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ABSTRACT (108 words)

We estimate the time it takes to lcarn an unknown signalling alphabet as a function
of alphabet size and other paramcters, a scaling law. The model assumes the siguals
are orthogonal vectors in a Fucledian space, withstrong Gaussian noise added. The
incremental learning procedure adjusts the current estimate of the alphabet by mnoving
the signal closest to the received signal even closer to it, and the others further away. We
show convergen ce, although in sometimes a very long time. Simmulations snow that the
theory tracks reality. We also compare jjcremental with batch learnin g, or full jpaxiinum:
liklihood over all the mass of received data. We find conditions where inerementa | Jearning

is almost, as good as batch,and conditions whereit isn’t,
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SUMMA RY

This paper derives arigorous scaling law for incramental aud batch learning in the
following situation. ‘1’here is anunknown set of n orthogonal or biorthogonal signalsin n
rcal dimensions. Presentations are made of randomnly sclected signals from the set with
gaussian noise added. The first goal is to estimate the signal set incrementally. After
cach presentat 1on, the current best estimate of the signal set is updated by moving the
winning signal, the one closest to the reccived signal plus noise, closer to the received
signal plus noise. The other 71- 1 signals arc moved away. Fstimnates are derived for how
many presentations are needed to get within a given mean-square angular error from the
true signal set with high probability, and simulations arc conducted to verify validity in
practical situations. The incremental approach is compared with batch learning, i.e., full
maximun- likelihood on the entire set of presentations, which delays making estimates
until all the data (presentations) arcin. The result is that batch is not inuch better than
incremental learning in the biorthogonal case, but inthe orthogonal case, batch can be
truly better. Thus, incremental learning is sometimes bad.

The question first considered relates to what others sometimes call unsupervised comn-
petitive learning but is called here ineremental learning. We have (at most) n orthonormal
signals in nn Fuchidean dimensions. Here nis assumed known , or at least an upp or bound
for the number of dimensions is known. We don’t know, though, what the signal set is,

and maybe not even the number of signals. Ranidor n unit vectors would be approximately

orthonormal, a not much different probleimn.

We receive random signals with zero- mean additive gaussian noise of unknown noise
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power (orthogonal case), and also With arandom sign flip (biorthogonal case). Biorthogo-
nal signal scts (orthogonal signals and their negatives) are more eflicient of chanuel band-
width in gaussian noise, so there is ample reason for considering this case. As will be seen,
though, one reason fox considering biorthogonality is to contrast it with the orthogonal
case. Wetry to learn what the signalling set is on the basis of experience, that is, given
random independent presentations of the signals. Theresults of this paper on the nunber
of samnples needed are concerned with the case of strong noise, We start with a random
or any orthonormal set of unit vectors as our initial estimate. After receiving the first
signal plus noise, we compute the distance to cach incinber of the initial basis sct, and find
the closest. The new basis set, as we said, is obtained from the old by moving its closest

member toward the received signal- plus noise, and all the others away.

This modification process is much as in stochastic approximationor feature maps.

Al - - - - M . . » e
There are similarities, too, with work on unsupervised learning in control theory. The
estimates here are the first analytic estimates of learning time, however, in situations that
we treat. Adaptive Resonance Theory or ART and non- parametric regression also touch

on what we are doing.

The process of adjusting the orthonornal basis is repeated after cach new received
signal- plus- noise. The estimate of the signal set is updated cach tiine in a potentially
uncnding process of repeated presentations. The number of signals need not be exactly
known; a method is derived for estimating the number. That is why we only need a upper

bound on the number of dimensions.

If aconstant update rule is used, as it is i this paper, we will sce that eventu ally
a steady state is recachicd with a finite mcar 1 square error between each member of the
cstimated orthogonal signalling set (which will not be exactly orthogonal) and the closest
member of the true orthogonal set. The nuinber of sainples needed o get aceeptably close

(depending on a small real paramecter €) is called the learning time.

The term “ansupervised” incans that we are not told what the actual signal presented
was. “Competitive” means that the different signals compete with each other to be chosen

if a given signal vector is a member of the estimated signalling set at a given step, then



nothing, close to it can also be amember. We move closer to the assumed presentedsignal,

and the other vectors are moved further away. A “scaling law” tells how largeasample
is needed to learn, i.e., get C.lose to thetrue Set, as the problemn size inecrcascs. This is
somctimes called the “curse of dimensionality” in statistics, for thesample size here can

become large indeed, and, in batch learning, everything interacts with everything elsc.

