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Terminal Repeller Unconstrained Subenergy Tunneling
(TRUST) for Fast Global Optimization’

B. C. CETIN,2 J. BARHEN,3 AND J. W. BURDICK4

Communicated by G. Di Pillo

Abstract. A new method for unconstrained global function optimiz-
ation, acronymed TRUST, is introduced. This method formulates
optimization as the solution of a deterministic dynamical system incor-
porating terminal repellers and a novel subenergy tunneling function.
Benchmark tests comparing this method to other global optimization
procedures are presented, and the TRUST algorithm is shown to be
substantially faster. The TRUST formulation leads to a simple stopping
criterion. In addition, the structure of the equations enables an
implementation of the algorithm in analog VLSI hardware, in the vein
of artificial neural networks, for further substantial speed enhancement.

Key Words. Global optimization, dynamical systems, terminal repel-
lers, subenergy tunneling function, artificial neural networks.

1. Introduction

Many en jneering applications can be formulated as nonlinear function
optimization \ roblems in which the function to be optimized possesses
many local minima in the parameter region of interest. In most cases, it is
desired to find the local minimum at which the function takes its lowest
value, i.e., the global minimum. The problem of designing algorithms that
can distinguish between the global minimum and the numerous local minima
is known as the global optimization problem. This paper presents a new
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global optimization scheme whose acronym is TRUST (terminal repeller
unconstrained subenergy tunneling). In this approach, we formulate
optimization as the solution to a deterministic dynamical system which
incorporates a novel subenergy tunneling functional and terminal repellers.
In addition, the TRUST formulation leads to a well-defined stopping criterion.

In standard benchmark tests, TRUST has proven to be significantly faster
than previously published techniques. More importantly, this algorithm has
been especially designed for implementation in parallel analog VLSI cir-
cuitry (i.e., artificial neural network architectures) for substantial speed
enhancements. In related work (Ref. 1), the authors have successfully
designed, fabricated, and tested analog VLSI circuits which implement most
of the basic components of this algorithm. We hope to report in a future
article a complete hardware implementation.

The TRUST computational scheme can be guaranteed to find the global’
minimum for functions of one variable. The method is currently not guaran-
teed to find the global minima in multiple dimensions. However, in the
multidimensional case, the method will always escape from one local
minimum to another with a lower functional value. In practice, the global
minimum was found in all benchmark simulations, including 10-

dimensional test functions. Furthermore, the structure of the optimizing
dynamical system is highly parallel, allowing implementation in a form
whose computational complexity is only weakly dependent on problem
dimensionality.

The global optimization problem to be considered in this paper can
be stated as follows. Let J(X): !Rn+ R be a twice continuously differentiable
function, where i is a vector of nstate variables or parameters. Hereafter,
J(i) will be referred to as the objective function. The goal is to find the
value &-~ of the state variables which minimizes ~(~),

J* =~(XGY) = min{~(~)[~ = Q}, (1)

where 9 is the domain of interest over which one seeks the global minimum;
9 is assumed to be compact and connected. In the sequel, and without loss
of generality, we assume 9 to be the hyperparallelepiped

9={ Xjl Xj~s Xjs Xju; ~=1,2, . . .. n}. (2)

where x,~ and X,u are respectively the lower and upper bounds on the jth

state variable. The compactness of 9 and continuity of ~(~) ensure that

~(~) is bounded away from infinite magnitude in the domain of interest.
Further, we assume that every local minimum j~kf of$(j) in Q satisfies

the conditions

df(.i~~f )/di = o, (3)

yT(d2f(.iJ/di2)j a o, Vjcl$!n. (4)
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We further assume that the global minimum satisfies these local minimum
criteria and that the global minimum does not occur on the boundary of 9.

Section 2 reviews previous global optimization approaches which are
relevant to this work. This review focuses on tunneling methods, since the
TRUST algorithm introduces a novel approach to tunneling. Section 3 pre-
sents the one-dimensional musioptirnization algorithm. Section 4 discusses
the convergence properties of the one-dimensional algorithm, while Section
5 considers the multi-dimensional TRUST scheme. Section 6 presents the
results of benchmark simulations and compares the TRUST performance to
other global optimization methods. Section 7 summarizes

2. Methodologies for Global Optimization: Background

our conclusions.

Previously developed global optimization algorithms can be roughly
categorized into two classes: probabilistic and deterministic. An extensive
review of probabilistic computational schemes can be found in Ref. 2. Here,
we focus on deterministic tunneling methods, as these are most closely
related ‘to the concept presented in this paper,

Tunneling for global optimization was introduced by Levy and
Montalvo (Ref. 3). Their tunneling method is composed of a sequence of
cycles, where each cycle has two phases: a local minimization phase and
a tunneling phase. In the first phase, minimization algorithms such as
gradient descent or Newton’s method are employed to minimize J(x). We
assume that, starting from an initial point XO(0),the minimization converges
to the first local minimum i’(”), which satisfies conditions (3) and (4).

In the second phase, a tunneling function is defined,

T(i,f’(”))=f(i)/[(x –N*))T(x-i’(*’)]”, (5)

where

m)=m-f(i’(”)) (6)

The tunneling phase searches forthe zeros of T(x, i’(”)); that is, T(.i, Z’(”)) =
O is solved for any X’(o) such that X’(0) #i’(”), but $( f’’”’) =~(~’(”’). The
denominator of (5) is a pole of strength a, located at the previously
determined local minimum X’(”), thus preventing the zero-finding algorithm
from rediscovering i’(”) as a zero of the tunneling function. The zero i’(()’
of (5) is used as the starting point of the next cycle, and the process is
repeated sequentially, as shown in Fig. 1, until a stopping criterion, such
as (he failure to find a zero within a prescribed CPU time, is met. The last
local minimum to be found is assumed to be the global minimum.
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Fig. 1. Schematic diagram of tunneling operation.

If we denote X’(*)as the minimum reached during the ith minimization
phase, the tunneling algorithm implements a global descent property,

j’(~’+’’”)) q(~’(”)).

