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ABSTRACT

Analgorithm is presented for identifying state space models from frequency domain data.
The mnain advantage of this approach is that it avoids windowing distortions associated
with other frequency domain methods. Other advantages are that an arbitrary frequency
weighting can be introduced to shape the estimation error, and the system order can be
overspecified. The nuinerical properties are demonstrated on real physical data taken on
a complex flexible structure, leading to the successful identification of a multivariable (4-
input/3-output) 100 state model over a bandwidth of 100 Hertz. The results indicate
that the algorithm would be useful in applications requiring the accurate identification of
high - order systems over wide bandwidths.

1. INTRODUCTION

Recently, it has been found that realization algorithis based on Markov paramecters can
be effectively applied to the problem of state-s~mcc system identification. Such algorithins
include the original minimal realization approach of Ho and Kalinan [9], and more recent
improvements based on the singular value decomnposition, i.e., Kung’s algorithm [14], the
ERA algorithm of Juang and Pappa [1 1], and the ERADC algorithin of Juang, Cooper and
Wright, [12].Insuch methods, the Markov parameters are used to determine a balanced
state-simcc model, and the model order is determined by the Hankel singular values. This
leads to a clear trade-off between model order and identification quality in terms of singular
value plot. This approach also takes advantage of the excellent numerical propertics of
balanced state-space realizations, for application to systems with lligllcr-order dynamics.
One difficulty that arises when applying realization algorithms for systein identification
is that the Markov parameters arc diflicult to measure directly. This problem has led
rescarchers to develop state-space realization algorithins from input/output data. Such
approaches include the method of Moonen ct. al. [18], the CVA method of Larimore
[15][16], aswell as the observer-Ixiscd approaches of Juang and co-workers [13][21]. To
date, these algorithms have been developed primarily in the time-domain.



often in practice, frequency rather than time domain data is available. With the new
generation of sophisticated microprocessor based spectrum analyzers and automatic test
cquipment, this is becoming more often the case. In order to apply realization algorithins
for identification in this case, onecnust compute the Markov parameters from frequency
data. It is at this point that windowing distortion arc often introduced. For example, an
Inverse Discrete Fourier Transform (IDFT) of the frequency data provides an estimate of
the Markov parameter scquence which is distorted by time-aliasing effects [19]. Alterna-
tively, the ERA-FD algorithm of Juang and Suzuki [1 O] has been developed to construct a
state-s])acc rcalization without taking an IDFT. Unfortunately, however, the ERA-FD al-
gorithm uscs a recursive formula whit.]1 is only exact if the plant impulse response dies out,
completely within a time window equal to the number of frequency grid points. This is ex-
actly the same assumption required to prevent time-aliasillg distortions when determining
the Markov paramecters from an 1D FT.

In this paper, the State-Space Frequency Domain (SSFD) algorithm, is introduced for
identifying state-space models from frequency response data. The SSED algorithim utilizes
frequency data as a startling point, but is free from the windowing distortions mentioned
above. The key idea is to curve-fit the frequency domain data by mininizing a 2-normn
error criterion, as outlined in [4], and then to determine the system Markov parameters
through a linear (always invertible) algebraic relation. This two-step approach avoids
windowing distorti ons by eliminating implicit time-aliasing effects. Other advantages of
the SS¥FD approach arc that the system order can be overspecified in the curve-fit step,
and an arbitrary frequency weighting can be introduced to weight the curve fit error.
Frequency weighting is useful for optimizing the estimate with respect to noise properties,
or for shaping the estimation error in control design applications [6].

2. BACKGROUND AND NOTATION

The frequency domain identification problem can be formulated as the problem of finding a
ny-input/ny-output rational transfer functionmatrix G(z*) which minimizes the 2-norm
of the error between itself and specified frequency domnain data G, i.e.,
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Here, the data Glwi)yi=1,...,mis given by noisy values of the transfer function matrix

evaluated over a grid of m frequency points;W(w,' ) is a specified weighting function of
frequency; and the Frobenious norm is defined as,

X115 = Tr{xex) (2)
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with “* “ denoting the complex conjugate transpose. For optimization purposes, the

transfer function matrix G(2'1) is considered to be in the form of the ratio of a matrix
nmunmerator polynomial B(2'!) and an nth-order monic scalar denominator polynomial
a(z™"), i.e.,

(51 B(z 1)
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where B e R X"« k=o0,...,n.

