce major performance improvements
relative to fixed F~ preprocessors when there is a mismatch between the actual and
measured frequency channels. (3) For small values of NC and variable signal amplitude
(fading) there is only a minor performance gap between the optimum ALR and maximum-
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likelihood ratio (MLR) schemes, wherein we jointly detect the presence of the received signal
and estimate one or more signal features (e.g., the FH pattern or the imbedded data).

Early papers on FH signal processing concentrated on the exploitation of cyclic
features derived from nonlinear operations on the received signal (e.g., delay-and-multiply
structures fordetermining hoptiming epoch information [9]); such procedures are useful, but
are ad hoc in nature and generally far from optimum. A more fundamental ALR analysis
resulted in an influential series of reports which derived the first optimum detectors for ~
multiple-hop observations of FH signals with unknown data modulation [10] - [12]. Woodring
and Eden approximated the performance of these detectors based on inaccurate central-limit
theorem (CLT) arguments. The analysis of various multiple-hop decision combining methods
was detailed in [13] and [14]. Subsequent publications described and compared these
detectors in depth, assessing their practical Iimitatations  [15, Vol. Ill], [16], [17], analyzing
their performance in more theoretical detail and with greater accuracy [18], and proposing
alternative implementation techniques for improved performance [19] - [23].

All of these earlier papers were restricted to or optimized for fast frequency-hopped
(FFH) waveforms with /Wary frequency-shift-keyed (MFSK) data modulation wherein a single
MFSK symbol is transmitted in each hop. For this class of signals, the transmitted waveform
consists of a single tone of constant amplitude in each hop, so that the optimum
noncoherent receiver per hop (assuming a distortion-free channel) is simply an envelope
detector with unity TBP followed by a Bessel function operation because of the uniformly
distributed unknown carrier phase. Although other FH waveforms have been discussed
before with higher TBPs, most notably, the hybrid direct-sequence (DS)/FH case in [11] and
[12], the resulting detectors are only optimum conditioned on a specific front-end
preprocessor as discussed in more detail below for the Woodring-Edell  (WE) implementation.
One of the contributions of this paper is to identify and clarify such misconceptions.

This paper begins with a review of some previously published wideband and FH
detectors from a classical detection theoretic perspective. Coherent and noncoherent
optimum ALR detectors are then derived for FFH/MFSK signals and slow frequency-hopped
(SFH)/MFSK  signals in which the carrier phase is discontinuous from symbol to symbol. The
more difficult analytical problem of SFH signals with arbitraty  continuous-phase modulation
(CPM) is then considered and specialized to the case of continuous-phase MFSK (CPFSK).
The optimum general SFH/CPM detector is found to have an impractical complexity that
grows exponentially with the number of symbols per hop; for the special case of SFH/CPFSK
signals with integer sub-multiple modulation indices, an alternative implementation with linear
complexity growth and negligible loss of optimality is derived. Some nearly optimum MLR
simplifications are explored in which the signal is detected and features such as the
imbedded data or the FH pattern are simultaneously estimated. Novel statistical models
described in two companion papers [24], [25] are used to accurately compare the
performance of these SFH detectors with the traditional wideband radiometer, the WE
detector and the filter-bank combiner (FBC).  In this last case, threshold tests are performed
within each FH channel on each observed hop [15, Vol. Ill, pp. 295-305].
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Il. Review of Some Previously Published Suboptimum FH Detectors

A. Arbitrary Wideband Signals: Radiometer

The most general formulation of the classical signal detection problem seeks to determine
whether a bandlimited  signal s(t) has been received in additive white Gaussian noise (AWGN)
n(t) based on the observation of the composite received signal r(t) over the observation
interval (O, 7):

{

s(t) + n(t); H,
r{ t) =

n(t); Ho
(1)

where H, and HO are respectively the signal present and signal absent hypotheses. It is
assumed that s(t) has RF bandwidth W and n(t) has two-sided power spectral density /VO/2.
In the absence of any further a priori information about the specific characteristics of s(t)
such as its modulation, the simple radiometer of Fig. 1 is often used to distinguish between
the two hypotheses [15, Vol. Ill, pp. 288-290],” [26, pp. 128-135]. This detector does not use
received carrier phase information so it falls into the noncoherent category.

For large TBPs, 7W >1, the sampling theorem can be used to show that the
radiometer output R is essentially a noncentral (l-l,) or central (lfO) chi-square (X2) random
variable (RV) with 2TW degrees of freedom [16, (4.28), (4.30)]:

{

()
R+E

1 R~e-~,
-iiJZ ( 1

W-I +~ ; Hls R~O
o

( )

Tw- 1 R
p(R) = ~ 1 R e-x; Ho, RzO

(2)

2  r(nq ~

(O; R<O

where E is the total energy in s(t) over T, It is commonly believed that this result is
approximately valid for smaller TBPs, including the limiting case 7W = 1, although this has
not been demonstrated analytically with any rigor. The threshold v in Fig, 1 is used to trade
off the probability of a false alarm, PFA, and the probability of a miss, PM, which traditionally
define detector performance:

P,. = jdR~(RIHo)
9

JPM = ‘dRp(RIHJ
o

For TW >1, CLT arguments are usually invoked to approximate the X2 RV /? in (2) by a
Gaussian RV (GRV) under l+, or HO; then (3) yields the familiar performance equation [15,
Vol. Ill, (4.4) and (4.5)]:

(3)
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Y’ #w= + [Q-l (PFA) - J- Q-’(I -PM)]; TW> 1
0

~ [Q-l(PFA) - Q-’ ( l - PM )]; y < +
“m

(4)

where y is the ratio of the received signal power S = E/T to the noise power /VOW and Q-l is
the inverse of the Gaussian probability integral. Although the wideband radiometer performs
much worse than more sophisticated detectors if additional information about the
characteristics of the received signal is available (e.g., the modulation format), its appeal lies
in its minimal complexity and robustness (i.e., its insensitivity to variations in the signal
features). In particular, if s(t) is an FH signal, the radiometer does not require frequency
channel and hop timing epoch synchronization.

