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Abstract

}’erccption  control consists ia optimally tuning sensor or
processing parameters iu order to iucrcase  pcrccptioa cf-
ficicucy  audcr reqaircment coustrai]its or while adjust.iug
to the cavironmcnt. In this palm, wc aclclrcss perception
control iu the task of obst aclc det.cction  for cross-country
navigation. Wc show how to maximize tkc vckiclc  safety
at a gives velocity, or iavcrscly  lIow to derive tkc maxi-
mum speed for a givca  safety. ‘1’kis optimization problcm
rcquirws the joint analysis of (i) how the vchiclc  velocity
sets looli-ahead rcquirc]ncats, (ii) how the com]mtational
cost of pcrccplion  is rclatecl  1.0 tllc  percept  io]l var iables ,
window of attcmtiou  and image resolution, aud (iii) how
the reliability of the obstacle dct.ectiou  system is related
to tkcsc varial,lcs.  “1’his criterion relics oa cxpcrimcntal
pcrformaucc  statistics. Our  systcm  has bccu implcmcatcd
aud kstccl iu outdoor operation.

1 Introduction

l’crccption,  dcfinccl as signal acquisition and interpre-
tation, is traditionally cousidcrcd  as a complex ancl
co)lll)tltlatior~ally cxpcnsivc  process. llowcver,  currcut
percept ion  systlcms  arc oftcu doing more than ncccs-
sary for the task at hancl. A parallc]  al)proach to hrutc
for-cc sensor dcvclol)lncnt,  is to c.onsidcr pcrc.cption as
a controllab]c  process, i.e. to usc available knowledge
for purl) oscful]y  tuning tllc sensor’s controllal>]c  vari-
ables,  in order to optilually  perform the task.  ‘i’his
al)l)roacll  has also Lccn tcrlucd  active. pcr-ccpiiou  [I],
pcrccpiion  plonning  [2], task- dirdd perception  [3] or
sensor  u)anagcmcnt,  and is rccciving  incrcasiug atten-
tion.

Know] cclgc relevant to perception control includes (i)
tlIc environment (world Inodcl), (ii) tllc scusor,  or pcr-
ccptlion system (including processing moclulcs), (iii)
tllc task it,sclf (pcrformancc  criterion). ‘1’llis knowledge

) ~llis work was suppor~cd by the Nat icmal Aeronau~ics and
S])ace Ad,niuistraticm (NASA) m)d !IIC I)cfm]sc Advallccd l{c-
scarclI l’rojccts  Ag,cIIcy (I) AI{I’A)

is usually inaccurate and/or iucomplctc.  I’crception
parameters inc]uclc the sensor location, physical and
dcvicc acquisition parameters (aperture, focus, focal
lcugth,  gain, . . . ) and processing pararnctcrs.  Opti-
mally achieving a. task means minimizing perception
cost (computation time) and maximizing performance
(rcliabilit,y).  Usually these arc competing goals and
modeling how changing parameters affects both per-
formance  and cost is csscntia].

‘1’llis  paper shows how to instantiate these general per-
ception  control issues for tllc specific task of obstacle
detection during cross-country navigation of a robot
vclliclc. Obstacle detection is an esscutial  compoucnt
of robot vchiclc systems for planetary exploration, dc-
fcnsc reconnaissaucc,  and other applications. ]n this
coutcxt,  the role of perception control is to allocate
computing rcsourccs  so as to inercasc  n a.vigation  cfL
cicncy while staying within specified safety margins.
OJJC of the primary ways to reduce the cornputationa]
cost of perception is to process sub-win clews of tJIc inl-
agc. “1’l~is foc.us-of-attention techuiquc  is often used in
road-following ancl feature-tracking systems [4] [5] [6].
III this paper, wc extend tl]is by explicitly taking into
account geometric uuccrtaintics and by adding the in~-
agc resolution as a coutrollablc  parameter.

