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Abstract

As aerospace. designers strive to build smaller
systems, it IS important that they understand scaling
laws to take full advantage of the. inherent strength of
small structures.

Simple geometric scaling yields masses that scale in
proportion to £3.}lowever, in the. process, the stress
levels decrease, and the materials are not used to full
advantage. Also, the resistance to buckling increases
as the. length decreases. With “elastic scaling ” as the
dimension parallel to the predominant load shorlens,
the dimension normal to the main load is thinned down
evenfaster. ‘I'his preserves a constant factor of safety
with respect to the. critical buckling load.  The
Structural mass decreases even faster than £ and the
material is used more effectively than for simple.
geomelnic scaling. Examples abound in nature, from
tree trunks to hones. Several such examples will he
shown to illustrate this type of scaling.

Even with elastic. scaling, the stress levels continue
to decrease as the size is reduced. An extension of
elastic scaling with more than one dimension normal to
the main load-hearing direction is considered. ‘I’he
possibility of scaling the different lateral dimensions
di fferently in an attempt to preserve constant stress in
the materia as the object shrinks is investigated. It is
shown that no systemat ic scaling can achieve this goal,
although some useful insight is devel oped.

A related issue. is the minimum gage problem.
Where one attempts to use elastic scaling (or even
geometric waling), one discovers that as the. size
decreases, the materials required become too thin to
handle. Techniques for addressing this difficulty will
he discussed.

Int roduct ion

Currently, there is a trend toward reducing the size
of spacecraft, as evidenced by the existence of this
conference.  As we shrink the. size of aerospace
structures, or any other type of structures for that
matter, itis helpful to understand the applicable scaling
laws.

In this paper, the concepts of allometry, and elastic
scaling will he defined. Examples from nature will be
shown toillustrate these concepts. These ideas and
illustrations are taken from a Scientific American
Book, “On Size and Life!."

Designs created by nature. seem to he well
optimized. Observing trends in nature and applying
themto enginecring designs is areasonable. thing to do.
This is especialy true if we can deduce the underlying
physical principle-s and apply them to broad classes of
problems. Structural elements in nature, such as bones
and tree trunks, scale. elastically over many orders of
magnitude in size.  Bones in small animals are much
more slender than in large animwls. That is, thelength
to diameter ratio is greater for bones of smal animals.
‘I"his form of scaling prc.serves constant resistance to
buckling, aswillbe shown, The man concept of
elastic seating is that there are two length scales which
vary differently with size.

There are practical limits to the extent to which
these ideas can be used in real structures. These ideas
apply dtrictly to the main load bearing elements. |
numy cases, especially for very small structures, the
overhead of joining the main structura elements
together and of mounting other elements to the main
structure. consumes a significant portion of the total
structural mass. Also, as the main structural elements
are thinned down, they can become difficult to
manufacture and to handle. This is known as the
minimum  gage problem.  This difficulty will be
discussed and some potential approaches to solving this
problem will he discussed.

Isometry and Allometry

One way to compare the relative sires of two
features Of an organism isto use an expression of the
form

y = bx%

The length of abone could he represented by x and
the diameter by y. If the dimensions follow this form




of equation, then they are said to scale allomet rically.
If X andy are allonietric, then when they are plotted on
log paper for several different organisms, a straight
line will be obtained with slope equa to a Many
dimensions for organisms, both plant and animal, are
observed to scale this way over many orders of
magnitude, It should be noted that this is merely a
description of how one dimension varies with another
as the overall size changes. It does not explain why
this behavior is obser ved.  The explanation requires
further analysis.

The specia case of allometric scaling for which
a = 1 corresponds to pure geometric scaling. One
dimension is directly proportional to the other. This
special case is referred to as isometry. Adult mammals
tend to scale. isometrically within their own specie.~.
As an example, an adult human’s armspan and height
are. very nearly equal, as illustrated in the famous
drawing, "Vitruvian Man," from 1.eonardo da Vinci’'s
notebooks. In this case, both a and b are. equal to 1.

