TRANSITION EDGE YBa$_2$Cu$_3$O$_7$-x MICROBOLOMETERS FOR INFRARED STARING ARRAYS

M.C. Foote,(1) B.R. Johnson,(2) B.D. Hunt,(1) R.P. Vasquez,(1) and J.B. Barner(1)

(1) Center for Space Microelectronics Technology
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109 USA 818/354-9009

(2) Sensor and System Development Center
Honeywell, Inc.
Bloomington, MN 55420 USA 612/887-4505

A potentially important application of high-temperature superconducting microbolometers is infrared staring arrays. In many such staring arrays, sensitivity is more important than speed of response. "In this case, it is desirable to design low-thermal-mass pixels that are thermally isolated from the substrate. To this end, Johnson, et al. at Honeywell have fabricated meander lines of YBa$_2$Cu$_3$O$_7$-x (YBCO) sandwiched between layers of Si$_3$N$_4$ (SN). The silicon was etched out from under each YBCO meander line to form low-thermal-mass, thermally isolated microbolometers. These devices showed responsivities up to 60 kV/W with a 16 μA bias, and a noise equivalent power of 9x10^-13 W/Hz$^{1/2}$ at 71 Hz with a 5 μA bias (neglecting contact noise). A drawback of the Honeywell design is that the YBCO is grown on a SN underlayer, which precludes the possibility of epitaxial YBCO growth. The YBCO therefore has a broad resistive transition, which limits the bolometer sensitivity, and the grain boundaries create excess noise. We are improving the Honeywell microbolometer design by using epitaxial YBCO grown on a YSZ buffer layer that is epitaxial with the underlying silicon. The YSZ thus serves as the lower layer of the membrane structure and protects the underside of the YBCO meander line from the final etching solution.

Correspondence
J PI. Authors: MS 302-231
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Burgess Johnson
MN09-A200
Sensor and System Development Center
Honeywell Inc.
10701 Lyndale Ave South
Bloomington, MN 55420

Submit To: High Temperature Superconducting Detectors: Bolometric and Nonbolometric
Chairs: M. Nahum and J.-C. Villegier
Presentation: poster or oral