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Abstract

This paper presents a new velocity blending approach to the problemn of task space trajoc-
tory generation. To compare this technique with others, a generalized formulation for task space
trajectory blending is also developed. 1t is shown that task space velocity blending provides a
substantial simplification in both representation and computational complexity over previously
proposed methods. While some residual orientation error is incurred by mathematical approx-
imations, it is analytically shown that this error is stnall and a correction method is provided.
Finally, examples are given, our real-time implementation is described, and implementational
considerations are addressed.

1 Introduction

Just as manipulator control can be eflectively accomplished in joint space 01 task space, trajectories
for themanipulator can adso bespecified in joint or task space. T'ypically, the trajectory is specified
inthe same space in which the controller is working. However, conversion techniques can be used to
translate the specified trajectory to the control space. For instance, inverse kinematics applied to a
task space trajectory will provide setpoints to a joint space controller, Since task space trajectory
specification is usually considered most useful (especially with task space control), the converse
translation of a joint space trajectory to task space is uncommon.

Joiut space trajectory generation is straightforward since each jointmaybe treated indepen-
dently [8, 1, 3]. Typically, motion between specified joint values is dictated witha third, fourth,
or fifth order polynomial. S o m e extension and optimization of this technique have been pro-
posed [b, 14].

Task space trajectory generation has been addressed more extensively, bhecause of the complexity
inherentin it. Whitney proposed Resolved Rate control [15] to casily enable straight line motion
or constant axis rotation of an end effector. However, this technique does not inherently address
extended trajectory generation considerations. Foremost among these is the problem of blending
changes inend effector orientation. Paul [8, 10] proposed blending of the Fuler angles describing
the relations of the initial and final frames to the intermediate one. This method blends one
orientation to the next, but the path generated is notintuitively obvious. Worse,he proposes
changing one Fuler angle with a different blend profile from the others. Alter natively, Canny|[2)
utilizes quaternions to describe orientation. However, since he was addressing a diflerent problem
(collision detection), he does not discuss the issues of blending the quaternio ns. Craig [3] utilizes



the similar angle-axis formulation, but represents the orientation of cach via frame with respect
to the world frame, notthe previous frame asPaul had done. Thus, the blend of orientation
parameters will produce a motion path that is dependent on the relation of the via frames to the
world frame, not just their relation to cacti other. Finally, Lloyd and Hayward [6] developed an
clegant method for creating variable position blend paths, but do not show an extension of the
method for orientations.

As will bescen, Taylor [13] has proposed a scheme that provides smooth, intuitive, and repeat-
able position and orientation blends. Its major drawback is computational complexity. Thispaper
presentsa velocity based method that achieves tile same results with a simpler formulation and
significantly reduced computationtime.

The next section presents the terminology employed for the solution deseription. Section 3
presents the proposed velocity blending formulationand describes possible blend profile functions.
Section 4 quickly discusses position pathblending. Orientation blending is extensively discussed
in Section 5, where Taylor’s method is reviewed, angular velocity blending is preseuted, and the
sccond order diflerence between them is analyzed. Sections 6 and 7 discuss implementational con-
siderations and computational costs associated with the algorithms aud show why velocity blending,
is preferable. Finally, Section 8 describes the results of simulation and real- time implementation.

2 Velocity Blending Terminology

A task frame is defined asthe set containing the rotation matrix that specifies the endeffector
orientation, R, the end eflfector position, p, other scalar configuration control parameters(eg. arm
angle, ¢ [12]), andthe transit time to this arm pose, ‘7. T hus,

Pz {Ripi, ¢, 15} (1)

Typically the end eflector orientation is specified by a rotationmatrix composed of the vectors
defining the end effecter orientation withrespect to the stationary world frame [8]-
R, = [n!, ol a]] (2)
' L'ospecify a frame, rotation inatrix, or vector with respect to another frame, the former is proceeded
with a superscript. For instance, a frame, rotation, or vector with respect to the world frame is
denoted by " F "R, ¥p.
I between two sequential frames, the desired linear velocity of the endeffector is simply the
difference in position over timne:
Ap _ Pi - Pi-a
CUtOCA T
The angular velocity is obtained from the equivalent angle axis formulation fora rotation from one
frame to another [3]:

(3)

Ww; = ki @i/rj‘l (4)
kising; = 5(ni1 X n; 4 0iy X0; 4 &1 X a;) (5)
cos ;= 3(nic1-ni 4 0y -0; + ai_;-a; 1 ) (6)

where motion at velocity w for time At causes arotation of:

RwAl] = Rk, ¢] =
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with S o, sing, Cp=cosp,andVy = 1 - cos .