B. FH Signals with Arbitrary Modulation: Channelized  Detector

Now suppose s(t) is an FH signal with total SS bandwidth W~~, hop rate Ffh, hop dwell time
Th = I/Rh, and received signal energy per hop Eh = STh. The baseband data modulation at
this point is arbitrary, but the combination of this modulation with the FH carrier naturally
partitions w~~ into NC contiguous, non-ovedapping  channels, each with bandwidth
w = W#N , such that the entire signal energy in any hop lies within a.single channel. As
di!!cussed  be~w, these NC FH channels do not always correspond to the unmodulated FH
carrier frequencies. Nonetheless, for reasons of mutual orthogonality  between the channels,
the TBP Th~m is a positive integer, Also, for analytical simplicity, assume that the detector
observation interval (O, T) contains an integer number Nh = T/Th of complete hops.

If the radiometer above were used to detect this FH signal, Fig. 1 and (2)-(4) are still
applicable with the obvious substitution W = W~.. However, the detector performance can
be further improved by exploiting its limited knowledge of the FH signal features. In the usual
idealized signal detection formulation, the detector is assumed to have somehow achieved
frequency and time synchronization with the received signal, i.e., h knows ~h, the Iowtion of
the FH channels in the frequency domain, and hop timing (in practice, it would have to
extract these characteristics from the received signal). Because of the channelized  nature of
the FH signal and the arbitrary data modulation, it is not unreasonable for an ad hoc detector
to prefilter the received signal with a matching bank of NC contiguous, non-overlapping
bandpass energy detectors of the form in Fig. 1, each with bandwidth Wm and integration
time Th aligned with the received hops: this preprocessor is typically called a channelized
radiometer [26, pp. 135-140].

Denote the outputs of this preprocessor for the ith hop by the random vector,
RI= {Rjp = 1,2, . . . . N } where the RV Rv corresponds to the /th FH channel. As in (2),
each Rjj is approximatelyc%2 with 2ThWm degrees of freedom. Under l+,, the component
corresponding to the FH channel that contains the signal on the ith ho is noncentral X2 and
the remaining NC- ?1 are central X2; under 1-1o, all of them are central x . The complete
observable over (O, T ) is 1? = {Rl; i = 1, 2, . . . . Nh}, and all Nh Nc components are
statistically independent (S1). From (2),
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P(wfl$ q) = IwJ IMI q)
Pvwo) JmJ l~o)

(5)
ThWm-l %- —  -—T,W.-2 (~h~u)  2

s 2 r(T~W~) M
( )
-%7ze  4 ‘Thwm-l  No

Since the signal is equally likely to lie in any of the NC channels on a given hop, the ALR
based on /? reduces to

The last line of (6) is a sufficient statistic for the ALR, as first proposed by Woodring  and
Eden [11 ]. Since 1? is not generally a sufficient observable for the original received signal r(t),
and because its components are only approximately X2, the WE FH detector cannot truly be
optimum in the classical ALR sense. Nonetheless, in the absence of information about the
specific data modulation, and conditioned on a channelized radiometer preprocessor, (6) is
the optimum noncoherent ALR detection metric for FH signals. Unfortunately, the perception
that the WE structure is the uncondit~onally  optimum FH detector has been perpetuated in
the literature (e.g., [15, Vol. Ill, pp. 290-295], [27, p. 15]), usually for the special case
‘hwm = 1 where the X2 approximation is weakest but (6) simplifies to the sufficient statistic

(1A(R)  oc ; ; 10 ${~ ; ThWm=l
l-l ]=1 o

(7)

which is illustrated in Fig. 2.
The performance of the WE detector is approximated in [11] by a formula based on a

CLT arguments. However, the Bessel operation is highly nonlinear and CLT convergence is
weak for Ricean or Rayleigh arguments (i.e., the square root of the /?ys, which are noncentral
or central X2 RVS) because of the long tails in their probability density functions (PDFs),
which usually leads to optimistic performance results. In computing the performance of the
WE and other detectors, the results in this paper employ more accurate techniques
described separately in [24] and [25].

c. Channelized  Filter-Bank Combiner

A common simplification of the WE or other detectors is the FBC structure wherein a hard
decision is made as to the presence of a received signal in each FH channel on each
observed hop (sometimes referred to as a “frequency-time cell” in FH detector terminology)



based on a threshold comparison (e.g., [15, Vol. Ill, pp. 295-305]). In the WE case, because
the square root, scaling and Bessel function operations in each frequency-time cell are
monotonic, each channelized preprocessor output Ru can equivalently be compared with a
common threshold n, thereby eliminating the postprocessing complexity. As shown in Fig. 3
for the T#V~ = 1 case, if this threshold is exceeded for any of the FH channels on a given
hop, the presence of a signal on that hop is postulated and the OR gate generates a”1”;
otherwise it outputs a “O”. These intermediate hard decisions are summed over all Nh
observed hops and compared with a second integer threshold L to decide on HI or Ho. me
two thresholds are jointly optimized to minimize PM for a desired PFA and received signal-to-
noise ratio (SNR). The end result is that the FBC of Fig. 3 performs much better than the
wideband radiometer because it is channelized to match the FH signal, and, in fact, does
almost as well the WE detector of Fig. 2 with considerably less computational complexity,