Several algorithms arc presently avail able for solving (1). These methods tend to be of
two types, fixed-~mi]lt iterations [1][7][17][22][26][27], or fixed-point iterations combined
with modified gradient methods [4] [24] [27] [29]. For examnple, a simple but approximate
algorithin found in the work of Sanathanan and Koerner [22] is given by the following
fixed-l)c)int iteration, (denoted here asthe SK iteration),

SK Ieration:
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with initial condition « — 1 B =0 With ¢* fixed at cach itcration, the cost function

in (8) is quadratic. Hence,the SK iteration is implemented as a sequence of hincar least
squarcs problems.

Remark 1 The original work of Sanathanan and Koerner [22] is formulated in the Laplace
s domain. Details of the formulation inthe z-domain with some practical improvements
can be found in [5] for single- ilg)ut/single-out put systeins and in [4] for multivariable
systcins. .
With no noise and correct choice model order, the SK iteration converges to the optimal
solution of (1) in a single iteration since the error in (5) vanishes identically. In the presence
of noise and/or incorrect model order, the SK iteration converges to a value which is not
generally optimal in any sense. However, it has been shown by Whitfield [27] that the
algebraic condition satisfied by the fixed point of the SK iteration differs from a vanishing
gradient only by, a second-order term inthe residual. Hence, while the SK iteration is not
generally optimal, it is often close, Hence, a useful approach taken in Bayard [4] is to usc
the SK iteration to initialize a Gauss-Newton (GN) iteration which forces the gradient to
vanish upon convergence. A multivariable formulation of the SK and GN iterations as well
as sparse matrix methods for speeding up computation and reducing memory requirements
can be found in Bayard [4].




Remark 2 Onc common difficulty in mininizing cost (1) by complex curve fitting, is that
an estimate of plant order n is required to be known a-priori. Since this is generally not
the case in practice, a tedious cut and try process is usually required to find the best model
order. This difficulty is overcome in the SSKD algorithim introduced in the next section by
allowing the polynomials B3 and a to be over.~pccijid, and then determnining model order

based on Hankel singular values. ]

Remark 3 At this point, it is noted that state-space models can be constructed directly
from polynomials I3 and a using standard canonical forins (i.e., companions forin, con-
trollable/obscrvable canonical form, Jordon canonical form, etc.). However, aside from
the problems of model order mentioned in Remark 2, the problem with this simplistic ap-
proach is that eztremenumerical sensitivities are known to result from using  state-s~)zicc
realizations based directly on the polynomial cocflicients (see for example, Laub and Little
[20] for a discussion of munerical sensitivities of companion forns, cent rollable/observable
canonical forms, etc.). The Jordon canonical form offers no relief, since this requires the
factorization of polynomials @ and B3. The factorization of polynomials is inherently poorly
conditioned, particularly when the polynoinials are higll-order, or if any roots arecin close
proximity of cinch other (cf.,, Wilkinson [28]). The SSFD algorithm introduced inthe next
section avoids numerically sensitive polynomial manipulations and canonical forms by con-

structing a balanced stat,c-space realization directly from Markov parameter estiiates. w

3. STATE-SPACE 1UWQUENC% DOMAIN IDENTIFICATION

In this section, a ncw algorithin is introduced for state-sl)acc inodel identification from
frequency response data. The key idea is to overparametrize the polynomials I3 and «a
when minimizing (1), and then to deterinine the system Markov parammeters through a
lincar algebraic relation.

Given G, onccandividea(z~1) into 11(21) o give the Markov parameter sequence { i},
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which gives upon cross-multiplying,
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Equating cocfficicnts of the first N powers of 27! in(8) gives the following system of linear




cquations,
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Given the estimated polynomial a(z~1) anti polynomial matrix 1i’(.z'), the multivariable
Markov parameters H; € R "'x”” 1= O, ..., N canbe calculated by solving the above
systemn of equations.  Sine.c thematrix to beinverted is lower triangular with ones on
the diagonal, it is always invertible and a solution always mists. Furthermore, since this
system of equations is block triangular it can be solved recursively by backsubstitution.

