Decoder Synchronization For Deep Space Missions

Joseph J. Statman
Kar-Ming Cheung
Todd H. Chauvin
Jay Rabkin
Mignon J. Belongie

Jet Propulsion Laboratory
California Institute of Technology

Abstract

The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated error-correcting system where the inner code is a convolutional (7, 1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for Deep Space missions where both the data rate and the signal-to-noise ratios (SNRs) are extremely low. If combines frame synchronization in the bit and symbol domains and traditional metric-growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.