1f one compares cellsize, y, and the overal size,
X, of an organism, one finds that the. cell size is
essentially independent of overall size. The value for
ais very close to zero. The value for h is thus the
typical cell size, which is roughly constant independent
of the overall size of the animal or plant.

If one. is troubled by the units of a and b, it is
perhaps better to recast the allometric relation in the.

form of ratios:
a
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where x, and y,, arc reference values for one particular
individual. Now both a and b are dimensionless.

lsometry .

When objects are scaled isometrnically, all
dimensions are proportional. This is the familiar
example. of scale models. Volumes are proportional to
the. length cubed and areas are proportional to length
squared. ‘I’ his leads to the so called sguare.-cuhe law.
If the density remains the same, then the weight is
proportional to volume, or cube of the length, whereas
the area over which the. forces are distributed is
proportional to the. area, or length squared. The st ress,
(or pressure), which is just force divided by area, is
there.fore proportional to volume divided by area, or
simply to length, As an object grows isometricaly, the
stresses due to its weight increase in proportion to the

length of the object. This isoften quoted as the reason
small children can crawl about cm their hands and
knee.s on hard surfaces without grief, whereas adults
suffer tremendously if they attempt the same feat. ‘I'his
is also offered as the explanation why small animals
such asmice can fal from great heights without being
harmed. As we will see later, small animals do even
better than predicted by the sguare-cube rule.

Allometry.

When one compares animals within a broad class,
such as all mammals, one can find many parameters
that do not follow isometry, but which are well
described by the allometric expression. For example,
The maximal rate of oxygen consumption is found to
vary according to the 0.8 power of the body mass.

The particular examples of allometry that interest
us with respect to structures are those of tree trunks
and branches, and bones and muscles. These structures
have a predominant load-bearing direction along their
length, which we will define to be . They aso have
a characteristic dimension norma to the length, which
we shall refer to as d.

Elastic Similarity

When one investigates variations of severa orders
of magnitude in body mass of mammals, one finds that
the length of bones is not proportional to the 1/3 power
as would be expected based on geometric scaling.
Instead, the. power is experimentally observedto be
closer to /4. Similarly, d is proportional to the 3/8
power instead of 1 /3. Equivaently, the cross- sectional
area isfound to scale according to the. 3/4 power rather
than 2/3. These variations are also observed for t rec

trunks.  From the above relations, we can easily
deduce the. allometric relation between d and t':
tamM o mat?
do m¥B = )8 . N2

d o 83

“I'his particular allometric relation is referred to as
"elastic scaing. *  We should remember that these are
mercly observations of what occurs naturally. No
explanation is directly given by these relations. That
will come later.

Figure 1 shows the skeletons of two primate-s of
greatly different sizes but drawn in the figure with the
same height. It can readily be seen that the smaller
animal, the Siamang, has relatively much more slender




hones than the larger Gorilla. 1 his illustrates elastic
scaling: the diameter increases more rapidly than the
length of the hones as size increase.s.
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Siamang Gorilla

Figure 1 liladlicSc.ding

The length and diameter of the humerus hone for
several species of antelope are shown in Figure 2. The
slope o f the line o { this log-log plot is 2/3. Recall that
the slope of aline onlog-log paper corle.spends to the.
exponent in the. relation between the two variables.
Thus ¢ o 4273, or equivalently, d « 032 These bones
exhibit elastic scaling. The figure aso shows a fair
amount of scatter, which is common for this type of
data. Nonetheless) there isno doubt that the slope is
different from the. value of 1 that would be predicted
hy isometry.
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Figure 2 Antelope Humerus Bones

A similar plot is shown inFigure 3 for trees. The
points plotted are for S76 record trees representing
what are believed to he the tallest and broadest trees of
most Of the species common to the. United States! - The
diameters were measured .5 feet above. the ground.
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Figure 3 Tree Trunk Measurements
Buckhng.