Ill. Derivation of Optimum FH Detectors

A. FFH/MFSK Signals

The only open literature publication of an ALR detector for FH signals without any
preprocessor assumptions that we are aware of is the detector derived by Beaulieu et aL for
FFH/MFSK signals [18]. 2 For this special class, the received signal term in (1) can be
represented over the ith hop by

Xt) = @%X(2+6,); (i-l)Th s t < i Th
(8)

where the received signal power S = Eh/Th, the transmitted frequency over the ith hop is J
corresponding to the jth FH channel, and the observation intewal again contains an integer
number Nh = T/Th of hops. The channel containing the signal on a given hop is equally
likely to be any of the NC equally-spaced FH slots, and ~ is S1 from hop to hop.3 For the
noncoherent detection case, the carrier phase over the flh hop, d,, is a uniformly distributed
RV over (O, 2m) which is S1 from hop to hop, and the minimum spacing between adjacent FH
channels is 1 /Th for orthogonality (i.e., the modulation index h = 1) which implies that

2We use the widely accepted terminology that distinguishes between FFH and SFH
signals according to whether there is a single data symbol per hop (FFH) or multiple data
symbols per hop (SFH) [15, Vol. 11, pp. 62-64].

30ne of the reasons that FFH/MFSK signals are so much easier to analyze than the SFH
case is that they are statistically equivalent to an unmodulated FH carrier for any alphabet
size M, which suppresses the data sequence dependence.
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Nc = W~~Th. For coherent detection,4 the received carrier phase is assumed to be known so
that Oi = O in (8) without loss of generality; under this condition, orthogonality occurs with a
minimum FH channel separation of 1 /2Th (i.e., h = %) for which NC = 2W$~Th.

At this point, it is appropriate to introduce the terminological  distinction between the
FH channels and the unmodulated carrier frequencies for A4-ary signaling. With MFSK
baseband data modulation, M adjacent FH channels usually form an M-ary band for a given
FH carrier frequency. If these frequency bands are contiguous and non-overlapping as ~
illustrated in Fig. 4, there are G = NC/M equally-spaced Fti carrier frequencies or M-ary
bands; in the maximally overlapping case (ignoring band edge effects), G = NC [15, Vol. 11,
Fig, 2.3]. This paper uses the non-overlapping format exclusively because it simplifies the
SFH performance analysis. However, this restriction is only notational for now because it has
no impact on either the statistical model of the received signal or the ALR detector
performance in the FFH case.

It is well known that the ALR for the general signal detection problem of (1) reduces to
the waveform expression [1, p. 253, (23)]

{[

A[r(t) ] =  E8(~ exp 1}# j~ mdo -: “ (9)
00 0

where E~(t represents the expectation over the stochastic characteristics of the received
dsignal an E, T and N have been previously defined in conjunction with (1). For the

Pcoherent case, (9) yie ds the sufficient statistic [18, Fig. 1]

In the noncoherent case, the likelihood function includes an additional expectation over the
received carrier phase:

Applying the usual mathematical technique for averaging the exponential function in (11) over
the random phase [1, pp. 335-348], the likelihood function reduces to the WE metric of (7):

41n practice, it is generally unrealistic for the detector to derive the received carrier phase
for FFH/MFSK signals unless the hop dwell time Th k very long. So the concept of coherent
detection is really an idealization which serves as an upperbound performance benchmark on
what is practically achievable.
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(12)

where

[(l Ems(2z’’)r+[(:tT:’(t) E’in(2n’f)r “ 3)

Ru = / (n r(f)

which is illustrated in Fig. 5 [18, Fig. 2]. However, whereas (7) was only valid for the special
case of ThWm = 1, (12) holds for all TBPs. Figs. 2 and 5 also differ with regard to the
preprocessor used to generate the intermediate observable {F?y}. Specifically, the bank of
bandpass radiometers in Fig. 2 is replaced by a bank of noncoherent  inphase and
quadrature (1 & Q) demodulators in Fig. 5, and the order of the squaring and integration
operations in each preprocessor is reversed. The net effect is that the RIP are precisely X2
with 2 degrees of freedom in Fig. 5 whereas they are only approximately so in Fig. 2;
however, the difference between the bandpass radiometer and I & Q preprocessors is
actually so small that the performance of the two detectors is almost identical over system
parameter ranges of interest.

It is also interesting to compare (10) with (12)-(13) to determine the complexity impact
of the coherent received carrier assumption. Although the coherent and noncoherent  ALR
detectors both involve the multiplication of A/h sums of NC frequency-time cell operations, the
complexity of these operations is greater for the noncoherent case. While the coherent ALR
only computes the exponential function of a single quadrature demodulated component of
the received signal for each frequency-time cell, the noncoherent ALR requires the formation
of both the I and Q components which are then squared, summed, squarerooted and scaled
before applying the zeroth-order Bessel function to the result. In fact, this observation
applies to the ALR detection of SFH signals with various data modulation schemes.