However, this method has a number of disadvantages:

(i) The pole strength a is problem dependent. While searching for a
zero, a should be incrementally increased until the pole in the denominator
of (5) becomes strong enough to eliminate the last local minimum of higher
order. Every increase in a requires the algorithm to be restarted, leading
to increased computational effort.

(ii) The tunneling algorithm may find another local minimum i2(*),
such that ~(i’(”)) =J(x2(-)). In this case, an additional pole must be placed
at the second local minimum, and the tunneling process must be restarted.

(iii) Division by a pole causes smoothing of J(i) as .Y+ m; that is,

-f(~) + O as ~ + ~. This smoothing increases with a, yielding a tunneling
function that becomes very flat. In this case, zeros can be difficult to detect
correctly.

(iv) The zero-finding algorithm in Ref. 3 is based on a modified
Newton iteration which requires finding the roots of a scalar function with
multiple variables. This can be a computationally expensive procedure, and
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as yet there are no globally convergent zero-finding algorithms. Thus,
stopping critieria cannot easily be defined.

The difficulties associated with finding the zeros of (5) have been partly
overcome by the dynamical tunneling algorithm of Yao (Ref. 4). His
dynamical tunneling procedure has two phases: dynamic optimization and
dynamic tunneling. The dynamic optimization phase implements minimiz-
ation via gradient descent,

i= -df(i)/di. (7)

Starting from an initial point iO(0), the system (7) reaches its first equilibrium
at a local minimum X’(*). However, in the second phase, instead of finding
the zeros of the tunneling function (5), Yao defines an energy function,

(

/-’({)
E(I, i’(*) )=7-( i,.#*))+k Zu(z) dz, (8)

()

where u(z) is the Heaviside step function,

{

1, 2> (),
u(z)=

o, Z< ().
(9)

The energy function in (8) is minimized in Yao’s tunneling phase, instead
of finding the zeros of T(.t, X’(”)). The derivative of (8) with respect to its
state vector X is

dE(f, i’(*))/di

_(df/di)l/f -i'(") l12a-2a(i -i'(*')ll(i -,i'(-))[[2(('-''](i)—
,,(i_il(*)),,4a

+ k(df(i)/d.i)j(f )u(f(i)).

~rom (10), it is clear that the second term in (8)

~(~)~o [i.e., ~(i) ~j(~’(”’)] if the magnitude of k
When gradient descent is applied to E(i, X’(”))
dynamical system

i= –dE(X, X’(*’)/di. “

(lo)

enforces the constraint
is chosen large enough.
in (8), we obtain the

(11)

The initial conditions for this system are X1(”)+ {, where F is a small
peti”urbation which displaces the system from the tunneling function pole
located at X1(”). When (11 ) converges to its final equilibrium ~tate, it
minimizes the tunneling function with respect to the constraint J(i) <0.
Thus, the system in (1 1) will reach an equilibrium point ii(”) that lies in
another basin of attraction, with functional values lower than J(ii(”’), if
one exists. This new equilibrium point will be the starting point for the
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dynamic optimization phase of the next cycle. The procedure is repeated
until a new equilibrium in a lower valley cannot be found in a prescribed
amount of time. It is then assumed that the last minimum is the global
minimum.

This approach also has a number of deficiencies:

(i) The pole strength a must be chosen sufficiently high to enable the
pole in the denominator of (5) to cancel the last local minimum of higher
order, and thereby prevent restarting of the tunneling phase, as this necessi-

tates backtracking of (1 1).
(ii) The penalty constant k is problem dependent, and a global

minimum cannot be guaranteed for a prescribed k.
(iii) An implementation of global optimization in terms of the solution

of two different dynamical systems in two different phases makes the
algorithm impractical for implementation in analog VLSI hardware of the
neural network type. A method based on a single differentiable equation
would be preferable.

In this article, we introduce a deterministic global optimization

methodology which is also based upon the concept of dynamic tunneling.
However, in contrast to these previous approaches, tunneling is implemented
here in a substantially different manner, by employing so-called terminal
repellers and a novel subenergy tunneling function. The next section intro-

duces these concepts and assembles them into an optimization algorithm
which is the solution of a single vector differential equation, This characteris-
tic simplifies the hardware implementation of our algorithm.

3. Terminal Repeller Unconstrained Subenergy Tunneling Algorithm

3.1. Subenergy Tunneling Function. We define a subenergy tunneling

function, or subenergy function for short, as follows:

E.U.(X, X*) = log(l/[1 +exp(-(~(i)+ a))]), (12)

where

?(f) =Y(i)-./’(i*) (13)

and u is a constant whose value will be considered below. In the above
expression, .f* is a fixed
in the sequel.

Equation (12) is a
which has several useful
respect to X is

f3E,u~(x, x*)/di

value of i, whose selection will also be discussed

nonlinear but monotonic transformation of ~(~)
properties. First, the derivative of E, U~(.t,f*) with

=(d~(.t)/dI)( l/[l+exp(j(.~) +a)]). (14)
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Since

l/[l+exp(j(i?) +a)]>O, .f E 9,

we conclude that

dq”~(.i, i*)/di = o @ df(i)/13i = o. (15)

From (15), it is clear that E, U~(X,i*) has the same critical points as ~(i)

and the same relative ordering of the local and global minima. In other
words, ~~.b(.f, X*) is a transformation off(f) which preserves ail properties
relevant for optimization. In addition, this transformation is intended to
have the following e~ect. We wish E,u~(i, ~*) to asymptotically put quickly
approach zero f~r ~(.i) 20. Second, we would like to leave ~(i) nearly
unmodified for ~(~) <0. Hereafter, j’(.f*) will be referred to as the zero
subenergy limit, since

The monotonicity of the transformation is not affected by the particular
value of the constant a, though the asy~ptotic properties are affected by
its value. Figure 2 plots ~~ub(~, X*) vs ~(i) for various values of u. The
algorithm can be formulated to work for nearly any reasonable value of
this parameter. In subsequent analyses, the necessary and sufficient va!ues
of other TRUST algorithm parameters are derived in terms of a. However,
for practical applications, a value a = 2 is chosen, as it leads to the most
desirable asymptotic behavior of the subenergy tunneling transformation.