III order to determine tllc perception parameters nlax-
imizing safety at a given driving speed, wc must (i)
clcrivc a pcrccI)t,  ion reliability measure and relate it
to the col}trollak)lc  variables of tlIc perception systcrn,
(ii) analyze lIow the computational cost of perception
clcpcnds  on these variab]cs,  (iii) unclcrstaucl how the
driving speed and the computation time set rcquirc-
lncnts  on the part of the path that, must be ob.crvcd
at cacl) step (look-ahead rcquircmcnt)  and (iv) show
how the previous three issues arc intcrrclatcd and how
to SOIVC the rcsultiug  optimization problcm.  q’hc pa-
per begins with a review of the design of the obstacle
detection systcm  in section 2, then addresses the above
issues irl sections 3 to 6. Section 7 discusses the irnplc-
mcntation  of the control strat,cgy  and the cxpcrimcuts
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that have Lrccn performed to date.

2 Obstacle detection for
cross-country navigation

W C require  (hat, the vchiclc drive colltinuous]y  at a
vcloc.ity for which “adcquatfc>’  safety margins in the
prcscncc  of obstacles can bc assured. For sinlplic-
ity, wc IIavc lrcgan by dcvclopillg a IJcrccj)tion  control
mcihodology  a.ssulning  that t,hc response to detecting
an obstac]c  is to stop before iL. TIIC methodology ap-
l)lics to any range imaging sensor and a variety of ob-
stacle  detection algorithms; in this paper, wc apply
it to a pa.ssivc, stereo visiou-ba.scd  range imaging sys-
tcln and a very siml,lc  obstac.lc detection algorithm
that J 1’1, has prcvious]y  demonstrated in successful
outdoor navigation cxpcrinm]]ts  wit]]  botl  I NASA and
military vclliclcs [7] [8].

‘1’llc main processing steps of the stereo vision and ob-
stacle  detection systcm  arc as follows:

1.

2.

3.

4.

build bandpass-fi]tcred  irnagc pyramids from an
inl)ut  stereo image pair;

pcrforln  cross-corrclat,  ions on any single level of
tl}c stereo ilnagc pyra]nid  to cxtimatc  disparity at
every ljixel (nolni]la]ly)  of the ilnagc pair at tllc
chosen lCVCI of resolution;

compute the range from tllc disl)arity  at every
pixel,

ap])ly obstacle dctcctlion algoritllnls  to tlIc result-
ing range ilnage.

Steps (1) to (3) arc clcscribcd  in detail in [8]. “lb date,
the obstac.]c  detection algoritllnl  (step (4)) has been
kept very simple to enable real-time illll~lclllclltatioll
with a single 68040-based C1’11.  Obstac]cs  arc assumed
to bc near-vcrtica] step displaccmcmts  on all ot,hcrwisc
flat grou]]d  plane. As illustrat,cd  ill figure 1 , tlIc alg~
ritllm  checks for such obstac]cs  by using pairs of pixc]s
(r’ and ~) in the same column of the range image to
measure tlIc height displacement bctwccn  tlIc two pix-
CIS. For cacll pixel i, the inc]udcd angle bctwcwn r’ and
~ lines of sight  is set to subtend a fixed obs(aclc  size,
clcnotcd  sfcphcigltt. If tllc~hcight  diffcrcncc measured
bctwccn i and ~ (denoted h) cxcccds a given threshold
1, then t,hc pixc] is marked as an ol.)stac.lc. Au illustra-
tive cxarnplc  is slIown in figure 2 where pixels at wllicll
all obstacle has been dctcctcd  arc outlined.

‘l%is obstacle detection systcm  can bc controlled at
three lCVCIS:

●

●

●

image resolution (from 64x64 to 512x512),

window of attention: steps (2),(3) and (4) (stereo
vision and obstacle detection) can each bc per-
formed in a specific sub-window.

detection threshold, which may vary over the in~-
agc.

“lb dctcrminc  how to choose these parameters, wc will
develop a model of their cffec.t on the reliability of pcr-
ccl)tionj tl]cn derive the mutual col)straints  bctwccn
the pcrcept,ion parameters and vchiclc velocity.

i

p

Figure  1: Obstacle detection algorithm

l’igurc 2: F}xamplc  of obstacle detection result

3 Reliability criterion

‘1’hc sys(cm  performance is charactcrimd by the oc-
currence  rate of two possible failures: false alarms  and



SubnlitLcd  to !IJC  1993 1111,;1;  irit. conf  cm ltoho(ics  and A u iomafion,  May 93, A flant  a, Georgia 3

missed detections. A lower threshold t rcduccs  tbc
risk of missing an obstac.lc, but also incrcascs  the false
alarm rate, Operating at a higbcr  resolution rcduccs
tllc rates of both  errors, but at a l~igllcr cost. l>cc.ision
theory offers a broad framework for tackling this  kind
of trade-off prob]cm.