Beaulieu et aL also introduced simplifications of their coherent and noncoherent
detectors in which a threshold test is applied to each frequency-time cell, thereby eliminating
the complexity of the post-Ri processing [18, Figs. 3 and 4]. This variation is called MLR in

{[18]; however, as is evident rom Fig. 6, it is really the I & Q equivalent of the bandpass-
radiometer channelized FBC shown in Fig. 3.5

B. SFH/MFSK Signais with Discontinuous Phase

The remainder of this paper is concerned with the SFH signal detection problem, which has
not been previously analyzed in the open literature. Particular attention is devoted to the
combination of SFH with CPM modulation formats such as CPFSK. However, for purposes
of comparison, SFH/MFSK signals in which the received carrier phase is discontinuous from
symbol to symboi are considered first. Oniy the noncoherent ALR detector is derived for this

51n the FFH/MFSK context, a true MLR receiver might replace the average (summation)
over the FH channels in the likelihood function by a maximum (i.e., select the largest), which
would provide joint signai detection and FH channel estimation. However, the signai
detection performance would be inferior (by definition) to the corresponding ALR receiver.
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modulation format because it would be unrealistic to assume that the detector could derive
the received carrier phase for each symbol. The received signal term in (1) can be
represented by

{ [ (m-wR’$lt-Oq};s(t)= @mos 2X $+
(14)

(1-l) Th+(/-l)T8 < t< (/-l )T’’~8~8

for the lth data symbol within the ith hop, where S is the received signal power, T~ is the data
symbol baud time, R~ = l/T’~ is the symbol rate, E = ST~ is the received energy per
symbol, and there are an integer number N~ = Th~T~ of symbols per hop. For noncoherent
detection, orthogonality requires that the MFSK tones have a minimum separation of l?~ (i.e.,
h = 1) which corresponds to NC = W ~.l?~ FH channels. With this spacing and the non-
overlapping M-ary band convention of Fig. 4, ~ is the particular FH carrier frequency on the
ith hop, which is equally likely to be any of G = N IM = W~#fR~ equally-spaced
frequencies that are S1 from hop to hop. The fth ~ata symbol on the lth hop is denoted by
m, which is equally likely to be any integer in {O, 1, . . . . M-1} and is S1 from symbol to
symbol. Finally, the received carrier phase during the /th symbol in the lth hop, 0’, is
assumed to be constant, uniformly distributed over (O, 2r), and S1 from symbol td symbol.

Because all of the stochastic characteristics of the received signal are at least S1 from
hop to hop, and the FH carrier frequencies are equally likely in a given hop, the likelihood
function can be partitioned into the form

(15)

where the condition in the argument of Au denotes that the FH carrier frequency over the ith
hop is f;. From (9), it follows that

J

(16)

So the likelihood function only needs to be computed for a single representative frequency-
time cell in which the SS aspects of the signal are suppressed, and this partition is valid for
all SFH signals of interest.

Substituting the SFH/MFSK signal of (14) into (16) and averaging over the random
phase yields the representative frequency-time cell likelihood function

(17)

where
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In conjunction with (15), (17)-(18) define the noncoherent ALR detector for SFH/MF$K
signals with discontinuous phase which is shown in Fig. 7.

A comparison of Figs. 5 and 7 serves to illustrate the differences between the optimum
noncoherent  detectors for FFH/MFSK and SFH/MFSK signals. Both detectors form I & Q
components at the symbol level, which undergo identical operations culminating with the
zeroth-order Bessel function: this is done for each of the NC FH channels, however the
postprocessing is different. In the FFH case, since there is one symbol per hop, all IVc
Bessel outputs are summed for each hop. In the SFH case, the NC channels are partitioned
into G = Nc/M M-ary bands corresponding to the G FH carrier frequencies; the Bessel
outputs are summed within each M-ary band, and since there are N~ symbols per hop and
the carrier phase is assumed to be S1 from symbol to symbol, the M-ary outputs are
multiplied over all of the symbols in each hop and the resultant is summed over the G carrier
frequencies. From a complexity perspective, the only difference is the product over the N~
symbols in each M-ary band on each hop in the SFH case; the single larger summation over
the NC channels in Fig. 5 is equivalent to the summations over the M symbols associated
with each carrier frequency followed by the summation over the G carrier frequencies.

c. SFH/CPM  Signals

Consider SFH signals with arbitrary phase modulation that is continuous over each hop,
which is representative of a broad class of signals of interest. The SFH/CPM signal can be
written as

f$(t)  = @ 00s[274t+ fJ5(dn, t)- Oq]; (l-l)Th  S t< /Th (19)

where @(dn, t) k the CPM component which depends on the particular M-ary data sequence
dn in the ith hop. The number of distinct data sequences that can occur on a given hop is
Nd = M‘s and, in the absence of specific channel coding information to the contrary, all
sequences’ are assumed to be equally likely. For noncoherent detection, the received carrier
phase Oq is modeled as a uniformly distributed RV over (O, 2r) which is assumed to be
constant over the entire hop but S1 from hop to hop; in the coherent case, we can set .
Oq = O. The separation of the G FH carrier frequencies {~} is assumed to be uniform and
consistent with orthogonality  requirements and the contiguous, non-overlapping M-ary band
convention of Fig. 4 discussed earlier.