As described in numy engineering texts, buckling
is a phenomenon in which a slender columnloaded in
compression assutnes a bowed shape when the load
exceeds a critical value. For a column built in at the
base and free at the. top, the critical load is given by?:

where the. parameters in the. equation have their usual
meanings: E is the. modulus of eladticity, | is the area
moment Of inertia of the cross-section, and ¢ is the
length of the column®. For a circular cross-section,
1= 7d%/64. Different constants multiply the buckling
expression for different end conditions, but the form is
aways the same.

in the derivation of the expression for the. critical
buckling load, the weight of the colummitself is
neglected in companison with the externally applied
load. For a tree, the loading of the trunk is due. to the
weight of the tree itself. The weight of the tree is
proportional to the. product of its height and its cross-
sectional area.  Thus the load it must hear is
proportional to £dZ.




A factor of safety is defined as the failure. load
divided by the expected maximum load. 1 et’s explore
the assumption that trees are “designed” with a constant
factor of safety independent of size. Under this
assumption, if we divide the. load into the critical load,
we should obtain a constant:

F 4,92 2
cr (¢4 '(] /[ = .(I . = aconstant
P [(]2 F3

If thisisindeed constant, them d should he proportional
to £3/2, In Figure 3, the dotted line depicts the trend
of diameters and heights for large tree.s. The slope of
this line is 3/2 which supports sour assumption. Since
the. tree. measurements show that the diameters of the
trunks (and also the branches) scale in proportion to
€372 'we can sec that trees of different sizes have equal
resistance to buckling. This explains, at least partially,
why this particular allometric ratio occurs.  Almost
certainly there are other factors contributing to this
scaling too. Nonetheless, the evidence is quite strong
that buckling resistance is dominant aspect.

The solid line in Figure 3 is based on an analysis of
buckling of wooden cylinders of constant diameter
under their own weight. Poles with dianmeters and
lengths to the right of and below this line. will collapse
under their own weight in the earth’s gravity. The
points correspo nding to trees liessafely above. the line,
but in some cases, the factor Of safety scems to he
fairly small.

Elastic Scaling of Artificial Structures

The analysis of buckling in the previous section
applies equally well to tubular columns designed by
humans. Suppose we have a proven spacecraft design
that uses tubular struts as load-bearing members and
we Wish to scale down the whole vehicle.. How should
we proceed? In order to preserve the resistance. to
buckling, we can apply elastic scaling. 1.et’s assume
that we. can apply elastic scaling to every single par{ of
the. spacecrafl. In a real example, this would not be
possible. 1.et’s aso assume that the accelerations to
which the vehicle will be subjected arc the same for
both cases. In fact, smaller structures will likely
experience. larger accelerations, but we'll keep it simple
to keep the concept clear. Suppose we are reducing the
overall size by a factor of two. Let’s concentrate on
the strut as a simple example. The new diameter will
thus be given by:

Although the length is half of its original sire’, the
diameter has reduced to shout 35 % of its oniginal size.
Clearly the. length to diameter ratio hasincreased in the
process. This ntay cause concern since the graphs in
enginecring textbooks show that the. critical load
decreases as t/d increases. However, in this example,
the load has also decreased by the same amount as the
ciitical load since. every single part of the spacecraft
has been scaled elastically. I'bus, the factor of safely
is the same for both sizes of spacecraft. It should be
noted that not only the diameter, but also the tube wall
thickness should be reduced to 35% of its origina
vaue.

Continuing to assume that all parts have been
scaled elastically, what can we expect the ratio of
masses of the. two spacecraft to be?
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The ha] f-sire ‘;pacecrufl is s:xtccntim(‘s less massive

than the original. This is twice as light as would have
been achieved by simple isometric scaling.

= 0.0625,

A similar analysis of honeycomb panels confirms
that elastic scaling preserves resistance to buckling. in
place of the diameter, we scale the thickness of the.
skins and the spacing between the skins in proportion
to ¢3/2, Strictly, we should also scale the. other lateral,
dimension (thewidthof the panel) the. same way, but
the panel will never buckle. that way, so we can scale
that dimension as we please.  Essentially, we are
dealing with loading per unit span.