Figure 3 shows an example of a one-dimensional function,

~(x) =[sin(2x) -x- 1]2,

to which the transformation in ( 12) has been applied for the case

x* = –6.80678, a=2.

f (i) - f (r)

a.e 4 2 0 -2

Fig. 2. Behavior of E,u~(i, ~“) vs ~(i) for various values of a.
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Fig. 3. Example of one-dimensional subenergy tunneling transformation.
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Fig. 4A. Example of a two-dimensional function.
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Figure 4 shows an example
dimensional function:

j-(.t, y) “ (X-n .1) ’(-v

for the case

(x*, y*)= (O, -3/2),

“:o~-’
Iranstormation applied to the e.rample of Fig. 4A.

of the tr~nsforma[ion applied to [he two-

–0.2)’+3 sin(O.2+ 1.S77.12)sin((). ~+ ~j,)

As can be observed, the subenergy function has the following approxi-
mate behavior, which is key to this optimization algorithm:

Next we

3.2.

system

{

o
E.ub(,i, f*)= .’ j(.F)~O, i.e.,.~(.f )2./’f *),),

f(~)> ~(.t) <0, i.e., ~f.i) <j(i*),

(o,
r3E.u~(i, i*)/a.i ==

./’(i)

t)j-(i )/d.i, J-( .f )

summarize and review the properties

Terminal Repellers.

.i=g(. a
is termed an attractor (repe
matrix .Jl,

.tl = dg(.i,q)/ai,

An equilibrium

2f(.i*),

~f(.f*).

(16)

(17)

of terminal repellers.

point i.. of the dynamical

(18)

Ier) if no (at least one) eigenvalue of the

(19)
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has a positive real part. Typically, dynamical systems such as ( 18) obey the
Lipschitz condition

Iag(ieq)/axl < ~, (20)
which guarantees the existence of a unique solution for each initial condition
i(0). Theoretically, the system relaxation time to an attractor and escape
time from a repeller is infinite, because the transient solution cannot intersect
the corresponding solution to which it tends,

Zak, Barhen, and Toomarian (Refs, 5-9) have used the concept of
terminal attractors and repellers in the context of neural network dvnamics
to obviate the infinite-time solution limitations of regular
repellers. Based on the violation of the Lipschitz condition

points, these points induce singular solutions such that
approaches the terminal attractor or escapes from the term
finite time,

For example, the system

X=– X1’3

attractors and
at equilibrium
each solution
nal repeller in

(21)

has an attracting equilibrium point at x = O which violates the Lipschitz
condition,

ldi/dxl = 1- l/3x-’/3l+m, asx+O. (22)

The attractor is termed terminal, since from any initial condition XO# O, the
dynamical system in (21) reaches the equilibrium point x = Oin a finite time,

[

X+o
[o=– X-1’3 dX = (3/2)x#3. (23)

Xo

Similarly, the dynamical system:

x =x’” (24)

has a repelling unstable equilibrium point at x = O which violates the
Lipschitz condition. Any initial condition which is infinitesimally close to
the repelling point x = O will escape the repeller, to reach point X. in a finite
time,

J
.X.

to= X-”3 dX= (3/2) x:’3. (25)
●+o

The behavior of the terminal attractor and repeller is shown in Fig. 5.
Terminal repellers, in conjunction with the subenergy tunneling function
introduced above, form the basis of our global optimization algorithm,

3.3. TRUST Algorithm: One-Dimensional Case. We now assemble the
above concepts into the TRUST global optimization scheme. For simplicity,
the case of one-dimensional optimization is considered first. Section 5
discusses the multi-dimensional case.
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Fig. 5. Behavior of terminal attractor and repeller.

Let ~(x) be a scalar function which is to be globally minimized over
a given interval. Define a new cost function to be minimized,

E(x, x*) =log(l/[1 +exp(-(l(x)+ a))])

-(3/4 )k(x-x*)4/3u(f(x))

= ~,”b(x, x*) – k&P(X, X“)tf(f(x)). (26)
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The Heaviside step function U(o) was defined in (9), and~(x) =~(x) –j(x*)

as in (13). The first term in the right-hand side of Eq. (26) corresponds to
the subenergy function; the second term is referred to as the repeller energy
term, i.e., a term which when differentiated will yield an expression of the
form (24). The parameter ks O is referred to as the power of the repeller.
The selection of its value will be addressed below.

Application of gradient descent to E(x, x*) in (26) results in the
dynamical system

x==-d E(x, x*)/dx

=-(7J(x)/dx)( l/[l+exp(J(.~) +a)])+k(x -x*)' /'u(j(x))

t(3/4)k(x –x*)4’36(f(x)). (27)

The third term in the r.h.s. of Eq, (27) is identically zero for any x.
Consequently, (27) simplifies to

x=-(~~(x)/dx)( l/[l+exp(~(x )+a)])+ k(x-x*)''3u(~(x)). (28)

Equation (28) represents gradient descent on E(x, x*); therefore, its equi-
librium state will be a local minimizer of E(x, x*).

To qualitatively discuss the behavior of this sytem, we refer to the
components of (28) as follows:

1/[1 +exp(~(x)+ a)] =gradient multiplier,

–(d~(x)/dx)(l/[1 +exp(~(x)+ a)]) =subenergy gradient,

k(x–x*)’’3u(~(x)) = repeller term.

The dynamical system (28) autonomously switches between the following
two phases:

Phase I. This phase, which is effectively a tunneling phase, is charac-
terized by J(x) 2J(x*). Since the gradient multiplier rapidly tends toward
zero for increasing ~(x), the subenergy gradient magnitude is nearly zero,

f3E,”~(x, x*)/c3x = o.