Under these assumptions, the general SFH/CPM signal of (19) can be inserted directly
into (16) to determine the /flh likelihood function term. In particular, for coherent detection
with Oq = O,
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which, in conjunction with the universally applicable FH partition expression of (15), defines
the optimum coherent detector for any SFH/CPM signal.

In the noncoherent  case, the likelihood function must also be averaged over the
random phase so that

(21)

(22)

Combining this result with (15) yields the noncoherent ALR detector, again valid for any
SFH/CPM signal; the I)lh representative frequency-time cell is illustrated in Fig. 8. While
(21)-(22) is the true theoretical noncoherent fih ALR term, it is not the most practical
implementation approach. The relatively complex Bessel operation in (21) results from the
expectation over the unknown phase Oq in each hop. As observed in [25], since the
noncoherent ALR involves the joint expectation over this phase and the data sequence in
each frequency-time cell, and these operations are linear, the phase expectation can be
performed last. In particular, em can be inserted into (20) and the expectation of this
expression can

Au[r(t)

be computed o~er this random phase:  -
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where the continuous phase expectation has been approximated by an average over Q
discrete phases uniformly spaced over the sufficient range [0, T).

From a complexity perspective, a tremendous penalty must’ be paid to optimally detect
an SFH signal with continuous phase over each hop if the coherent or noncoherent  ALR is
implemented as in (20) or (23) respectively. Since the number of data patterns Ald that must
be examined within each h4-ary band for each FH carrier frequency on each hop grows
exponentially with the number of symbols per hop N~, the complexity can be impractical even
for binary (M = 2) data modulation unless N~ is sufficiently small. It is shown later in the
SFH/CPFSK case that this increased complexity is counterbalanced by a dramatic
improvement in noncoherent ALR detector performance relative to the discontinuous-phase
SFH/MFSK case of Fig. 7. It is also shown that for certain modulation indices h, the
coherent and noncoherent  ALR SFH/CPFSK detectors can be implemented in such a way
that the complexity grows linearly rather than exponentially with N~ [25].

D. SFH/CPFSK Signals

For arbitrary modulation index h, the signals of interest are given by (19) with

t

#(dn, t) = 2zhR8 ~ dr p(dn, r); t s iTh
(l-l)Th

where the M-ary data stream is defined by

p(dn, t) = m -~; (Ll)T~+ (Ll)T8< t<(Ll)Th+lT&

(24)

(25)

and m c {O, 1, ..,, M-1 } is the /th data symbol in the flh hop, I = 1, 2, . . . . N~ for the nth data
sequence cfn. Equations (24) and (25) define a phase tree for all possible data sequences
on the ith hop with arbitrary modulation index and data alphabet size; for example, Fig. 9
illustrates the phase tree for the special case of M = 4, h = %. The slope of a particular
phase tree branch determines the frequency offset for the corresponding symbol relative to
the FH carrier frequency. The frequency transmitted during a given symbol duration is
f+[n?-
&

lA(M - 1 )]hl?~ so that the spacing between adjacent M-ary tones is hR~. The
ranches of the phase tree are Iabelled with the data symbol m and the symbol transitions

with the phase state; since @(dn, t) appears in the argument of a sinusoid, these phase states
can be reduced to the range [0, 2m) by expressing the actual phase modulo 2T as shown in
Fig. 9. For the special case of integer sub-multiple modulation indices, i.e., h = l/K where K
k integer, the phase tree alternates between two disjoint sets of K ossible states on each
successive symbol transition. This reduces the phase tree with ds branches for each hop
to a trellis with KMNs branches as shown in Fig. 10 for M = 4, h = 1!: that is, the data-
dependent phase-tree complexity has been changed from an exponential to a linear
dependence on A/s.

For the coherent detection case, the minimum CPFSK tone separation for
orthogonality  is achieved with h = M, which is usually referred to as minimum shift-keying
(MSK). However, for simplicity, first consider the special case h = 1, which corresponds to
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theminimum separation fornoncohe~ent detection. Forthis particular modulation index the
phase state ~kateach symbol transition incompletely deterministic independent of the data
sequence, alternating between O and m: i.e., at the beginning of the /th symbol baud,
Vk = (1-1) mod 2x. Then the general SWCPM signal of (19) simplifies to the mathematical
form of (14) with the addition of ~k for the initial phase state of the Ith symbol (an important
difference here is that the received carrier phase Oq is constant over the entire hop for
CPFSK modulation whereas it was only constant over each symbol in the discontinuous-
phase MFSK case). In summary, for SFH/CPFSK  modulation with h = 1, the received signal
is independent and identically distributed (i.i.d.) from symbol to symbol conditioned on the FH
carrier frequency ~ and the received hop carrier phase 6. As is shown later, this is a
sufficient condition for drastically simplifying the ALR SFfi/CPM detector structure in both the
coherent and noncoherent cases.

For coherent detection with h = ~ and Oq = O, this conditional i.i.d. characteristic
allows (20) to simplify as follows:

f$[m I q

H (/-l )T*+/T,
“ 2

= % ‘X p  z ~ fi(/-l)Th((/-l)T. 8“(’’Em(2z[’+(m-+lR$l’+’’-’’n}] (26)

N ,  M.~ I“ ~ ~  ~xp ;R (’-l);+,’,
. 0 (/-l) 7-h+(/-l)T,‘r(’)Fm{2n[’+(m-+lR61r+(’-1)z})

This is a very dramatic reduction in operational complexity relative to the general coherent
SFH/CPM detector of (20): # exponential functions must still be computed, but instead of
h4Ns additions, only hl~ M-fold sums must be multiplied (i.e., N~M mathematical operations).
So, with the configuration of (26) for coherently detecting SFH/CPFSK signals with h = 1, the
complexity now grows linearly with Ns.

