A Test of WVR-based Tropospheric Delay Calibration Using VLBI Observations on a 20 km Baseline

R P Linfield, B L Gary, S J Keihm, M J Mahoney, L P Teitelbaum, R N Treuhaft, S J Walter, J Z Wilcox (Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91106; e-mail: rpl@logos.jpl.nasa.gov)
(Sponsor: S M Lichten)

Six sessions of S/X band Very Long Baseline Interferometry (VLBI) observations on a 20 km baseline at Goldstone, CA were conducted in April and May 1993, using a 26 m and a 34 m Deep Space Network (DSN) antenna. An array of troposphere calibration instruments were used during these observations, and included a Water Vapor Radiometer (WVR) within 50 m of each of the two radio antennas, a Microwave Temperature Profiler at one site, radiosonde launches approximately every 6 hours at both sites, and surface meteorology at both sites.

This experiment was designed to test the error budget for WVR measurements, and to allow for a refinement in path delay retrieval algorithms. A preliminary analysis of the data has shown a substantial reduction in the scan-scan rms residual VLBI delay scatter using standard statistical retrieval algorithms for WVR line of sight delay estimates. Results will also be presented for advanced, or customized retrieval algorithms.

1. 1993 Fall Meeting
2. 006409203 (AGU number)
3. (a) R P Linfield
 238-700
 JPL
 4800 Oak Grove Dr.
 Pasadena, CA 91106
 (b) Tel. 818-354-2806
 (c) Fax. 818-393-4965
4. 0
5. (a) 002 Advances in Microwave Remote Sensing of the Oceans and Atmosphere
 (b) 3394 Instruments and Techniques
6. 30% at August 1993
7. Kyoto Conference
8. $60 check enclosed