In other words, the subenergy function is nearly flat and approximately
zero in magnitude in the vicinity of x. Since the subenergy gradient magni-

tude is negligible compared to the magnitude of the r~peller term, in this
phase (28) behaves approximately as

.i=k(x–x*)’”,

Thus, the dynamical system (28) is repelled from x* across the surface of
the flattened subenergy tunneling function, until f(x) <j(x*). In effect, this
phase tunnels through portions ofj’(x) where J(r) =,~(.Y*).
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Phase 11. In this phase, which is a minimization phase, ~(x) <~(x*).

The gradient multiplier term has approximately unit magnitude, and the
repeller term is identically zero. Thus, (28) behaves approximately as

x= –(3j-(x)/dx.

This phase implements minimization via gradient descent.
In summary, (28) behaves approximately as:

[

~(x-x*) ’/J, J(x) ~j-(x”)!x=
–f3j-(x)/ax, j-(x) <j-(x*).

(30)

A more detailed analysis of the TRUST algorithm represented by (28) is

considered below.

3.4. Initial Conditions and Overview of the TRUST Algorithm Operation.

In the one-dimensional case,

9=[x~sxsxL/].

To initiate optimization, x* is chosen to be one of the boundary points of
$2. In effect, a repeller is placed at x*, and the dynamical system in (28) is
given initial conditions x*+ e, where e is a small perturbation which drives
the system into the domain of interest.

Remark 3.1. Consistency in the flow direction is necessary, i.e., e is

of constant sign throughout a particular optimization. A system will be
termed “positive flow” if it is initiated at XLand e >0 is consistently chosen.
Likewise, a system is termed “negative flow “ if initiated at Xu and ~ <O is
consistently chosen.

The selection of x* defines a zero subenergy limit ~(x”) above which
E,u~(x, x*) is nearly zero in value and approximately flat. If ~(x*+ ~) <

f(x*); the system immediately enters a gradient descent phase (phase II
above), which equilibrates at x = X’(*). Typically, x’(”) is a local minimum,
though it could bean inflection point (or saddle point in higher dimensions).
We refer to X1(*)as a lower critical point. Here, we assume that it is a local
minimum, though the case of an inflection point is considered in the sequel.

We then set x* =x’(”) in (28), and perturb x to x*+E. Since X’(*) is a
local minimum, ~(x) =J(x*) in a neighborhood of x*. Consequently, the
repelling term is active in this phase (phase I above). Although the gradient
of the objective function is uphill, the associated subenergy surface is
essentially flat in thevicinityof x*. If the magnitude of k is chosen sufficiently
large (see below), the repeller located at x* repels the system across the
flattened subenergy surface, which
of the associated objective function

in effect pushes the system up the hill
surface, The dynamical system remains
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in the repelling phase until it reaches a lower basin of attraction, where
~(x) <O. In effect, this phase tunnels through all of the state space region
with functional values that lie above that of the the last found lower critical
point J(x1(”)).

As the dynamical system enters the next basin, ~(x)< O, and the
algorithm automatically switches to gradient descent, leading to minimiz-
ation ofj_(x). The system will equilibrate at the next lower local minimum

kx 2(”)0We set x* = x2(”’ and repeat the process. This is shown graphically in
Fig. 6.

If ~(x* + c) 2~(x*) when the optimization procedure is initiated, (28)
is initially in a tunneling phase, The tunneling will proceed to a lower basin,
at which point it enters a gradient descent phase and follows the behavior
discussed above.

A sufficient value of k to ensure tunneling can be determined as follows.

After reaching a critical point x*, the zero-energy limit is reset, effectively
placing a repeller at the minimum x*. The dynamical system is restarted
with initial condition X. = x*+ c, where c >0 (assuming positive flow). The
repeller need only be strong enough to push the system over the relatively

flattened surface. If x* is an inflection point, then any positive value of k

4

I

I

I
I
I
I I
I I
I
I -—-—..— — l\l I(x)\ I

Fig. 6A. Schematic of T~USl_operation (Cycle 1).
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x

is sufficient. If x* is a local minimum, then for .t to be positive when the
positive flow dynamical system is restarted at the perturbed location x(, =
x*+ c, the following condition must be satisfied:

k(x(, –x*)’’J s(dj_(x,))/~x )(1/[1+ eXp(?(xo)+~) l).
(31)

A sufficient condition to satisfy (31) is that

ks(l/[c’’3( l+exp(a))])(dJ( .x0)/dx)

=(~2’J/[l +exp(a)J)(dzJ(x* )/dxz).
(32)

Note that c is typically a small number, like 0.001 or 0.01; hence, necessary

values of k are typically very reasonable. Thus, stiffness considerations in
the integration of (28) do not arise from the choice of k. For example, for

c = 0.01 and a = 2, a value of ,k such that k > 0.0056 (d2-f(x*)/dx2) is
sufficiently large to ensure proper tunneling behavior.

During the remainder of the tunneling phase, we need only ensure
that, at any point x’,

ks[l/(x’ -.r*JJ(df(dr(. r’)/d.x)[l +exp( a)]),]),
(33)

since ~(x) 20 during tunneling. Note that the value of k computed using
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(32) at the beginning of the tunneling process is almost always sufficiently
large for the entire tunneling process. The gradient multiplier term decreases
at an exponential rate with respect to increasing ,~(.t). Thus, ,/”(. r) must
increase at a rate faster than exponential to ever require an increase in the
value of k over the value computed at X,j in (32); i.e., generally (32) is

sufficient for (33). A similar analysis of the negative flow case shows that
(32) and (33) hold in this case as well.

TRUST’S implementation of tunneling as a repeller-induced flow over

a subenergy surface has a number of advantages over other tunneling
methods. First, the tunneling operation is algorithmically and computa -
tionally quite simple. Second, if~(x~(”’ ) ‘f(x’’*)),the associated subenergy
surface is still flat, and the system tunnels past this ,Iocal minimum or
inflection point into a basin with a lower local minimum. This feature
eliminates the difficulty with multiple poles in the tunneling algorithm of
Levy and Montalvo. Third, convergence of the gradient descent phase to
an inflection point does not cause a problem, as the dynamical system will
escape the inflection point during the next gradient descent phase.