The same reduction in complexity can be realized in the noncoherent detection case.
As a special case of (23),

(27)
(/-l) Th+/T,

x / dtr(t,~ms{2.[,+ (m-9)R8]t+(/-l,z  -oq}
(/-l) Tfi+(/-l)T,

It was found in [25] that sufficient accuracy could be achieved with Q -16. lWs structure
for the @h frequency-time cell of the optimum noncoherent  SFH/CPFSK detector is illustrated
in Fig. 11. As noted in [25] and confirmed by comparing Figs. 7 and 11, the computational
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complexity of this essentially optimum detector for continuous-phase MFSK modulation is on
the order of that of the optimum detector for the discontinuous-phase case.

Earlier, it was implied that the conditional i.i.d. feature of SFH/CPFSK  modulation with
h = 1 is sufficient but not necessary to reduce the complexity of the coherent or noncoherent
ALR detectors from an exponential to a linear dependence on N ; in fact, similar

timplementation savings can be realized for all integer sub-multip e modulation indices. For
example, in the M = 4, h = 1A (MSK) case, Fig. 9 shows that the phase state ~k alternates
between {T/2, 3m/2} and {O, T} for the beginning of the even and odd symbol bauds
respectively. However, instead of a fully-connected trellis with alternating pairs of states, it
may be more convenient to consider a 4-state trellis which is semi-connected as shown in
Fig. 10.

Consider the general case of coherent detection of CPFSK signals with h = l/K and
arbitrary M. Analogous to Fig. 10, the CPFSK phase trellis is semi-connected with 2K states
at each symbol transition, Let d, denote a particular data sequence over the first I symbols
of the ith hop, and let D, ~ denote the set of all such data sequences that end at the kth
phase state, @k. As a v~riation on (20), define the conditional partial metric

where the average in (28) is only over those l-symbol sequences d, that lie in D,,k. Note that

4/[ f(~) I ~t dN, ~ ‘N,,&] a ‘N,,k (29)

so that
2K

Au[f(t) I J] = x ‘tV./k (30)
k-l

The conditional partial metric A, ~ should not be interpreted as a conditional partial ALR, nor
should (28) be used to computb it since the number of data sequences in D/~ grows
exponentially with the sequence length 1. In fact, the phase trellis can be us6d to establish a
recursive expression for the lth conditional partial metric A, ~ in terms of the (1 – 1 )th metrics.
Let Mkl ~ be the set of all data symbols m in the trellis diag;am that connect the k’ th state at
the beginning of the lth symbol baud to the kth state at the end. Then (28) yields the
recursive relationship
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(l-l) Th+lT,

x f @r(t,~ms(2x[,+(m- +)R8]r+ w}
(/-l) Th+(/-l)T,

and, for the initial symbol baud I = 1,

(31)

[

(/-l) Th+T,

A f,k “ z ew +F8 / ~r(t)
m e Md,k o (l-l)Th r+ws[2”[’+(m-wit}) ’32)

where k’ is the particular state for which the phase ~k~ = O. Equations (31)-(32) can now be
applied to compute A,,k for I = 2, 3, . . . . N~, and then (30) can be used to calculate the i/th
ALR function.

Of course, for SFH/CPM signals where 1/h is not an integer, this trellis structure is not
applicable. This is unfortunately the case for some currently deployed tactical SHF
transceivers such as the U.S. Army’s Single-Channel Ground and Airborne Radio System
(SiNCGARS)  and the British Jam-Guarded Radio (JAGUAR), which empioy duobinary FM
rather than CPFSK modulation, but with h = 0.7 [28], [29]. in principle, the general coherent
and noncoherent SFH/CPM detectors of (20) and (21)-(22) (or Fig. 8) are still available.
However, SINCGARS  and JAGUAR have a maximum data symbol rate l?~ = 16
ksymbols/sec  with a nominal hop rate /?h - 100 hops/see, so that each hop contains
approximately N~ = R /l?h -

?
160 symbols. So we would need to consider Nd - 21a

distinct data patterns or each frequency-time cell, Furthermore, these radios cover the VHF
range 30-88 MHz (i.e., W~~ = 58 MHz) with 25 kHz channels so that there are G = 2320
FH carrier frequencies. Therefore, the computational complexity of the generai SFH/CPM
detector structure makes this implementation impractical.

IV. Suboptimum SFH Detectors

A. FBC and WE

For comparison with the performance of the optimum noncoherent  detectors derived
above, the traditional noncoherent FFH FBC and the WE detector are extended to the
SFH/MFSK case with minimum tone separation R~ for orthogonaiity (h = 1 again) and non-
overlapping M-ary bands.

As shown in Fig. 12 for the FBC, for each data symbol on each hop within each M-ary
band, the received signal is fed to a simple noncoherent, unmodulated-carrier, i & Q
demodulator, and these outputs are then squared and summed. Within each frequency-time
cell, these Si X2 RVS with 2 degrees of freedom are summed over the N~ data symbols in
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each hop creating a X2 RV RV with 2N~ degrees of freedom; these are compared with a
threshold q which is the same for all such cells. If this threshold is exceeded for any of the G
bands on a given hop, the OR gate generates a”1”; otherwise, it outputs a “O”. These
numbers are then summed over all Nh obsetved hops and compared with a second integer
threshold L. The two thresholds are jointly optimized to minimize PM for the selected PFA and
received SNR, Although this structure is suboptimum, it shall be shown that it performs
almost as well as the ALR noncoherent detector for SFH/MFSK signals with discontinuous
phase.