Il the magnitude of Fquation () is zero, t},e direction of k is indeterminant. If Equation (6)
equals -4 1, thenthe orientations of the successive frames are identical.and w, = [(),().()]. Otherwise.
Equation (6) equals - 1, and k must be determined from the colu mn s of the homogene ous t ransform
R-"R i’_’]“”R,i. From the first colurnn of Equation (7) we have:
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If &, =0, another colummn mnust be used, and a similar set of solutions calculated.
Finally, Fiquations (3) and (4) may be incorporated into a global defi nition of frame velocity:

v [v,w, ) (11)

where the scalar velocity is also calculated asinlquation (3).
3 Segment Velocity Blending
To move smoothly from one segment to anot her, the velocities of the segments musthe blended

together. To achieve this, many strategies have beensuggested [9, 13, 5, 14, 6, 7]. We will review
these within a framework that utilizes the following convention:

Vo =V {12)
Vo= Vi (13)
t-(t;- 1)
s = —27 (14)
o= 0T (15)
7= 0

w here 27 is the blend period, dependent on the maximum allowed acceleration, as will be shown

below. Thisimplies that the normalized time parameter s € [0, 1].
To smoothly blend from v, to vy over the interval s, we employ a normalized blending function

f'(s) € [0, 1]. Utilizing this function, the velocity profile during the biend is:

v o= ove(l - fi(s) 4 v S(s)

Vo + (Vv - Vo) f(s)

and the acceleration is:
a = (v

= (v

df'(s

" Va) dt
df'(s |
va)hdsﬂ 27

(16)
(17)

(18)

(19)



Note that this formulation ensures zero acceleration for v, = vy Also. there is spatial svmmetry
of the path for the case of |v,| = |vif, because the acceleration vector is parallel to the difference
of the two velocity vectors, and will therefore bisect them.
If the maximum allowed acceleration is specified, then the blend period may be determined:
o, o (Ve Vo) df'(s) (20)
lalmias ds |,. !
assuming that the derivative of f/(s) is asymmetric function with amaxiimum value at s = 0.5.
There arc several simple choices available for blend functions. These are provided below, along
with the resultant form of the velocity, acceleration,andblend time.

Linear Velocity Blending [13]

fi(s)y = s (21)

.o Ve Ve 922

a - or (22)

27 v - val (23)
'a|77la3'

Third Order Polynomial Velocity Blending  [9, 5]

Jis) = - 26 4 38 (21)
a - .(YQQ'TVf.) 62 4 6s) 25)
or . IVeval 3 26)

.
.
|d|mna' 2

Cycloidal Velocity Blending [7]

f'(s) = sin? Ts 27)
a - {Vb‘z‘ v; ) T]”’ TS 28)
T
21 = I»Vb ) VOJ Zf (29)
|alyiar 2

The cycloid has afunctional formvery close to that of the 0(3) polynomial, but does not have a
discontinuous jerk (the derivative of theaccelerat ion ). Inturn, the O(3) polynomial is superior 10
the linear formsince thelatter has discontinnous acceleration (andinfinite jerk). The strength of
the linecar form is that it requires the least time since the acceleration is applied constantly at the
maximum value allowed. Finally, note that many other functions are possible; in particular, all
odd order polynomials.