It must be stressed that TRUST was developed to be implemented in
continuous analog circuitry, where the integration of (28) is stable. In digital
computer implementation, some care must be exercised during the numerical
integration of (28) to ensure that a basin of attraction is not jumped over
due to the finite-step-length integration of (28). Determination of an
appropriate stepsize could follow from Ref. 10. Finally, the TRUST tunneling ‘

method will always reach a point in the adjacent basin of attraction with

lower functional values. Other tunneling methods which find the zeros of
a tunneling function are not guaranteed to find the most adjacent tunneling
point, and therefore have complicated and less reliable stopping criteria.
The. TRusT stopping criterion is outlined below, and a more detailed examin-
ation of the convergence behavior of TRUST is given in Section 4.

3.5. Stopping Criteria. The successive minimization and tunneling
computational processes continue until a suitable stopping criterion is
satisfied. For the one-dimensional case, the stopping criterion is quite simple.
As soon as a local minimum x~&f in Q has been reached, the optimization
cycle is repeated by placing a repeller at x~~ and perturbing the system to
initiate the next tunneling phase. If x~~f were. the lowest local minimum
(i.e., ifx~~ = xGLf), the subenergy transformation would flatten ~(x) in the

entire domain of interest, since ~(xG~ ) sould be the lowest objective function
value in 9. The perturbed dynamical system, which is now in a repeller
tunneling phase, will eventually flow beyond the upper boundary of Q2.
Assuming positive flow, when the state flows out of the domain boundary,
xs x~, the last local minimum found is taken as the global minimum.
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Convergence

We now examine the convergence of the TRUST algorithm in light of
the above discussion. In the one-dimensional case, we seek to globally
minimize ~(x), a twice differentiable function, over the domain S2 = [XL, Xu].
To show that TRUST will converge, under the assumptions of Section 1, to
a global minimum (if one exists), we analyze its behavior during the different
phases of operation. The analysis proceeds as follows. First, the tunneling
behavior of TRUST is considered, assuming a local minimum has been found
(after an initialization phase). We show that, from a local minimum, the
tunneling phase of TRUST reaches a point of the same functional value in
an adjacent basin of attraction of a lower critical point, or flows to a
boundary of .$3if no such point exists. Next, we show the obvious result

that the gradient descent behavior of TRUST will converge to a lower critical
point, An inductive analysis of these two phases leads to the global minimiz-
ation behavior and stopping criterion. Finally, we consider the initialization
of the TRUST algorithm, showing that, from all possible initial conditions,
TRUST will reach the first effective local minimum, if it exists, or flow out
of .9. The case of inflection points considered throughout the discussion as
necessary.

Let us first consider the tunneling behavior of TRUST after finding the
jth local minimum x’(”) off(x). To simplify the discussion, introduce the
following notation. Let

QU(XJ(*)) = (xj(’), Xu] and g~(fl’(”)) = [XL, x)(”))

respectively be termed the lower and upper domains of xj(”). Let S~(xJ(*))

and Su (N’(”)) respectively denote the sets of lower and upper tunneling
points of x~(”),

sJxJ(”)) ={XC 9Llj-(x) =f(xj(”))},

S“(xj(”))={xc 9“ If(x) =f(xj(”))}.

That is, S~(fl(*)) and Su(xj(”)) are points with

(34a)

(34b)

the same functional values
as J(F(-)), Note that S~(xj(”)), or Su(xj(”)), or possibly both are empty sets
depending on chosen direction of flow. If S~(xJ(*)) or Su(i(”)) are not
empty, define the adjacent lower and upper tunneling points as follows:

xAL= min IIx-xj(”)ll, (35a)
rGsL(x’’”’)

.X*“ = min Ilx-x)(”’ll. (35b)
VGSU(X’(”’)

If either S~(fl(”)) or SU(N(-)) are empty, define the adjacent tunneling
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points respectively as

XAL = XL, (36a)

XA ~ = Xu. (36b)

Now define the lower and upper tunneling intervals,

QITL(XJ( ”))= [xAL, XJ(*)), (37a)

~~L (x’(”))= (.X+(*),XAU]. (37b)

Finally, we construct the tunneling interval QT(x’(”)) as follows:

9~(x’’ -’)= 9TL(#*))u9Tu(xj(”)) l_J{xJ(*)}

That is, the tunneling region ~~(x’(”)) is the connected interval containing
x’(”) and whose endpoints are either points with the same functional value

(and thus points for initiating a subsequent local optimization phase) or a
boundary of S2. Note that j(x) may assume local minima, maxima, and
inflection points in ~~(x’(”)), though

j-(x) +(xj(”)) 9 XE 9T(X’(*)).

We wish to show that the dynamical system (28) is unstable on ~~(x~(”))
and will flow toward the boundary of this interval (thus performing the
tunneling operation, or satisfying the stopping criterion). To do this, we
define a Lyapunov energy function

E(x(l), XJ(”))= (3/4) k(x(f)-xj(*))4/3, (39)

We note that ~(x) is positive definite on 9JxJ(”)) and ~~u(x’(”)), and is
positive se~idefinite in Q~(xJ(*) ), assuming azerovalue only at x’(”). Further,
note that E(x, x‘(”)) is a strictly increasing function of 11x– X’(”)l) on both
$!l~,(x’(”)), and respectively assumes its maximum values on the lower and
u-pper boundaries of $2~,(x’(*) ) and ~~,, (x’(”)), The time derivative of
E(x(l), x’(”)) is

(d/df)E(x, Xj(”))

=k(x–x’(*))”3x

=~2(x–#(*))2/3 -k(dj_(x)/dx)(l/[ l+exp(f(x) +a)])(x-x)(*))”3; (40)

k is a positive constant; from the discussion in Section 3.4, the value of k
for positive flow is chosen so that x >0 on ~~u(x’(”)). Similarly, for negative
flow, k is chosen so that x <0 on ~~,(x~(”)), Note that, for both cases (i.e.,
positive and negative- flow), the same sufficient condition for k in (32)
holds. Thus, (d/dr)E(x, x’(”))is positive on ~~~(x)(”)) and QJ~u(xJ(”));

—
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(d/dl)~(x, X’(*)) assumes a zero value only at x’(”). This implies that
11x-X’(”)ll must also be increasing with time on QT,(x’(*)) or QU(x~(’)).
That is, from any initial condition in QT,,(x-’(”)), (28) will flOW to XAL (nega.

tive flow). Similarly, from any initial condition in g~u(x~(”)), (28) will
flOW to x~,, (positive flow).