3.1 Decision theory basics

Suppose tl]at wc IIavc to take a dcc.ision  d in a space
l) WI1OSC consequences dcpcud on an unknown state of
nature UJ in a. space ~, cllarac.tcrizcd  by a l~robability
distribution p(w).  ‘J’l]c  conscqucnccs  arc wciglltcd by
a loss function l,(d, w). I.(zo, d) is tllc loss caused by
taking  tllc decision d if w is tllc true state of nature.
‘1’IIc cxl~cctcd loss, or risk, of taking the dccisioll d
without knowing w is:

I/(d)  = J IJ(d, w) p(w) dton
Usually, tbc loss of a correct decision is O and failures
arc associated positive 10SSCS. ‘J’lIc  problcm  is to fincl
the decision that lninimizcs  tbc risk.

3.2 Obstacle detectability

‘J’l]c process that wc cousidcr  is tl]c obstlaclc  detector
at onc pixc]. q’his  l)roccss incluc]cs tl]c detection de-
cision rule: if the measured height // is more than tllc
tllrcsllold  t, tllc outcome is O (for obstacle), if not the
outc.olnc  is 0 (for travcrsab]c  terrain).

‘1’lic decis ion l)rol)lcm  takes  p]acc at tllc ICVCI of tllc
design of the clccision rule, i.e. wc want, to specify tllc
%cst’) threshold i. ‘1’IIc decision paralnct,cr  is f and
tllc state of natrrrc  is tbc actual  ol)staclc  llciglltl h at
tllc observed 3-1) point, P (l/ is O w]lcrc tl]crc is no ob-
stacle).  ‘Jil)c loss causccl by tbc clctcction threshold t if
tllc aciual  height is )1, l,(t, h), is cldil)cd from the cdc-
mcntary  detection 10SSCS C(O, 1~) and C(O,  It). C(O, II)
is tllc loss induced by clctccting  an obstacle if tbc ac-
tual IIcightl  is h, and L’((I, 1/) is tllc loss corrcsporlding
to a non- dctcct,ion.

‘lllIC loss induced l.)y tl)c tllrcsho]d  t. is:

‘J’IIc probability distribution of ~ depends on //, but,
also on r, tllc IIorizolltal distance r from tllc carncras  to
l’, and tbc resolution. Conscqucnt]y,  I,(I,  II) depends
0]1 r and the resolution.

“1’hc unknown terrain can bc modeled by a flat area
scattcrcd with obstacles of different hcigbtsj  character-
ized by a prior distribution of h at every point, which
induces a distribution of h at every pixel, ~}b(h).  Given
this a priori  information about t,hc terrain, the risk
(cxpcctcd  loss) of processing for a given pixc] is:

R(t) = / L(t, h)ph(h) rut
Jh

Next, it would bc logical to integrate the risk over tbc
area of tbc sub-image being proccsscd.  This raises a
numhcr  of complexities that wc have not yet resolved,
such as inter-pixc] dcpcndcncics.  ‘J’hcrcfore,  in this
paper wc formulate perception control in terms of the
risk at a given clistancc,  and leave the question of inte-
gration  over a sub-image for future work. IIowcvcr, wc
will compensate for tllc nurnbcr  of pixels corrcspond-
iug to the sarnc image area when comparing diflcrcnt
image resolutions.

3.3 Failure losses

l,ct }1 bc the maximum height of steps that can bc
managed by the vchiclc wit,bout effort. ‘1’his  height II
is typically used to define the stcphcight  parameter in
tllc detection algorithm. ‘J’hc correct behavior is to
dctcc.t an obstac.]c if IL >11,  so

C(O, h)h~ll = C(QI, }l)h<Sl = O

False alarm (~f =  C(O,  h)h<l{ : if an ol.xstaclc is
dctcctcd  where h <11, the system will either stop and
exarninc tllc obstacle wit]]  more accurate means, or
})lan an avoidance trajcct,ory.  ‘J1llis loss is usually only
tirnc.