Pigures 1 show the blend speed versus time for a spectrum of angles (0,45, 90,135,180 deg) be-
tween the initialand final velocity vectors forthe case of |v,| = [Vil,|&]m e = 10 /s, Figure 1(a)
shows the speeds for linear velocity blending. Figure 1 (b) shows the speeds for t bird order polyno-
mial blending. The profiles for cycloidal blending are extremely close to those shown in (b). The
cusp inthe plot for 180 degrees is due to achangeindirection, and does not indicate a disconti-
nuity inthe acceleration, Also notethat whenthe initialandfinal velocities are equalthespeed is
constant across the blend.
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Figure 1: These graphs show the blend speed for a spectruin of angles ((),45,90.135,180 deg)
between the initial and final velocities, for the case of |v,| = |vi]. See the text for a discussion.
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Figure 2: These graphs provide a comparison of linear, third order polynomial, and cycloidal
velocity blends. Figure (a) snows a transition between two velocities of equal magnitude at an
angle of 135 deg.}igure(b) snows a transition between two velocities of unequal magnitude.
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Iigures 2 show’ a comparison of linear, third order polynomial, and cycloidal velocity blends,
with|al, .= 10 m/s’?. Figure 2(a) shows the blend speed for atransition between two velocities of
equal magnitude a anangleof 135 degrees. I'igure 2(b) shows a transition between two velocities
of unequal magnitude. In this figure, the initial velocity is zero, however the transition curve has
the same shape for two nou-zero parallel velocities. Further, Fquation (17) shows that this form of
the blending occurs for each component of the resultant velocity vector.

4 Blending the Position Trajectory

The blend o f the end effector position (p) is described by direct integration of quation (3). (Scalar
quantities are handled in the same way. ) This yields:

p - /v(s) di = 27/1}(3)(13 (30)
= Ppot ve2rs (v - vG)QT/f’(s)ds (31)
Pod ve27s 4 (v, - v, )27 f(s) (32)

where p,, is the initial position as the blend is entered. The form of the integral of the blend
function determines the spatial form traced by the path. For the three blend functions considered,
we have:

Linear : f(s): 3s? (33
O(3) Polynomial © f(s)= - &7+ & (34
Cycloidal @ f(s)= § - -;n sinms (35

Iiquation (. 3) provides a second order polynomial, and the blend is parabolic. Fiquation (34
provides a fourth order polynomial, and the blend that is steeper. (Higher order even polynomial
functions will beincreasingly steeper.) The cycloidal blend path remains sinusoidal, buthasthe
addition of a linear term.

Figures 3 show the spatial andtemporal paths for a transitjon between v, and vy, such that
Vo | Voo v = IVils with |alyas = ].(Jm/sz. It is apparent from Figure 3(a) that tighter cornering
canbe accomplished with polynomial and cycloidal blending. However, this requires longer blend
times (or larger acceleration, and therefore greater joint torques from the actuators). Figure 3(h)
shows the positions as a function of time, which are essentially the integrals of the velocities shown
inPigure 2(b). The form of these curves also represents the functional form of the position blend
functions, Kquations (33)- (35).

5 Blending the Orientation

Blending of the orientation is more complicated than position, sincetheangular velocities are
nonholonontic.  However, this section shows that a close approximation to analytic orientation
blending can be obtained. This requires numericintegration of the rotations obtained from the
instantancous value of the blended angular velocity.

5.1 notation Matrix Blending for Orientation

i reference [13] Taylor proposed a method of blending orientation based on rotat ion matrices.
A generalization of this method will be presented here. In this method, the amount of rotation
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contributed by each rotation matrix is scaled with the previously presented hlend functions:

YR(s) = YRR (wa2r(s- f(8))] "Ry [wir27 f(s))] (36)
- ’“’R.O(”R«O [2 4 R[i ( :i? )

Figure 4 provides a graphical depiction of this blending method. Prior to the blend there is motion
away fromthe orientation Of the previousframe, F; .., and toward the intermediate orientation,
a = Fi. The constant angular velocity beforetheblendis w,, and the blend begins at orientation
O. In this m eth od,for ca chint erval after O arotationisconstructedandappliedaccording tothe
rotation matrix blending described by Iiquation (36) or (37). After the normalized ble nd time s
has becomne unity, the commanded angular velocity will be wy, andthe commanded orientationis
b. After this time, the trajectory continues toward thenext target frame, F;y , , at the constant
angular velocity of ws. To avoid faceted motion through the blend, the normalized time must be
incremented in in finitesimal intervals.