Hence, we have just shown that (28), when perturbed to x’{”+ q will

flow to a point x~(o) whose functional value is just below J(xj(”)), i.e.,
~(x’(o)) =~(x’(”)). If no such point exists, the system will flow to the boundary
of ~. Also note that the analysis shows that any nonzero perturbation size
c leads to correct tunneling behavior. Further, because of the properties of
the terminal repellers, the tunneling flow must occur in finite time.

We also need to consider the behavior of the tunneling phase if Xj(”)

is actually an inflection point, and not a local minimum. Assume that the
inflection point x’(”) was reached by a minimization phase which originated

in ~~ (i.e., from a positive flow system). In this case, .93~U(x~(*))is a zero
length interval. A small perturbation x’(”)+ ● will put TRUST in another
gradient descent phase. Similarly, ifj(x) is infinitely degenerate, and thus
flat in Q7U(x’(”)), the repeller-induced flow will push the system over the
degenerate interval.

Next, consider the behavior of the TRusT dynamical system in a gradient
descent phase. Assume that a tunneling phase has been completed, and we
are at point x“()). This point must be within a basin of attraction of a lower

local critical point, e.g., such that ldJ(x)/dxl # O and~(x~(o)) z~(x’(”)) holds.
The dynamical system (28) then becomes

x=–(dJ/dx)( l/[l+exp(J(x) –J(x’(”))+a~]). (41)

Again, we can analyze the convergence properties of this system by defining
a Lyapunov energy function,

lE(x)=f(x) -f(xJ+’(”)),
where Y+’(”’ is the next adjacent lower critical point ofj(x) and ~(x) is
defined on the interval [x’(0),A#+ ‘(”)].

The time derivative of E(x) in the domain is

(d/df)E(x) =(aj-(x)/c3x)x= -(d~/dx)’(l/[ l+exp(~(x)+ a)]), (42)

which is a negative semidefinite function, assuming zero value only at
d\(x)/dx = O. Thus, from x’(u), the dynamical system (28) will converge to

a lower critical point x’+’(”), where we reset x* to x’+’(”) and repeat the
same process, and the above analysis procedure holds.

Thus, the above analysis has shown that, starting from a local minimum
or inflection point x-’(”) and applying the algorithm outlined in Section 3,

Eq. (28) will converge to another local minimum or inflection point x“’’”),
or flow out of $2 if there are no lower minima. We call x’+’(”) the next
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effective local minimum, as there may be many local minima located between
~J(*) and X-’+’[”), but these lower minima have functional values greater than
f(x’(”’). Thus, by the inductive analysis of the two above phases, TRUST

(assuming a positive flow system) will find a sequence of effective minima,

x ‘(*)<X2(*)<. “ “<x’(”), (43)

such that

J(x’(*)) >j-(x2(” ))> “ “ “>j-(x’( ”)). (44)

From x’(”), (28) will flow to Xu, and we know from the above discussion

that no lower local minima can exist in the interval (X’(*), XU]. Thus, the
last local minimum found must be the global minimum.

The above inductive analysis assumed that the TRUST algorithm was
initiated at local minimum x’(”). We now turn to the operation of TRUST

*
from its initial conditions, to show that it will converge to the first effective
local minimum x’(”), if it exists. From there, the previous inductive analysis
holds. Assume a positive flow system (a similar analysis holds for negative
flow). Several possible different conditions at XL have to be considered.

Case 1. XL is a local minimum. The above analysis holds immediately.

Case 2. xL is an inflection point. If J(x) is increasing in a positive

flow neighborhood of x~, then an upper tunneling region exists. Initiation
of (28) at XL+ E will initiate a tunneling phase, which as shown above will
either flow out of the domain 9 if no global minimum [that satisfies the
local minima constraints (3) and (4)] exists, or will reach a point where
subsequent gradient descent converges to the first effective local minimum.
IfJ(x) is decreasing in a positive flow neighborhood of XL, then the system

enters a gradient descent phase, which will converge to a lower local critical
point.

Case 3. XL is a local maximum. Initiating (28) at XL+ ● puts (28) in
a gradient descent phase, which will converge to x’(”).

Case 4. dJ(x)/dx >0 at XL. An upper tunneling region DT,, (xL) exists.
According to the previous analysis, perturbing x to XL+ E will cause (28)
to reach either an adjacent tunneling point, where subsequent gradient
descent will find the first effective local minimum or inflection point x“”’,
or will flow to Xu if in fact ~(xL) is the lowest

Case 5. dJ(x)/dx<O at XL. At XL+E,
gradient descent phase, converging to the first

value ~(x) assumes in Q.

(28) immediately enters a
effective local minimum or
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inflection point, if one exists; else, gradient descent will flow to XU if no
such point exists in 9.

Thus, in the continuous case and under the assumptions in Section I, TRUST
isguaranteed to find the global minimum in a one-dimensional interval, If
the function is degenerate (i.e., several global minima), TRUSTwill determine
only the first encountered global minimum. In order to locate the consequent
global minima, we iteratively reset XL to xG~ + c and restart there.

5. TRUST Algorithm: Multi-Dimensional Case

The one-dimensional algorithm of Sections 3 can be extended to handle
multi-dimensional global optimization, though convergence to the global
minimum is not absolutely guaranteed. Let f(i) be a function of the n x 1
state vector i, and define the multi-dimensional functional

E(Y, X*) =log(l/[1 +exp(-(~(i)+ a))])

–k(3/4) i (x, –X;)’’%(j(i))
j=l

= E,UJX, i“)+ Wr,p(x, i*)u(f(f)). (45)

The multi-dimensional subenergy term is analogous to the one-dimensional
subenergy function. The portions of the objective function surface which
lie above the zero subenergy limit J(i*) are flattened by the use of the
subenergy function (as shown in Fig. 4).