Finally, a balanced state-sl)acc rcalization is determined from the Markov parameters {H,}

using the KRA algorithm [1 1]. With this approach, the model reduction is performed
systcnmtically in terms of the Hankel singular values, and leads to a desired reduced-order

balanced state-sl)acc realization.

The entire procedure for determining a state-s~mc.c model fromn frequency domain data is
suinnarized below,

State-Space Frequency Domain (SSFI) Identification A lgorithm
Step 1 Given frequency response data G(wi) i = 1,..., m, solve for the transfer function
G which minimizes the following 2-norm  criteria,

m

i , 2
ngnng(w.-) |G - e M| (lo)
where, B
Gl = 1)
Bz =DBy4 Byz ' 4 .4 Bz (12)
a(z?) =14 az7 + . H4anz™ " (13)

Here, the model order n should be chosen as an upper bound on the true plant order so that
the optimization problem is overparametrized. The optimization of (10) can be performed
approximately using the SK iteration (5), or more precisely using a combination of the SK
itcration and the Gauss- Newton algorithm as outlined in [4].

o




Step 2. Choosc any N > 2n, and solve for Markov parameters His i = O, . . . . N by

inverting the system of equations (9). This is most rosily done by backsubstitution, giving
risc to the following recursive formula,

}IO = ]30 (14(1)
k
Hy= By Y ajHej; k=1,..n (14b)
=1
Hy= - ajHp-j; k= n41,..,N (14¢)
j:,] .

Step 3. Choose any r and s such that r+4 s <N and min(r,s) > n, and form the Hankel
type matrices H(0), H(1) € Rrmy)x(sna) where,

r M H, e H, 1
]12 ]]3 o ]]s-{ 1
H(O0)= | . — : (15)
LB, Mgy o Higeord
[ ]]2 113 ]IS'HT
Hye Hy - Hyo
nm=| (10)
| Hyg1 Hyyg vovoo Hog o
Step 4. Compute a balanced state-slmcc realization using the ERA algorithin, i.e.,
4.a Compute the SVD of H(0) to give,
H(o) =USVT (17)

where ji=min(r.nys.n,), U € RO V¢ Rmarxn sy diag{oy, .. Ou}s and the
singular valucs are ordered by size, 0i>0oiy;,1=1, . ., 'l

4 b Plot the Hankel singular values 0 to visualize trade-off between model order and
identification accuracy, and truncate to keep only q singular values.

4.c Form ¢g-th order state-space realization as,

Trp1 = Agar + Bpuy (18)
Yk = qul’k 4+ Duy (19)

where,
A, = 21U )R (20.(2)
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B, - x}]/’lvqf"Eu (20.7))

Yy = EJU S (m)

D= H(0) (20.d)

EY s [Tn,xu, O] € RWXC™) (21.q)
]4"3‘ = []nuxrlu O] € mnux(svnu) (21b)

34 = diag{oy,...,0,}

U, - submatrix formed from first ¢ cohunns of U

V, - submatrix formed from first ¢ columns of V

Remark 4 The use of the ER A algorithin in Step 4 is only to simplify the presentation.
Once the Markov parameters are obtained in Step 3. any state- space realization algoritlun
can be used in Step 4. For exainple, the ERADC algorithin of Juang, Cooper and Wright
[12] can be used by forming the covariance inatrix R(¢) = H(:)H(0)?', 2 =~ 0,1, taking the
SVD as R(0) - VEVT and replacing equations (20.a)-(20.d) with,

A= BV IRV, 12 (22.q)
By = SYPVIH(0)E, (22.b)
Cy = EIV,nl/? (22.¢)

D= H(0) (22.d)

[ ]

Remark 5 A powerful technique is to use the SSFD algorithm in combination with the fre-
quency data acquired using the multisinusoidal input designs outlined in [3][25] [29]. Such
input designs consist of a sum-of-sinusoids at harmonically related frequencies (usually a
2" FFT grid). Windowing distortions are avoided if data is collected after the systein has
rcached periodic stcaciy-state [3]. The sinusoids can be conveniently phased to minimize
peaking in time- using a formula given by Schroeder ['23], or using more recent improve-
ments based on nonlinear programming [8]. In combination with the SSFD algorithun,
this gives a complete “end-to-end” frequency domain identification methodology free from
windowing distortions in the noiseless data case. The effectiveness on real data is verified

experimentally in the next section, and apparently represents a significant advance in the
state of practice. .