Inreference [13], the formulation of this blending scheme is presented with respectto frame a,
not o. This alternate representation can be scen by starting with Fquation (36), and utilizing the

identity:
U’R»OO’ROT U"R_a U’R OO’RO (38)
YRR [wat] R (39)
CTTL [ wa TR (40)

we have:
“wi R (S) U’,R'oO,Rﬂ [wQQT(S - f(('))] G’R-b [waTf(S)] (‘1])
YRR [ waT] "R [wa2T(s - f(8))] “Ry [wi27 f(s)] (42)
YRR, [wQQT(s - f(s) -- %)]“’Rb [wi27 f(s)] (43)
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Figure 4: Graphical depiction of the blending described by Equation (36). Sece the text for a
description.

Jurther, reference [13] only considers the linear blend case with f(s) = %.Q(‘).'J‘his gives:
“T7.(S) = ““72. - w,(1 - 5)2]"72@ [w,,rﬁ] (44)

Substituting Fquations (4),(14),and (15) yields:

2 . 2
RO = URR, [l T ) %] R, [kb, SR apb} (15)
This ist he formm of the rotation blend presentedin [1 3].

Figures b provide a graphical depiction of change inthe target frame (a)and the dire’ctioll of
the angular velocity vector (b). (A constant spat ial velocity has also be used, to spread out the
vectors for pictorial clarity. ) Figures 6showthechange inthe target frame basis vector comnponents
under this transformation.

5.2 incremental Rotation Blend Components

Itisinformativeto look at the rotationsthatrepresentthe individual incrementalrotationbetween
successive timcincrements when utilizing Fiquation (36). Consider the difference between successive
frames depicted in Figure (7). The incremental rotation between successive orientations is;

YRa = YRz Ry (16)
Ry = "R "Ry (47)
= ORGVORVUR VR, TR Ry (18)
= °RUR. R, VR (19)
> “R; (14 €) Ry (50)
> "R Ra A4 Ry o TRy (51)




(@) Spatialpath of frames. (b) Angular velocity vectors

Figure 5 The spatial transition of the target frame and angular velocity vector, during an orien-
tation blend utilizing Equation (36) with linear blending,.

¥ (14 Peg) 4 “R; e “ Ry (52)
¥ 14 epd Peq (53)
= "Rlep 4 €] (51)
& PRIwy(s5)As 1 walsy)As] (Hd)
& IR w(ss)As] (56)

whiere € is the infinitesimal rotation operator [4]. This result indicates each incremental rotation
of Taylor’s schieme is equal, 10 firstorder, t o the rotation provided by the instantancous angular
velocity. This implies that it is possible to blend the angular velocities utilizing Fquation (17), and
obtlain the incremental rotations from the value of the instautancous angular velocity.

5.3 Angular Velocity Blending for Orientation

A s was discussed in the last section, the incremental rotations of an orientation blend may be
approximatedby utilizing theinstantancous angular velocity provided by Equation ( 17). Thus, the
oricntation of the target frame canbe computedby utilizing Fquations (1), (1), (7), (11 ). and ( Ii’):

"R(s,): R, [[*Rw(s0)As]  sn: u/N. As, 1/N (:

n= o

]
~1
~—

where N is the total number of steps for t he comnplete blend. Figure 8 provides a graphical depiction
of t his blending niethod. Before t he blend, there is motion away from the orientation of the previous
frame, F';_1, and toward the intermediate orientation. a=F;. The constantangular velocity
before t he blend is w,. The blend begins at orientation 0. Yor cach interval after o, 4 rotation
is const ructed and applied accord ing to the angular velocity blending provided by Equation (11 7).
After the normalized blendtime s has become unity, the commanded angular velocity willbe wy,.
Ideally, the blend will be complete at the desired orientation, 0. where the trajectory continues
toward the next target frame, ¥, 4y .

9
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Figure 7: Graphical depiction of the incremental blending described by Equation (47). See the
text for a deseription.

Figure 8: Graphical depiction of the blending described by Iquation (57). Seethe text for a
description.
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(a) Spatial path of frames. (t,) Angular velocity vectors

Figure 9: The spatial transition of the target frame and the angular velocity vector, during an
orientation blend utilizing Fquation (57) and third order polynomial blending.