Upon application of gradient descent to l?(~, x*) in (45), we obtain
the dynamical system

Xj= ‘(d~(i)/dXj)(l/[1 +eXp(~(i) +a)])+k(Xj ‘X~)’’J~($(.i)), (46)

where xj denotes thejth component of Y. Equation (46) has a highly parallel
structure consisting of n weakly coupled differential equations. This dynami-
cal system is analogous to the dynamical system described by Eq. (28). The

initial conditions, operation, and stopping criterion for Eq. (46) are also
highly analogous to those discussed above.

In the multi-dimensional case, i* is initially chosen to be one corner
of the hyperparallelepiped 9, usually x? = x,~, Vi. A repeller is placed at
X*. It should be noted that the repelling terms in the multi-dimensional
case can be interpreted as hyperplane repellers and are active whenever

?(~) >0. The initial state of the system is set to i*+g, where z is a small
perturbation which drives the system into Q. We assume that E has uniform
sign during the optimization, analogous to the consistent positive or negative
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flow operation of the one-dimensional algorithm. Depending upon the
relative values of j(~*) and J(x*+ ~), the dynamical system will initially
be in a tunneling phase or a gradient descent phase. These phases are
analogous to the one-dimensional case. An appropriate value for the repeller
power k can be determined by analogy to (31)-(33). The multi-dimensional
stopping criterion is also similar to the one-dimensional case. When the
system state flows out of the domain boundaries, the last local minimum
found is taken as the global minimum.

Theoretically, convergence of the method to a global minimum is not
formally guaranteed in the multidimensional case due to the constant
perturbation direction vector Z However, in practice, due to its global
descent property, the system dynamics escapes local minima valleys with
help of the repeller effect, and flows into lower valleys of the error energy
function using the information it gets from the gradient term.

6. Benchmarks and Comparison to Other Methods

This section presents results of benchmarking tests carried out for the
TRUST algorithm using several standard one- and multi-dimensional test
functions taken from the literature. In Tables 1-4, the performance of TRusT

is compared to well-known global optimization procedures. Specifically in
Tables 3 and 4, TRUST is compared against the best competing global
optimization methods, where the term “best” indicates the best widely
reported results the authors could find for the particular benchmark test
function. The criteria for comparison is the number of function evaluations.
For the
iteration

Table 1.

TRUST algorithm, the function evaluation count includes every
from the initial conditions to the satisfaction of the stopping

Comparison of TRUST and other algorithms based on number of function
evaluations.

Method

Function SM TM DT IM FFA TRUST

l(i) 10822 1496 1469 168

l(ii) 10822 1496 1132 168

l(iii) 10822 1496 32

I(iv) 375 76

2(i) 241215 12160 6000 7424 588

2(ii) 241215 12160 6000 7424 269

2(iii) 408 256
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Table 2. Comparison of TRUST and other algorithms
based on number of function evaluations.

Method

Function SM DT FSA TRUST

3(i) 38

3(ii) “ 1414 22

3(iii) 21

3(iv) 7871 9228 21

4(i) 19940 74
4(ii) 58

5(i) 7390 40

5(ii) 4853 94

5(iii) 8235 163
5(iv) 27859 1449

Table 3. Comparison OfTRUST and other algorithms based on number of function
evaluations.

Method

Function SA MRS P CRS SCA MLSL TRUST

6 5917 1176 179 77

7 160 133 1800 1558 206 60

Table 4. Comparison of TRUST and other algorithms based on
number of function evaluations.

Method

Function PIJ BAT STR ZIL BRE TRUST

8 462 120 45 33 25 19

9(i) 3817 816 I 50 125 161 69

9(ii) 3817 816 150 125 161 99
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criterion outlined in Section 3.5. We note that, in every benchmark, TRUST
converged to the global minimum.

In accordance with Section 3.1, the constant a assumes the value a = 2
in the sequel. Furthermore, Eq. (28) was integrated using a simple Euler
integration scheme; that is,

;=[i(k+ 1)–x(k)]/Af = –T[d~(i, i*)/d.f], (47)

where At is the stepsize. The time constant 7 is taken to be 1 in all cases
studied here. For highly nonlinear and stiff objective functions, more robust
integration schemes are preferable (Refs. 6 and 7). We note that, for Euler

integration, the selection of the integration stepsize must be done carefully
to ensure stability. We do not provide an analysis of the stepsize ‘in this
paper, since (as we have previously stated) our ultimate goal is implementa-
tion of this algorithm in continuous analog VLSI circuitry (Ref. 1), where
such considerations do not apply,

A description of each test function, the relevant initial conditions,

domain of interest ~, TRUST parameters, and integration stepsize are given
in the Appendix. In Tables 1 and 2, the following abbreviations are used:
SM is the stochastic method of Aluffi-Pentini (Ref. 11); TM is the tunneling
method of Ref. 3; DT is the dynamic tunneling method presented in Ref.
4; IM is the interval methods of Walster (Ref. 12); FFA is the filled function
approach of Ref. 13; and FSA is the fast simulated annealing method of
Ref. 14.

In Table 3, SA is an abbreviation of simulated annealing (Ref. 15);
MRS is the multiple random start method (Ref. 16); P is an abbreviation
of the P-algorithm of Zilinskas (Ref. 17); CRS is the controlled random
search of Price (Ref. 18); SCA is the search clustering approach of Torn
(Ref. 19); and MLSL is the multi-level single linkage method of Timmer
(Ref.2).

In Table 4, PIJ, BAT, STR, ZIL, and BRE are respectively abbreviations
for the results of Pijavskij, Batishchev, Strongin, Zilinkskas, and Brent
(Ref. 17).