Remark 6 Instead of truncating Hankel singular values for model reduction, it may be
more appropriate to retain a high order State-Space model from the SSFD algorithin,
and'then use more sophisticated frequency weighted methods for model reduction. This
approach is partic ularly useful for control design purposes where one wishes to maintain
an accurate reduced-order model over a specified control bandwidth. In this approach, the
model order from the SSFD algorithm never needs to exceed n* min(ny,, ny, ) since this

gives an exact state-sl)acc realization of the polynomial model D/a. .

Remark 7 The use of overparamnctrization in Step 1 is key to obtaining good results
with the SSFD algorithm. In the noiseless case, overparametrized curve fits have been
characterized in [2]. Using a minimum-nornn solution to the overparametrized problemn, it
is shownin [2] that the extraneous dynamics comein as stable pole-zcm cancellations and
henee do not bias the Markov paraineter estimates. Furthermore, in the presence of small
noisc levels, the extraneous dynamics are pert urbed to become stable “ near” pole- zero
cancellations. These arce subscquently realized as “necarly unobscrvable/uncont rollable”
subspaces in the state- sl)ac.c model and are removed systematically by truncating sinall
Hankel singular values. As shownin [2], these overparametrizati on results arc only true
for the shift z operator, and do not carry over to the Laplace s or §-rule operators. .

4. NUMERICA L EXAMPLES

Example 1

The first example will study the effect of windowing distortion in various frequency domain
algorithims. Consider the sampled-data plant obtained by a zero-ordm hold (at sampling

period T =: .03 seconds), on the following 3-mode continuous-time plant,

3
Gs) = D 37 4 s 4 2

i=1
where b = 10,20,25, wi/(27)= .41,2 .3,9, fori= 1,2,3 respectively, and ¢ = .01.
Noiseless frequency domain data on a uniform 256 point grid on the unit circle, between
O and 1 /(27)=16.66 Hertz is shown asthe solid lineinFig. 1 (magnitude) and Fig. 2
(phase). Noise has not been added so that the estimation error can be studied with respect
to windowing distortion.
The first algorithin to be studied uses the Markov paramcter estiimates obtained by the
inverse DFT (IDFT) of the frequency data (suitably symmetrized to give a real time-
domain signal). These Markov parameter estimates are used inan ERADC algorithm [12]
with r= 12, s = 24 in (15) and (16). The singular values fall off sharply after 0 states
and the resulting 6th order state-s~)acc realization inshown as the dashed line marked as
IDFT/ERADC in Fig. 1 (mag) and Fig. 2 (phase). The distortion due to windowing
cffects is clearly seen in both the magnitude and phase plots.
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The ERA-FD algorithun [1 O] is studied next. 12 rows are used in the “shifted transfer
function matrix”described in [10]. A 6th order state-spa.cc realization is constructed fromn
the data and shown as the dashed line marked ERA-FDin Fig. 1 (inag) and Fig. 2.
(phase). As in the previous method, the distortion duc to windowing eflects is clearly seen
in both plots.

The SSFD algorithimn is studied next, where n = 12 in Step 1; equation (5) is iterated 5
times; N = 100 inStep 2, and r = 12, s = 24in Step 3. The ERADC realization is used
in Step 4. (see Remark 4). The singular values fall off sharply after 6 states so that wc
choose ¢ = 6. The resulting Gth order state-s~mcc model is shown as the dash-dot line
marked SSFD in Figs. 1 and 2. The result is so ac.curate that it is hardly discernable
from the actual data. However, there is still a small discrepancy (scen inthe first valley
to the right of the first mode) which may be attributable to computer round-off error.
overall, the distortionless character of the SSFI estimmate is readily apparent comnpared to
the IDFT/ERADC and ERA-FD app roaches.