Extension to Elastic Scaling

Elastic scaling preserves buckling resistance. Bu
what of the stress in the material? Are we maintaining
asimilar factor of safety with respect to the yield
strength of the material? The answer is no. Aswe
reduce the size, the stress goes down. AsS shown
above, with elastic scaling, the weight scales in
propot lion to £ The cross-sectional area resisting the
load scales in proportion to d’. Since d a 32, the
stress goes as 4763, That is, the stress is directly
proportional to t'. As the. size goes down, the st ress
level goes down.

1s there not some way we can use our enginecring
knowledge, to do better? Let’s consider a tubular strut
in isolation. Suppose we. have scaled it elasticaly



along with the entire spacecraftjust as discussed above.
The cross-sectional arca of ‘a thin-walled tube is
approximately wdt, where d is the diameter and t in the
wall thickness. If we now increase the diameter of the
tube and decrease the. wall thickness in such a way that
we keep the same cross-sectional area (t o 1 /d), then
the moment of inertia will increase. The moment of
inertia for a thin-walled tube is approximately % AdZ.
Since the area is constant, the moment of inertia clearly
increases in proportion to d?.  With the increased
moment of inertia, the buckling resistance will
increase.  The mass will not have changed, hut
somechow the design will have improved. But we don ‘t
really want to increase buckling resistance; it is already
adequate. We want to decrease the cross-sectional area
to get the. stresses back up to the values they had in the
larger spacecraft.

As an alternative approach, we could increase the
diameter and decrease the wall thickness in such a way
that the moment of inertia remains constant. This
implies that the. cross-sectional areawill he proportional
to 1/d2 and t «1/d3. Since the cross-sectional area
decreases and we can now attain the stress levels that
were present in the. origina full-sire structure. In the
process, the mass of the strut has decreased even
though the buckling resistance has not changed.

We have been considering the. strut in isolation. If
we could some.how apply thistechnique of thinning the.
walls and increasing the. diameter to al parts of the
spacecraft, then all the masses would decrease and the
resulting loads woutd decrease. We would find that
we were right back were we started:  the. stresses
decrease as the size decreases.

In fact, for any consistent method of scaling applied
to all parts of a structure, the stress will always be
proportional to ¢ when the loads are due to the weight
of the. structure. (gravitational or inertial). Thatis
because the loads are proport ional to the weight which,
in turn, is proportional to the length times the cross
sectional area. To obtain the. stress, we divide this load
try the cross-sectional area. The area then cancels and
we are |eft with the strew being proportional to length.
The key word is “consistent. ” If the scaling is applied
to everything, then the. stress will be proportiona to
length. Period. We cannot do magic.

We can, however, use the procedure of thinning the
walls and increasing the diameter to change our design.
This is no longer scaling, but it is a valuable. tool. It
can alow us to reduce the mass of the structure
somewhat. As with many engineering decisions, there

are trade-offs. With thinner walls, the tubes are more
susceptible to handling forces during manufacture and
assembly, and the tolerances become tighter. Also,
when taken 10 extremes, the walls become S0 thin that
local buckling (crumpling, or crippling) can occur.
‘1 hese effects are a little. beyond the scope of this
simplistic presentation, but should not be ignored in
practice.

Mass Fraction

If an parts of a spacecraftare scaled elastically,
then the masses of all parts will scale. in proportion to
one another. Not all of a spacecraft is structural,
however. Still, if all parts including those that are. not
structural can be scaled elastically, then the structural
mass fraction will not change as the overall size of the
spacecraft changes. The only way that the mass
fraction corresponding to the structure can decrease is
if the. rest of the spacecraft reduces in mass more
dlowly. For convenience, lets denote the non-structural
part as “payload” even though this is not strictly
accurate..  Suppose, for example,, that the “payload”
can only be scaled geometrically. Then scaling the
structural portion elastically will result in its mass
being a smaller proportion of the. whole than for the
origina larger spacecraft. But there iS NoO guarantee
that this structure. will be adequate since. it is now
carrying @ propottionately larger payload.

The analysis of this situation is not so simple since
we are NOw adding components which scale with
different powers. Some preliminary work indicates
that it might be possible to reduce the structural mass
fraction when the payload decreases more slowly than
eladticaly. Thisresult is encouraging but tentative and
warrants further examination.