I practice, velocity-1)asd blending canprovide equivalent blends to the rotation matrix method
described previously. Figures 9 show a graphical depiction of the change in the target frame (a) and
the direction of the angular velocity vecto r (b) for third order polynomial angular velocity blending,
with|al,.a; = 10 m/s?. A constantlincar velocity is also utilized tospread out the origins of the
frames for clarity. Figures 10 shows the change in the target frame basis vector components under
this transformation. Comparing Figures 9 and 10 with Figures 5 and 6 shows that there is little
difference between blending sclemes, even when using different blending profiles.

5.4 Compensation for Second Order Error from Angular Velocity Blending

Looking closcly at Figure 10, it can beseen that there is some small residual error inthecomponents
Of the basis vectors. Thiscrror results fromthesecondordererrorintroduced by the infinitesimal
rotation apprroximation in Section 5.2, This can be understood by considering how the angular
velocity blending effects the rotation blending. Consider first the case of total completionof rotation

by w,, I)c'fore rotation by wy, begins. In this case, theresulting rotation is exact:

Ry = RalwaT]|" Rp[wsT] (5R)
_ O’R‘; orng . ‘WR'(/:L 1 OIR;’\' a rRé]] nrR"i L U'R}i\'-] a R;,\ (59)
(60)

where the rotations °R, and “Rs have been divided into N parts. Blending the angular velocities
is cquivalent to changing the order of some of therotations a the center of this chain. For instance,
utilizing the infinitesimal rotation approximation [1]:

‘R, OR]) c RN (] 4 ('(,,A7> (l + “cbl) TRE.ARY

>oRl L. oRN- (1 4 “cbl) (1 1 "‘ca“") “RE.ORY

12
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This com mutation of the infinitesimal rotat ions may be continued until the proper sequence i's
atlained. However, second order ¢rrors arise from the initial approximation of R 2 (1 4 ¢) and
from the disregard of the commutator (the difference between the sequence of the rotations):

(14 €4,14 €n]= 2eqen - 2cpey (63)

The lack of these second order terms explains the siall error introduced by angular velocity based
orientation blending,

The change in position of R, and“Ry’ operators int hesequence is reminiscent of diflusion.
As the °R, ' “diffuse’ farther to the right, and the *Ry7 *diffuse’ farther to the left. the changed
in orientation becomes more blended. Since the infinitesimal rotations carn be represented by their
angular velocity equivalents, the diflusion profile is equivalent to the velocity blend profile. For
instance, the shape of the cycloidal blend profile in Figure 2(b) indicates more diffusion than the
lincar one. Further simaller values of |a],,4, algo imply more diflusion, since they spread out these
curves. More diflusion introduces second order error. Therefore, linear blends and high acceleration
blends result inless residual error for a given value of |al,.q,. However, lincar blends will result
inmore error if the blend time is fixed instead of the acceleration. This canbe understood by
lessening the slope of the linear blend line in Figure 2(b), thus introducing more diffusion.

To provide some quantitative description to this discussion, the following table shows the mag-
nitude of the orientation errorfor the example previously considered.

blend type ‘ 8] gy = 10 iin/s'2 lalar = 5 I,”,/;Z
lincar ar 0.29° 1.16°
0(3) polynomialpoly 0.39° 1.56°
cycloidal toidal 0.41° 1.62°

It 1s apparent that these errors are small and may be corrected (as deseribed below). Substantially
larger errors are not possible since they would require much smaller accelerations which require
longer blend times. Too large of a bleud time multiplied by w, or w; would indicate a rotation
greater than 180° in the initial or final legs. Such large rotations havebeen precluded by Equa-
tion (5).

While this small error introduced by one blend dots not necessarily require compensation, the
sumination of this error over successive blends may become significant. To compensate for the
residual error, we propose the use of a correction term which is calculated at theend of cvery
velocity basedblend of orientation. This term is the incremental rotation from the resultant frame
to the desired frame at the end of the orientation blend:

Rilkeors 1= ("Ra“Rufwat] )y "R sy = 1) (61)

Iy practice, Keor and @eor can be casily calculated by Fquatio 5 (5) and (6). A correction velocit y
may thenbe calculated and applied to the leg of the trajectory being entered, for the tiine specified
10 thenext via frame:

w(‘o‘r - kn‘("l‘ 97001"/( ,Iyl-i 1~ Tl) (65)

This correction term is modified by a gain, K., aud added to the angular velocity wWs- (Since
it is very small in magnitud e, concerns about changing the value Of wy have been ignored .) The
gain is needed to maintain stability in what is eflectively a low bandwidth feedback controller. |f
Iquations (57) and (64) were linear, this discreet time controller would be stable for 0 < K, < 1.
However, for the nonlinear orientation blending, we have empirically found stability for gains of
0< Ker 0.3,
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6 Implementation Considerations

Three main implementational considerations have been accommodated in our scheme: maximum
acceleration, minimumblend time, and velocity summation.