A possible interpretation of the biorthogonal case could arise from Code Division
Multiple Access (CDMA) as could be used for advanced digital cellular radio telephone.
Inthis, anumber n of users arc cach given onc waveform to signal with by binary antipodal
signalling. Then waveforms arc orthogonal to cach other, to avoid mutual interference.
The waveforms are constructed from n dimensions corresponding to n “chips,” which can
be thought of as snort intervals where the waveforin can take one of wo Values, say a phase
of 490%0r - 90°. However, the dimensions can more generally corresponding to samples
at the Nyquist rate for the bascband channel. Thelearning then refers to somncone who
dots not know the orthogonal signalling set trying to figure it out to get freeservice by
choosing a wavcforin as far from othersinthe set as possible. Another interpretation of
incremental learning could be in language acqusition where the signal set corresponds to
the phonemes of a language. Batch learning, which we also consider, could perhaps be
considered like some birdsong learning in some specics.

The biorthogonalsignal set whit]] we consider corresponds to using the assigned wave-
form or its negative to transmnit randomn binary data. The fact that we are presented with
only onc waveform at a time would correspondto light traflic, or to the learning receiver
being closer to one transmitter than to the others. The fact that the noise is strong inthe
totalreceived signal is quite reasonable, andis the case we consider in this paper. For if the
signalling set is kniown, the noisc power added to the matched filter output of the detector
can be small for low crror probability, and yet the noise vector added to the signal vector
can have large mcan square, which is n times the variance of the matched filter output.
Morcover, if there is crror- correcting coding, 011 top of the CDMA| even the noise on the
matched filter output need not be small: it can be moderate, say asignal- to noise ratio
of 1(0 dB)orless. This explains why some of our results arc derived for the case where

thie noisc vector mean square is comparable to or greater than the number of dimensions.
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1t is a reasonable operating, region for CIDMA.

We develop a formal mnodel for the problemn, or actually for a slightly more general one.
The probability distributions of the received signal-plus-noisc are evaluated. The effect
of the received signal on the current estiinated orthonorial set is deterinined, and this
gets converted into an expected change, by evaluating certain high-dimensional integrals.
Some products of expectations needed to be evaluated. We introduce a matrix M whose
cigenvalues help determine the rate of convergence of learning. The special case of equal
signal probabilitics is worked in detail. It is particularized to the case of strong noise, for

w] iich the convergen ce time is evaluated.

The variance of the crror angles is found and an example worked out. A typical result
is that the incremental learning time Ty and angular variance v?(< 2 ) arc related in strong

noisc by
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The ceflect of error angle on the CDMA model is estimated, and the problemn of not being
closc to the correct signal set at the start con sidered.  Themore general Case! of uncqual
probability of presentation is also briefly considered. We then allow a smaller number of
orthonorinal signals to be present (and their munber learned) than the dimensionality of
the space. This may bea more realistic assumption than assuiming the number of signals
known. Thecase of 110 signals, i.e., detecting whether signals are being used at all or
whethier one is receiving pure noise, is also covered.

The above is the basic main theme, but we also consider some side themes of interest.
Inthe description just prescented, the signalling set used was biorthongonal, not orthogonal.
A given orthonormal basis vector or its negative was chosen with equal probability for cach
presentation. Thus, the orthonormal set is not strictly speaking unique. It is only defined
up toasign flip oncach basis vector. We make the modifications necessary to do the strict
ort hogonalcase. The two cases are compared; there is found to be not inuch saving in

incremental learning in knowing that a particular sign of the unknown signal vector” will

always be chosen.



We then tackle an even harder problemn, learning for the orthogonal case using full
maximuin- likelihood bateh instead of ineremental learning. Here “batch” is identified with
cstimating the signal set after all presentations are made. Both the orthogonal and the
biorthogonal maxiinum- likelihood cases are donce, and the four results compared: orthog-
onal and biorthogonal, incremental and bat ch. The maximuim- likelihood estimate in the
orthogonal casc has a learning timne proportional (for large noisc 62 ) to 0® rather than
to 0%, as it is for the incremental orthogor 1al case. This suggests that the incremental
algoritlin docs not fully capture the constraint of exact orthogonality. In the biorthogo-
nal case, though, the maximum- likclihood estimate has the samne o ® behavior as for the

incremental algorithin, but the cocflicient of o in the batch case is smaller by the factor

(4(log, 7,)3/772)x (1/og(1/nv?)),
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where v° is the small desired variance after learning.

We finally develop in our most recent work more accurate cstimates valid for Imsc)ll-

able sample sizes. These refined estimates are compared with simulations and the results

showr i to agree well with our theory.