Kxample 2

This example demonstrates the SSFD algorithim on experimental data taken from the
J 1'1, Advanced Reconfigurable Control Testbed shown in Fig. 3. A 4-input, 3-output
transfer function is considered, where each actuator is an active strut, and each sensor is
an accelerometer. The frequency response data is obtained using a 512 Schroeder phased
sum-of-sinusoids input design at a sampling rate of 200 Hertz (background on the design
of Schirocder-phased inputs, and their usc in unbiased estimation can be found in [3]).
The magnitude response is shown as the dashed line in Fig. 5 (phase is available butnot
shown).

Let the overparametrized model order ben = 60in Step 1 of the SSFD algorithm, and let
w(wi)z 1, (i. e, a uniform weighting). Since there arc 12 numerator polynomials and 1
denominator polynomial, this requires the simultanecous estimation of 780 parameters. The
SK algorithm is iterated 12 times, using the sparse matrix SVD algorithm developed in
[4]. Thesparse matrix SVD algorithin was indispensable for this problem, reducing RAM
requirements by better than an order of magnitude (from approximately 60 Megabytes to 6
Megabytes)and reducing computation time two orders of magnitude (from approximately
30 hours to 20 minutes).

Steps 2, 3, and_ 4 (the realization portion) of the SSFD algorithm arc computed using
7 =61, s = G61. The singular values arc plottedin Fig. 4. It is scen that there is a
sharp drop off at 180 states since there is anezact state-space realization of this size (i. e.,
180 == min(ny, ny) * GO). However, for demonstration purposes, a model order of 100 is
chosen (i. e., g = 100). This is also reasonable since the error from the singular value plot
is scen to have dropped approximately 3 orders of magnitude at this point.
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A magnitude plot of the state-space model realized from Step 4 of the algorithin is shown
inFig. 5 (solid line) superimposed on the response data (dashed line). The state space
modecl is stable, and is seen to match the data well over the full 100 Hertz bandwidth.

5. CONCLUSIONS

The SSFD algorithin has been introduced for identifying state-space models from frequency
response data, A key feature isthatinthe noiseless case the SSFED algorithin avoids
windowing distortions inherent to other frequency domain algorithms. This important
property was verified on a 3 mode numnerical example. In the presence of noisy data, the
estimate can be frequency weighted to shape the error, as is desired in control applications.
The model order in the SSFD algorithin can be overspecified since the final system order
is determined based on Hankel singular values, and the state- space model is constructed
without polynomial factorization or nuunerically sensitive canonical forms.

The SSFD algorithm was tested on aflexible structure cxperimental data set, demon-
strating the successful identification of a multivariable (4-input/3-output) 100 state model
over abandwidth of 100 Hertz. The general results are encouraging, and indicate that
the approach would be useful insuch areas as adaptive optics, flexible structures, heli-
copter/rotocraft testing, high performance tracking, or any other applications requiring
the accurate identification of Iligll-order systems over wide bandwidths.
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FIGURES

Mnguitudc plots for 3-inode example: Noiseless data (solid); IDFT/ERADC (dashed);
FERA-¥D (dashed); SSFD ((lash-dot,).

Phase plots for 3-mode example: Noiseless data (solid); IDFT/ERADC (dashed); ERA-FD
(dashed); SSFD (dash-dot).

J 1°L Advanced Reconfigurable Control (AR C) Testbed

Hankel singular valucs

Multivariable experimental identification results using SSFI) algorithin: Raw experimental

data (dashed); Identified state-space model, 100 states, 4-input/3-output (solid).
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Fig. 1 Magnitude plots for 3-mode example: Noiseless data (solid); IDFT/ERADC (dashed);
ERA-FD (dashed); SSFD (dash-dot).

1 T T LENNNE IR N S S 2 8 T

ol e e e IDFT/ERADC
/ 6/71 -~

1 Data Lg ’}l ‘
2 ERA-FD j
4 SSFD

\
\\

_5 “‘
_6 ‘.'
107 107 10 10! 102

Frequency (Hz)

Fig. 2 Phase plots for 3-mode example: Noiseless data (solid); IDFT/ERADC (dashed); ERA-FD
(dashed); SSFD (dash-dot).
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