In the WE case, the metric of (6) is used with Wm = MR~, IVc replaced by (3, and the
radiometer-derived Rls replaced by the I & Q generated RIP of Fig. 12 calculated for each of
the G = Nc/M bands. Since the WE detector is optimum conditioned on this channelized
preprocessor, it can be expected to outperform the FBC.

B. Maximum-Likelihood Ratio FH Detectors

In deriving the ALR detectors for the various SFH signals considered, it was assumed that
the data sequences within each hop and the FH pattern were unknown and equally likely.
Furthermore, in the noncoherent case, the received carrier phase was assumed to be
unknown and uniformly distributed over [0, 2r). Consequently, the optimum detectors had to
average over each of these signal characteristics. An alternative approach is to jointly detect
the presence of the signal while simultaneously estimating one or more of these unknown
signal attributes (sometimes referred to as “feature extraction”) under H, using an MLR signal
processor. 6 By definition, an ALR receiver must perform better from a pure detection
perspective than any MLR structure; however, in many cases the detection performance is
almost the same, the MLR format may be easier to analyze or less complex to implement,
and the derived signal feature is of interest.

For example, consider the previously derived ALR coherent and noncoherent
detectors for SFH/CPFSK signals with h = 1. The summation (average) over the 0 discrete
phases in the noncoherent detector of Fig. 11 could be replaced by a maximization function
to jointly detect the signal and determine the (discretized) received carrier phase.
Mathematically, this MLR detector would replace (27) by the /flh likelihood function

[(Au[r(t) I q] “ n-l-l 6 ‘i’ exp ;F8
/=1 m=tl

(l-l) Th+lT,

x J ~r(t)fi:{2n[,+(m .9)R,]t+,,.l,n. oq}]] ‘w)
(/-l) T~+(/-l)T,

To simultaneously detect the signal and determine the FH pattern, (15) is replaced by

%/an Trees calls these metrics generalized likelihood ratios [1, p. 92].
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(34)

where Ay is given by (26) or (27) for the coherent or noncoherent cases respectively. Finally,
for joint signal and data detection (sometimes referred to as a “copy” function), the
summation over the M data symbols in (26) or (27) is replaced by a maximization. In .
particular, for coherently detecting the signal while estimating the imbedded data sequence,
use the iJth likelihood function

(/-l) Th+/T,

x J dr(t,~ws{2z[,+(m-+)R8]t+  (/-Liz})] ’3 5 )

(/-l) T~+(/-l)T,

v. Performance Example for Various SFH/BFSK Detectors

To appreciate the relative performance of the derived optimum and suboptimum SFH/MFSK
detectors, consider the following example. As was done throughout this paper, assume an
idealized situation in which the detector has acquired perfect side information about all of the
usual received signal parameters including hop timing epoch. Of course, it is not assumed
that the detector has a priori knowledge about the particular FH pattern or data sequence.
For the ALR and MLR receivers, unless stated otherwise, CPFSK data modulation is assumed
to demonstrate the extent to which the continuous-phase characteristic can be exploited by a
properly designed detector.

For ease of computational complexity, consider only the case of binary (BFSK) data
modulation. Using the previously defined notation, the received SFH/BFSK signal is
assumed to have the following parameters:

w= = 10 MHz Rb = 100 hops/see

T = 0.2 sec ff~ = 10 Ksymbols/sec

1

G = W~JR~ = 1000 binary bands: coherent detection (i.e., h = 1!4)

G = W#R~ = 500 binary bands; noncoherent detection (i.e., h = 1)

Nh = RhT = 20 consecutive hops

N~ = RJRh = 100 symbols/hop
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The performance of various SFH/BFSK detectors discussed in this paper was plotted
for these signal characteristics in Fig. 13 as PM versus the received signal-to-noise ratio
Y = S/NOW~~  for fixed PFA = 10-3 based On a combination of analytical and computer
simulation techniques. These detectors include the wideband radiometer, WE, FBC,
noncoherent ALR discontinuous- and continuous-phase, and coherent ALR and MLR
discontinuous-phase structures, where the MLR receiver jointly detects the signal and
estimates the data.

There is always a strong motivation to simplify the performance computation task by
liberally applying CLT arguments to approximate sums of large numbers of i.i.d. RVS by a
single GRV. However, as was noted earlier in conjunction with the WE detector, it is well
known that when the PDFs of the i.i.d. RVS have long tails, the convergence of their sum to a
GRV is very slow rendering the CLT approximation inaccurate and often leading to overly
optimistic performance results. For this reason, the performance of most of the detectors in
Fig. 13 was based on novel computer simulation techniques described in depth in [24] and
[25] and which will not be repeated here.

Looking at the curves in Fig. 13, the radiometer performance was simply based on the
closed-form approximation of (4), for which the CLT approach is accurate. As a performance
benchmark, it achieves PM = 10-2 (for PFA = 104) at y = -24.2 dB.