6.1 Maximum Acceleration

Since the calculated trajectories are to be executed by real manipulators, the commanded acceler-
ation must be limited to what is achievable. Further, the achievable task space acceleration of t he
arm depends on the configuration of the robot arm. Iidiflerent parts of the workspace, diflerent
task space accelerations are possible. Therefore, two possibilities exist:  1.) limit all task space
accelerations to the worst case acceleration of thearm, or ‘2. ) create acomplete map of the achiey -
able task space accelerations, and limit the trajectory blending accordingly. However, creating and
accessing such a map is auticipated to be very cumibersome. Therefore, we have currently chosen
to work with the first, andsimpler, of these two options.

Another consequence of limited acceleration is that it erodes the straight line leg segments of
the trajectory between via frames. For a small enough acceleration, one blend will end as another
begins. For accelerations sinaller than this, one blend would have to begin before another ends.
We do not permit this to occur. In this case, the acceleration is increased to the value needed for
concatenated blending. If theincreasedlevel of acceleration is notachievable by the arm, thenthe
via frames are not reasonably selected slid unavoidable position errors will occur.

6.2 Minimum Blend Time

Due to the discrete nature of the computer implementation of these algorithms, it is necessary to
specify a minimum number of iterations over which an acceleration is specified. From Equation (20)
this quantity is the minimum allowed value of 27. If a minimum is not specified, the calculated
blend time may become comparable to the algorithm cycle time. Thus,the calculated velocity and
position will be discontinuous, providing poor input to the arin countroller. We have empirically
determined and utilized a minimum value of twenty iterations per blend. A direct consequ ence
of this specification of 27,,;, is that the maximum allowed acceleration is also limited. If more
acceleration is desired, and the manipulator is capable of it, then 27,4, should be reduced. Il owever,
to keep the same number of iterations ber blend with a reduced 27,,;,, the algorithin rate must be
increased proportionally.

6.3 Velocity Summation

To beable to modify commanded trajectories with other controlinputs, the comma nded variable
must he a velocity (a generalized flow variable),not a position [11]. Figure 11 shows our current
implementation. Thetrajectory generator is subject to modificationby theinput of a joystick or
a proximity sensor monitor process.

Utilizing the velocity blending scheme proposedin this paper, velocity output is obtaineddi -
rectly, Alternatively, if analyticintegration of position isused (as inFquation (32)), or if rotation
matrix orientation blending is used (as in Equation (36)), then the velocity must be obtained by dif-
ferencing the reference frames. As will be seenin the next section, thisrequires extra computation
notneeded with a purely velocity based scheme.
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Figure 11: Block diagram of our experimental implementation of the proposed velocity based
trajectory blending.

7 Computational Costs

Pigure 12 provides an outline of the computational steps and costs for both position-based and
velocity-based blending. The equations involved in each step are al so summar ~d. Finally, an
estimate of the computational complexity is given by stating the number of additions, subtractions,
multiplies, and divides required, as well asthetrigonometric(andsquare root) operations needed.

The top section of the table reviewssotnecommonsteps needed for bothschiemes. Of these,
the frame differencing and frame incrementing are very costly. The calculation of f(s)or f/(s) is
variable since it depends on the blend functions chosen.

The second and third sections of the table show the algorithmic differences between the posi-
tion /orientation blending and the velocity blending methods. $he most striking diflerence between
thetwo formulations is the reduced computational cost of the velocity blending method. During a
blend it requires only 12 operations, while the position /orientation method requires 263 operat ions
pluseight costly trig or square root calls. The situation is much the same during the straight line
leg segments of the trajectory, where the velocity based scheme requires zero operations, while a
completely position based scheme requires 160 plus 5. The efficiency of the velocity basedscheme is
paid for by the overhead necessary during the transition from blend to leg segments. At this junc-
ture, the velocity scheme must make 207 plus 6 operations, while the position/orientation schenie
requires ouly 69 plus 2. However, this overhead occurs only once for each via frame, compared
to the hundred or thousands of iterations that occur for theblend or leg segment computations.
O bviously, velocity blending introduces a significant computational savings.