Bending

So far, we have considered only axial loading of
structural elements. It is interesting to observe that
bending of beams also scales elastically.  Yor a
cantilevered uniform beam with a square cross-section
with dimension, d, and length, t', deflectng under its
own weight, the slope at the end is equal to*:

3
g = 2oL

Ed?
If one wishes to scale this case to a new length, then
for the shape of the bent bar to be geometrically

similar, the slope at corresponding points must be the
same, including the end point for which the expression



is given above. In order to keep the slope the sanie,
the ‘diameter” should scale in proportion to ¢3/2. This
is immediately recognized as the eastic sealing. It is
not just this specific example of bending that scales this
way. All beam bending problems have a similar form;
justthe constants are different. This also explains why
the branches of trees scale elastically as well as the
trunks.

Yield Stress

One should note. that the yield stress has not
appeared in any of these analyses of buckling or
bending,. In fact, the critica buckling load is not
dependent upon the yield stress, just the modulus of
elagticity. This is also the case in bending stiffness.
‘I"he. ultimate bending strength, however, is limited by
the yield strength of the. material.

The maximum stress in a beam bending problem
scales in proportion to ¢ just as it did for buckling.
Providedweare taking an existing successful design
and making it smaller, we can safely apply elastic
scaling. If we scale up, then we nmust he careful to
check that the maximum stress does not exceed the
yield stress.

Minimum Gage Problem

When one scales down a structure using either
elaslic scaling or geometric. scaling, one eventually runs
into some limits. The scaling laws can predict ideal
values of thickness that cannot be achieve in practice.,
at least with current production methods. For example,
in arecent study, honeycomb panels were to form the
main structure of a launch vehicle, adapter. ‘I'he
required thickness of the aluminum faceshects was
found to be about 0.05 mm (0,002 inch). This isa
factor of ten thinner than honeycomb manufacturers
like to produce.

What techniques can we use to overcome such
difficulties, or at least delay them to smaller vehicle
sires? If we simply use the materials available, our
small structures will be much stronger than they need
to be. This is acceptable if mass is not an issue. In
most aerospace structures mass is an issue.

Currently, there is an emphasis on developing
technologies that will enable. very small micro-
spacecraft. A study is underway at J}’]. to develop a
Skg spacecraft concept that could execute a flyby of a
near-earth asteroid or comet. T'o meet such goals, it is
not adequate to simply accept existing methods. New

techniques, or at least new applications of old
techmques, must be identified and developed. A few
of these will be discussed briefly here,

low density materials

in all the scaling discussed above, it was imp]icill)’
assutned that the same material was used in the original
large design and in the smaller derived design. We
have seen that this can lead to very thin materials being
specified. Another approach is to use materials with
much lower densities than the metals traditionally used.
If one could find a material that was ten times less
dense than aluminum and with a yield stress aso ten
times smaller than for aluminum, then one could
replace a 0.05 mm pane] of aluminum by a 0.5 mm
panel of the new material. The mass and load-bearing
capability would be identical. The greater thickness
would siguificantly enhance the resistance to buckling,
If buckling were the dominant failure mode of the
original design, then this would permit the. mass to be
decreased even beyond that predicted by elastic scaling.

Fiven if the ratio of the yield stress to densit y is not
as high as for aluminum, it is still possible to achieve
an overall weight savings using the low density
material provided that buckling is the dominant failure
mode. In essence, the thicker low density material
provides a greater moment of inertia by spreading out
the load bearing matenial.  For a flat panel, this
moment of inertia is proportional to the. thickness
cubed.  The factor of 10 in thickness increases the
buckling, resistance by a factor of 1000. There is
significant “gain” in this method!

Another advantage of using the low density material
is that the relative tolerances are much easier to
achieve. Referring back to the 0.05 mim honeycomb
facesheets, al0% variation is thick ness iS5 um
(0.0002") for the aluminum, but it iS50 gm (0.002")
for the low density substitute. It should be noted that
composites do not fit in this category of low density
matenials. ‘I’he densities are only about a factor of two
less than aluminum. If anything, the higher strength of
the composites leads one to thinner walls and less
buckling resistance.