The FBC curve was determined for the structure of Fig. 12 using a purely analytical
approach. In the Ifih frequency-time cell, Ry is a central (for the G-1 noise-only bands under
H, or all G bands under HO) or non-central (for the remaining signal-plus-noise band under
H,) X2 RV with 2N~ = 200 degrees of freedom. The probability that each of these S1 RVS
exceeds the common threshold rj can be readily calculated; then the probability that the OR
gate generates a “O” or a “l” on a given hop can be computed. The final summation over
the Nh = 20 observed hops is then a well-defined binomial RV, and the probability that it
exceeds the second integer threshold L fiointly  optimized with n) can be calculated as in
[15, Vol. Ill, pp. 295-300]. Actually, for the parameters in this example, L = 5 was optimum
over most of the range in Fig. 13. In particular, the FBC required y = – 32.4 dB at the
benchmark value of PM which is almost 8 dB better than the radiometer performance. As
noted earlier, although it is suboptimum,  the FBC performs as well as it does because it is
channelized  to match the hypothesized received FH signal.

The WE performance in Fig. 13 was based on the approach discussed in Section IV.A.
using computer simulation techniques described in [25]. Surprisingly, its performance is only
negligibly inferior to the noncoherent  ALR discontinuous-phase detector over the entire range
in Fig. 13.

The noncoherent  ALR SFH/BFSK  performance cutve was based on the detector of
Fig. 7 using computer simulation techniques described in [25]. It is moderately better than

10-2, it requires y =the FBC performance: in particular, at PM = -33.0 dB, which is only
0.7 dB better than the FBC.

Just as the channelized  detectors performed significantly better than the wideband
energy detector, Fig. 13 shows that the continuous-phase characteristic results in another
major performance improvement for ALR noncoherent detectors. The computer-simulated
performance curve for the latter case is based on the structure of Fig. 8 with Q = 16 discrete
phases uniformly spaced over [0, n). It requires y = -38.7 dB at PM = 10-2, which is
remarkably almost 6 dB better than the discontinuous-phase BFSK case. ~is is an
indication of the degree to which optimum noncoherent detectors can exploit CPM signaling.
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. .

Finally we come to the coherent ALR and MLR detectors for SFH/BFSK  signals with
h = %. The tones are now spaced R~/2 apart and there are G = 1000 A4-ary bands. The
performance for the discontinuous-phase case was actually simulated, but, because coherent
detection is assumed, it is assumed that the received phase for each symbol is known. That
is, the received signal is given by (14) with M = 2, R~ replaced by RJ2, and O = O, and the
ijth likelihood function for the ALR and MLR7 detectors are given by (25) and (!!9)
respectively, again with M = 2 and R~ replaced by R/2. It must be stressed that this
assumption of symbol-by-symbol phase coherence in the receiver is not meant to be a
realizable condition: rather it is intended as a vehicle for comparison with the ALR
noncoherent detector performance. From this perspective, it is evident that both coherent
defectors are only marginally  better than the noncoherent ALR CPFSK detector. In particular,
at PM = 10-2 the coherent MLR and ALR detectors perform 0.2 dB and 0.6 dB better
respectively tkan the ALR noncoherent  detector.

Note that the performance curves in Fig. 13 are grouped into three quality levels.
(1) The worst is the radiometer which is noncoherent  and unchannelized. (2) The
intermediate detectors, which include the FBC, WE and noncoherent ALR for discontinuous
phase and perform about 9 dB better than the radiometer, are all channelized to match the
FH frequencies but are noncoherent and not designed to exploit continuous-phase signals.
(3) Finally, the noncoherent  ALR continuous-phase and coherent ALR and MLR detectors
perform about 15 dB better than the radiometer.

It is worthwhile mentioning that all of the computer simulated curves in Fig. 13 were
CPU-intensive. Each typically is based on a spline curvefit  through 5-6 performance
simulation points, with each point representing about 40,000 trials requiring approximately 2
days to generate on a SPARCstation  using the techniques described in [24] and [25].

VI. Conclusions

This paper presented a comprehensive analysis of optimum and previously published
suboptimum detectors for FH signals intercepted in AWGN. All of the SFH detector
structures derived herein represent new contributions in this area. Particular attention was
given to SFH/CPM  signals. Implementable optimum detection algorithms were derived for
the special case of SFH/CPFSK signals with integer sub-multiple modulation indices. Novel
techniques for accurate computer simulation of the performance of these detectors were
used to compare their relative capabilities, A fundamental observation is that CPM signals
can be exploited by sophisticated albeit practical noncoherent detectors, with performance
comparable to the best coherent detection schemes.

‘Although, as discussed in Section IV.B, there are several possible MLR structures, this
example refers to joint coherent detection of the SFH/BFSK signal and the imbedded data.
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Fig. 11. Representive frequency-time cell of efficient implementation of noncoherent  ALR
detector for SFH/CPFSK signals with h = 1.

32



. .

-.

+1 Band 1 1-
1
I
I
I

Band j

Band G
t-

Fig. 12. Filter bank combiner for SFH/MFSK



.,

1 (-)0

Q? 10“1

10-2

A P~~ = 1 ()-3

Wideband
Energy Detector

Discontinuous-Phase
Detection

(Radiometer)

I

Filter-Bank
Combiner

With Optimized
Thresholds

Woodring-Edell
Detector

-42 -37 -32 -27 -22

Signal-to-Noise Ratio y, dB

Fig. 13. Performance of SFH/BFSK detectors.
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