It is important to note that some of the computational advantage of velocity blending is in-
troduced by the assumption that the output of a trajectory generator mustbe a velocity. The
position /orient ation scheme must utilize a velocity calculation step during the blend and leg seg-
ments which costs 69 plus 2 operations. lowever, even without this step the velocity blending
method is significantly faster. Further,it wasshowninthe last sectionwhy velocity output is more
useful.

One other computational burden is introduced to the position/orientation method by the as-
sumption that position, [p, ke, ¥], is specified as a function of time during the leg segment. Al-
ternatively, the leg segiment velocity could be precomputed and utilized directly as inthe velocity
blend method. Since k is constant during the leg segment, no errors would beintroduced. Also,
the leg velocity must be computed anyway if the maximum acceleration checks are to be performed
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[ Algorithm Step | Bgns Ops |
Common

vAI = franudif(ﬁ L F 2) = D() 611 69, 2
f7(1711(i11c(P1,vA1)- 1) I-4,7-11 91,3
Calc J(s)or f'(s 17, 32, 36 | variable
o= v(('scal((vl,fmzc) = 50 11 7,0
a< la[,,m, , T > Tman ?0 1_\1"11‘3_@_}’_]('
]’oszimn / Orientation ])’l(n([mq M(thorl
blend
cale f(s) 33, 35, 34 | variable
Vo = S(vae, 8- f(9)) 36 6
Vi = S (ve, f(s)) 36 6
F, = 1(F, v,Al) 36 91,3
Fy - I(F,,vpAl) 36 91,3
v=D(F, Fy)/ Aty 1-6, 11 69, 2
leg
F(t) = 1(F;,{p(1),ke(t),v(1)}) | 1-4, 7-11 91,3
v=D(F(1),F(t- Ai) /AL 1-6, 11 69, 2
transilion
vy = D(F, Figy)/ Ty 1-6,11 69, 2
a< la[,n,,g, T > Tomin 20 variable
1(l0¢"zly Blending Method .
blend
cale f'(s) 21, 27, 24 | variable
v = S(ve,1- fl(s)) 17 ]
v+ = S(vy, f(s)) 17 6
leg
nothing, constant v = v, 0,0
transition
vy = D(F,Fiyy)/Ti4y 1-6, 11 69, 2
Fy = 1(F,vy1;) 64, 65 69, 2
vb4 = D(Fy, F})/(Tiy1 ~ 75) 64, 65 69, 2
a < |almary T > Tonin 20 variable

Figure 12: Algorithm description and comparison. Under the operationscolumn,the values are
the number of standard math operations (4 -- #/) and the number of trigonometric and other math
operations (sin,cos,sqrt, ete.).
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(as is assumed).

8 Implementation

We have implemented this algorithm onan SGI iris workstation for sim ulation, and on a VME
based 68020 microprocessor for control of 7DOF Robotics Research K-1207 Arm. In 1 he following
sit ulationand real-time experiments, via frames were ¢ foden to enable the end-eflector tomove
closelyalongaselected surface in order to inspect it.

The task of aninspection was chosen sitice t he t his rescarch was performed within The Remote
Surface Inspection Task, sponsored by NASA  to develop methods to aid in-orbitinspection of
the Space Station Yreedomn. I our work, the end-effector of the robotarm carries anarray of
sensors: two CCD cameras, two proximity sensors, an optical pyrorneter, a gas sensor,anda force
sensor. The additio n of eddy-current and contact acoustic sensors are planned. While our frame to
frame motions are designed to aid inspection by these devices, the presented technique is obviously
extensible to motion required for purposes other than inspection.

8.1 Simulation

The simulation was performed onanSGllris 4D/70 G'T using three processes: trajectory genera-
tion, animation, and user interface. D uring the simulation, the time between frames was as small as
one second. The simulation was run at 100 cycles/srcolld (of simulationtime), giving 100 it crations
for cach frame to frame motion.