Honeycomb and Foam Core

When a single panel would buckle under its load,
one can split the. panel into two sheets with half the
thickness each and bond honeycomb between the two.
The honeycomb serves to provide shear resistance
between the two panels but does not contribute



significantly to the lorrd-bearing capability along the
panel. The assembly is very stiff in herding. in a
sense, the honeycomb acts like the web of an I-beam.
T he moment of inertia of the cross-sect ion is
proportional to thesquare of the spacing between the
two sheets. ‘J'his is another way of spreading apart the
load-bearing material to increase the moment of inertia
and therefore the. bending stiffness,

Foam core is a similar concept. instead of
honeycomb, a lightweight foam is bonded between the
two sheets. Foam core made with cardboard face
sheets is widely available in arl stores for mounting
presentation material.

In principle., the face sheets for honeycomb or foam
core could be made quite thin. Think of two pieces of
shim stock with something between them. in practice,
it can be difficult to achieve.. Also, the mass of the
material in between the two sheets begins to exceed the
mass of the facesheets. Very thin shects, while strong
enough to withstand the design loads, still may be
susceptible to damage by finger nails or tools during
handling, assembly, or manufacturing processes. And
ap.sin, redistic tolerances become a significant fraction
of the. total thickness.

Isognd

Isogrid is the product of a milling machine
operation in which triangular holes are. cut through a
thick (say 10 mm) slab of material. Thin walls are lefl
between the triangular cells. These walls connect the.
nodes which occur at the points of the triangles. These
nodes form a hexagonal pattern. Isogrid has been in
use for about three decades and is fairly simple to
analy7c3.

Over a distances bigger than a few cells, a panel of
isogrid behaves very much like a solid slab with a
much smaller average density than the parent material.
Its effective modulus goes down more than its mean
density, however. It is used in a fashion quite
analogous to the low density materials discussed above.
By making the cells larger, one can reduce the average
density of the dab, Ultimately, one runs into the
minimum gage problem with the webs, but at a lower
effective density than honeycomb with its continuous
facesheets.

Incidentally the triangular holes need not
completely penetrate the original Mock from which the
isogrid panel was machined. One can leave athin skin
on one. side. Also, by using an undercutting milling

tool, one can give the. webs a T-section cm the upper
surface. ‘1" his helps maintain the buckling resistance of
the webs themselves.

A nice feature. of isogrid is that the nodal points can
be drilled and tapped to provide a built in set of
mounting fixtures. This can significantly reduce the
secondary mass by eliminating mounting brackets.
This was demonstrated on Skylab, which had an isogrid
floor/ceiling'Given that the primary structure can be
made quite light, for small structures it is especially
important to pay attention to the mass of joints,
fasteners, brackets, at tachments, and other secondary
structure.
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Figure 4 Isogrid Skylab Floor

Conclusions

Scaling of small structures has been discussed. The
concepts of allometry and isometry have been de. fined.
Elastic scaling is the particular allometric relation
d o £3¥2. The dimension normal to the main load
(diameter) scales in proportion to the 3/? power of the
length. Bones and trees are. observed to scale this way.
Elastic scaling can be used to scale. down aerospace
structures and should reduce the mass faster than
simple geometric scaling would.

Elastic scaling preserves constant resistance to
buckling and bending. As the size decreases, the stress
levels decrease. This can be a problem when scaling
up but should not be an issue when scaling down.

The square-cube law was mentioned. It is
reasonably convincing and suffices to convey the
concept that small objects are inherently stronger for
their weight than large objects. In fact the argument is
really not complete. The. main load bearing bones of
skeletons of mammals tend to scale elastically.

The minimum gage problem, which can bean issue
for small structures, has been addressed.  Some
techniques for dealing with it have been suggested.



This work was carried out by the Jet Propulsion
1 aboratory, California Institute of Technology under a
contract with the National Aeronautics and Space
Adniinistiation. Many of the ideas were taken from
reference 1. Figures 1-3 are reproduced from that
book with the permission of the publisher.
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