7. Discussion and Conclusions

This paper has introduced TRUST, a novel deterministic methodology

for unconstrained global function optimization, which combines the concept
of terminal repellers with a new subenergy tunneling function. Global
optimization is formulated as the solution to a system of deterministic
differential equations which incorporate these novel features. The flow of
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this dynamical system leads to global optimization. It was shown that, under
very general assumptions (see Section 1), the algorithm is provably conver-
gent to the global minimum in the one-dimensional case,

Benchmark comparisons (Section 6) with other global optimization
procedures have demonstrated that TRUST is significantly faster, as measured
by the number of function evaluations, than the best currently available
methods for these standard functions. Furthermore, our algorithm systemati-
cally converged to the global minimum in all benchmark simulations, even
in the multi-dimensional case.

The number of function evaluations is only one criterion to be used
in comparing this algorithm with other algorithms. It is important to empha-
size that TRUST has a number of other advantages. First, while the algorithm
is not guaranteed to find the global minima in multiple dimensions, it does
have a global descent property. It is thus practically useful for multi-
dimensional problems. For n-dimensional functions, the algorithm can be
computed as the parallel solution of n weakly coupled differential equations.
Consequently, the complexity and computational cost of the algorithm is
not strongly dependent upon the problem dimensionality. Second, this
formulation naturally leads to a simple and computationally efficient stop-
ping criterion. Third, TRUST is robust with respect to the basic algorithm
parameters. Necessary conditions on the algorithm parameters were derived
in Section 3.4. Finally, as also discussed there, the effective tunneling
procedure employed in TRUST has a number of additional advantages over

other deterministic tunneling methods.

Most importantly, the structure of our formulation makes it suitable
for implementation in parallel analog VLSI circuits of :~e type used for
artificial neural network architectures. Such a hardware implementation
will lead to even more dramatic speed enhancements. For many applications,
the algorithm may become real-time. In fact, analog VLSI circuits which
implement terminal repellers and gradient descent have already been suc-
cessfully designed, fabricated, and tested (Ref. 1). These circuits will be the
subject of a forthcoming paper.

8. Appendix: Test Functions and Parameters Used in Benchmark Studies

The functions used in the benchmark studies of Section 6 are listed
below. For the first function, we also summarize in tabular form the relevant
parameters used in benchmark study. In this table, ~~ and fu are respectively
lower and upper bounds of the domain of interest ~; -fI is the initial
condition; { is the TRUST perturbation; AI is the Euler integration stepsize;

and k is the repeller power. The benchmarking parameters for the other



JOTA: VOL. 77, NO. 1, APRIL” 1993 123

functions can be found in Ref. 20. In all simulations, TRUST used the same
values for $2,11, and AI as the methods to which its performance is compared.

Function 1. Two-Dime.nsional 6-Hump Camelback Function:

Y(x,, xz)=[4- 2.1xf+(x;/3)]x: +x,x,+(-4+4x:)x;.

Number of local minima= 6;
number of global minima = 2;
global minimum found by TRUST:

[x,~~, xz~] = [0.08983, -0.71265], for (i), (iv),

[x, GM, XmM] = [-0.08983, 0.71265], for (ii), (iii).

Function 2. Two-Dimensional Shubert Function:

J(X,, XJ=
[

~ icos[(i+l)x, +i] 1[ 1~icos[(i+l)x, +i] .
i=l i-l

Number of local minima= 760;
number of global minima = 18;
global minimum found by TRUST:

[Xl~~, X,~~]= [-7,08351, -7.70831], for (i), (ii),

[x,GM,xm] = [-0.80032,-1.42513], for (iii).

Function 3. IV-Dimensional Test Function:

i=[X,, X~,.. ., Xj, X~J,X~J.

Number of local minima= 2“;
number of global minima = 1;

global minimum found by TRUST:

[f~~] = [-2.90354, -2.90354,..., -2.90354].

Table 5. Benchmark parameters for Function 1.

Trial ‘1 L Xlu xl L X2 u XII X2\ c, cl AI k’

(i) -3 3 -2 2 -3.0 -2.0 0.01 0.01 0.01 10

(ii) -3 3 -2 2 3.0 2.0 –0.01 –0.01 0.01 10

(iii) -3 3 -2 2 -2,0 -1.0 0.01 0.01 0.10 10
(iv) -3 3 -2 2 –1.6 0.9 0.01 -0.01 0.10 10
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Function 4. Two-Dimensional Test Function:

j-(x, , X2) =0.5X;+0.5[1–COS(2X, )]+ X:.

Number of local minima= several;

number of global minima = 1;

global minimum found by TRUST:

[x,~~, x,~~] = [0,o].

Function 5. Two-Dimensional Test Function:

j-(x,, x,) = 10”X; +X:- (X; +X:)2+ 10”(X; +X;)4, n=–m.

Number of local minima> 3;
number of global minima = 2;
global minimum found by TRUST:

[XC;~] = [0, 1.38695], fern = 1,

[i~~] = [0, 2.60891], for n =2,

[i~&f] = [0, 4.70174], for n =3,

[iG~] = [0, 8.39401], for n =4.

Function 6. The Two-Dimensional Rastrigin Function:

J(XI, X2)= X;+X; –COS(18Xl) –COS(18X2).

Number of local minima= 50;

number of global minima = 1;

global minimum found by TRUST:

[x,~~, x,~~] =[0,0].

Function 7. Two-Dimensional Branin Function:

-/lx,, X2)=[%- (5.1/4 m2)x; +(5/ fl)x, –6]2+ 10(1 – l/87r) COSX1+ 10.

Number of local minima= 3;
number of global minima = 3;

global minimum found by TRUST:

[x,~~,> x*~~ ] = [3.14158, 2.27505].

Function 8. One-Dimensional Test Function:

~(x) =sinx+sin(10x/3 )+log x-0.84x.

Number of local minima= 3;
number of global minima = 1;
global minimum found by TRUST:

XG., = 5.19978.
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Function 9. One-Dimensional Test Function:

f(x)=-
{ 1

~ sin[(i+l)x+i] .
isl

Number of local minima= 20;
number of global minima = 3;
global minimum found by TRUST:

xG&,f= –6.72004, for (i),

xG~ = 5.84633, for (ii).
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