In addition to the seven degrees of freedomm of the arm, basemovement was added to the
simulation. This DOF drastically increases the workspace and dexterity of the system. Also, it
accurately reflects platformmotion cability that is beingintegratedinto our real robot system.

The addition of platform motionto the trajectory blending scheme is trivial. A new platform
position parameter, y, is added to framne specification in Equation (1 ) andblended in the same
manner as the arm angle, 9.

Figures 8.1(a) (0) show the sequence of arm poses for the 8 DO} manipulator systemmoving
througly 14 commanded frames. These images were captured from the continuous motion display
of the Iris simulation. The rectangular shapcin the figures is a partto beinspected. Thethree-
prongeditem at the end of the arm is the end-effect or frame superiinposed on the graphics. For the
purposes of this demonstration, frame sequences were selected to best demonst rate the capabilities
of the algorithm. Figure 8.1(a) shows the arm in a random starting position. Figures 8.1(a)-(b)
show simultaneous change in all frame parameters: 77., p, -, and . Pigures R.]J(b)-(c) show a
sequence requiring simnultancous change of ‘R, . andy without changeinend-effector position.
Figures R.](d)-(f) show two changes in ‘K., requiring a blendinwonly. Figures X,](f)-(h) show
the dexterous usc of ¢ and x to quickly switch the handedness of the arm without moving the
end-cffector. Pigures 8.1(h)-(i) show a simu ltancous translation (using y only) and rotation of the
end-effector (about its 2 axis). Figures N.J(i)-(1) show three changesin ‘R, requiring two blends of
w. Figures 8.1(1)-(1n) show a change in p only. Finally, figures 8.1(n )-(0) show a single rotation,
and its inverse. Also, the base ismovedback to its starting position.

8.2 Experimentation

The blending algorithin has also beenimplemented for real-time control ona 12.5 MHzHeurikon
68020 processor. For the tests, a trajectory similar to the simulation trajectory has been executed.
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Figure 13: The sequence of arm poses for an 8 DOF maunipulator systemn moving through 14
comimanded frames to perform aninspection of a rectangular object.
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However, since the robot base position is fixed, the size of theinspectionarca is restricted. A
total of twelve via frames are used to scan a rectangular shape about hall as large as that in
the simulation. Linear blending was arbitrarily chiosen for these tests. During experiments the
minimum time between frames is 3 seconds. The real-time process runs at 44 Hz, or =~ 22.7 s,
giving approximately 132 iterations for each frame to frame motion. (I'he coutrol rate is governed
by other control software, not the processing requirements of the trajectory blending algorithm,
which we have shown to be quite minimal.) The position gain was K, = 20, andthe trajectory
correction gain was K.,-= 0.3. The minimum blend time was 27,,,,, = 20 iterations, or abouta
half second. The maximum acceleration was |a,,qa, == 10 m/s.

I'igures 14 (a)-(e) show commanded and measured values for the end-effector frame as a function
of time. It is apparent that the arin closely follows the commanded trajectory, with a small amount
of lag due mostly to the Robotics Research arm controller.

Figure 8.2 shows the magnitude of the orientation error due to integration of the nonholonomic
angular velocities. This error is computed at the end of cach blend segment using Fquation (65).
These errors are consistent in magnitude with the values given in the table above Equation (65)
(0.29° = 0.005 rad).

9 Conclusion

This paper has presented a new formulation of trajectory generation based 011 velocity blending,
First, a new formulation for trajectory blending was provided, allowing for the direct compari-
son and utilization of numerous blend functions. Then, a generalized version of the previously
proposed orientation matrix blending formulation was reviewed. It was shown how a first order
approximation of this scheme leads directly to angular velocity blending for orientation change.
Further, the residual error incurred was explained, quantized. andcompensated. Also explained
wer implementational considerations such as acceleration limits, velocity summationrequircments,
algorithm computation rates and complexity. Finally, the results of implementation of this scheme
inboth simulation and real-time experimentation were graphically presented. Both the analysis
and implementation has showni that the speed and siinplicity of the velocity-blending formulation
enable its casc of use for real-tilne manipulator trajectory gencration.
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