Missccl detection C,,, = c(o, h)h>}r : if an obstacle
of h > 11 is not dctcctcd, two cases must trc considered.
If tl)c vclliclc has lower lCVC1  sensors, it may bc able
to avoid locally the uncxpcctcd  obstac]c,  an the loss
is only time. If not, the failure will result in a crash
and put an cnd to the mission. in tbc latter case, it
is better to consiclcr  the false alarm risk and the crash
risk as two different criteria.

ltcplacil)g  these values in the previous formula gives:



3.4 Experiments] evaluation

WC have cxpcrimcntally  cvaluabxl  the performance of
our systcm  from a statistical set of images, It c.on-
sistts of sets of 100 images a flat area wit])  no obstac]c
and sets  of 100 images of the same area with onc ob-
stacle  placed at a given distance, for three different
obstacle sizes (20cn1,  30cm or 40cm) and tl]rcc differ-
ent  disttanccs (6n I) 10,5n~,  15m). ‘1’hc  image in figure 2
is actually onc of tllcm  images, with two obstacles at
10.5m. IIoth obstacles have been correctly clctcctcd,
ancl wc can also scc a false alarm  in the distance (at
approximately 25m).

‘J’llc probability of detection p(li > f) IIas been rcgis-
tcrccl for flat ground and for cacll obstflaclc size at cacll
distance, for 15 different stephcights  (9cm-79c1n),  15
tllrcsl]old  va]ucs  for cacll stepl]ciglltl  and at two rcsc
]utions  (64 ancl 128). T]lis globally yields a 5-11 ta-
Llc, registering now tile detection probal~ility varies
wit]]  tl)c actual obstacle IIcigllt 11, the clistanc.c r, tllc
stcljllcigllt,  tllc thrcsl)olct  t and tl]c resolution.
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Figure 3: 1 )ctection  statistics. From top to bottom:
30cm obstac.lc, 20cnl obstacle, flat ground. l’lain line,
circ.lcs: resolution 64. l)asl)cd line, triallglcs:  resolu-
tion 128. ‘1’hc stcplieigl]tl  is 29cm and tl[c tllrcsl]old is
20C111

Figure 3 shows scctiol]s of this table for tllrcc  actual
IIcigllts  (30cnl, 20cm and flat ground), at resolution
64 and 128. As compared with a theoretical stocl]as-
tic moclcl of clctcc.tion, that wc clcrivcxl from the clis-
p a r i t y  varia.ncc,  tl]csc rcsu]ts  sl)owccl  tl)at systclnatic
range errors (mainly bias occurring at clisparity  cliscon-
tinuitics) have significant effects. “1’hc rcsulis  sl)own
licrc arc  not  raw clata I)u[,  up]mr-bound  values cov-
crillg tllcsc  effects. More details on this performance
evaluation can l)c fount] in [7] and [9].

As the threshold va]uc has no cfrcct  on the conq~u-
tatlion time, it can be dcterlninccl  a priori  f o r  e ach

distance and each resolution. Figure 4 shows the risk
versus distance, at resolution 64 and 128, for a con-
stant image area (i.e. 1 pixel at 64, 4 pixels at 128).
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ltigurc  4: Global risk at resolution 64 (plain line), and
128 (clashed line). h~isscd  detection loss is 100, false
alarm loss is 1. q’hc stcphcight  is 29cn]. q’he obsta-
cle distribution is I)h(())  = 0.8, pl, (0.2) = 0.09 and
p,, (o.3) = 0.01,

4 Look-ahead requirements

‘1’hc most conservative way to ensure vehicle safety
is to enable it to stop before colliding with any dc-
tcctcd  obstacle. ‘J’his defines a minimum look-ahead
clistance and determines the part of the path that must
bc chcckcd  for ohstaclcs  at each processing step. ‘1’his
is illustrated by flgurc 5. At each processing step, the
acquisition and processing of the stereo pair take time
i=. If an obstacle is dctcctcd, braking only begins af-
ter  an actuation latency ta, and the braking distance
is v2/2a,  for initial speed v and deceleration rate a.
Fi)lally wc ]nust allow for the horizontal distance from
tl)c camera coordinate frame origin to the vehicle front
bumper, noted d.. Aclding all these terms gives the to
tal distance from the cameras to the place where the
vchic.lc is ab]c to stop:

r. = d. + v (t= +- i.) + v2/(2a) (1)

If the vchiclc does not need to stop and begins a new
pcrccpt,ion step at tl, then it, will next bc able to stop
at clistancc:

“J’llcrcforc, in tllc steady state, processing at each step
the path segment bctwccn  r. and rl ensures that, the
w1101c  path is chcckcd  in time. We call the sub-image
corresponding to the path segment the window  of at-
ft:nfion. q’his  polygon is basically the projection of the
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path segment onto the image plane, but geometric un-
certainties about tllc systcm  itself and t,hc environment
must bc taken  into account for computing it,. ‘J’llis  is
detailed in section 6,

Vchiclc
/

compul:ition  li mc

10

Figure 5: l’atll  scglncnt  to hc cl)cckcd

Finally, it must bc equal to the conll)utation  time re-
quired to process tl)c window of attention. ‘I’l Ic com-
putation time is a function of the size of tllc wil)dow
of attention ant] l,I)c rcsolutionz,  WC llavc dctcrmillcd
tl]c values of the cocflicicnts  of this function by bench-
marking our algorithms. ‘J’hc area of tllc window of at-
tention, through projection cquatiolls,  is itself a func-
tion of r. and r] ancl the resolution (from now on de-
noted p). ‘] ’hcrcforc,  the computation tilnc  is a also a
funct,io]t of ro, r,, ancl p, a]]d the tl)ird equation is:

f. == !/;(r’o, ?’], p) (3)

5 Optimization

‘1’hc performance criterion that wc wal)t to optimize is
the risk of the obstacle detector, as clcfinccl in 3, at tllc
Iook-ahcact  distance rl. Itl is a function of TI and tllc
resolution p, increasing with r] and decreasing with
resolution. ‘J’hc problcln  is to minimize the risk under
the co)astraints  (1), (2) and (3).

“J’hcsc tl}rcc e q u a t i o n s  l i n k  t h e  f i v e  variahlcs
ro, r~ ,iC, v,p. N]iminating  ro altd {, in (3), using (1)

2  More Prec;sc]y, !IIC comput  a!  iOII  time rcduccs t o  lIWCC

tcrlns:  a mnslal)t  Lenn  (ill}agm a c q u i s i t i o n ,  coll~ll~tll)icatir}r~  de-

lays md pcrccptim  contro l ) ,  a  tent)  propd  ioltal  h tllc area of

tllc w indow o f  attention  (Lriangolatioll  and obstac le  dctcctio]l),

and a tCrIII  pm]jorliol)d  10 t IIC window  area and t l]c rcmlIIl  i o n

(stereo  ccmdat  io,,,  Lccausc tl,c disl,mity  semcl,  rw,ge  is ],Iq,or-

tiollal to rcsollltiol]).

and (2), yields an equation linking rl, v and p. ‘l’hcrc-
forc, for a given resolution and a given velocity, solving
this equation for rl dctcrmincs  uniquely the window
of attcnt,ion  and consequently the corresponding risk.
l“igurc  6 shows the risk at distance rl, versus velocity,
at resolution 64 and 128.
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Figure 6: ltisk vcrsusvclocity with focus ofattcntion

If velocity is a task  rcquircmcnt,  wc select the resolu-
tion (and c.ollsccl~lclltly tllcw’inclo\\’of  attc~ltioll) corrc-
spondingto  the lowest risk. in our particular case, the
hcst  resolution, bctwccn  64 and 128, is 128. Inversely,
wc can dctcrminc  the maximum velocity that is con]-
IJat,ih]c with a given ICVC1  of risk. ‘I1his latter way is
more interesting if the risk is a probability of mission
failure.
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lJigurc7: Risk vcrsusvclocity without focus ofattcn-
tion

III order to estimate the gain earned hy focusing atten-
tion } Ict us now return to a system that proccsscstllc
whole image (but detections are discarded if they arc
outside tllc pat]) segment), In this  case, the computa-
tiontimcon  lydcpcndsonr  csolution.  l’hccorrcspond-
ing risk issl~own on figure 7. T’hc velocity compatible
wit,ll a given risk is always much lower than for the at-
tcntio)la]  systcm,  and that demonstrates the value of



focusing attention. Also, it, is interesting to note tl~at
IIOW resolution 64 is better than 12$, bccausc  higher
resolutions arc much more costly in this c.asc.

6 Focus of attention

“IIhc path scgincnt  tl}at must,  bc observed at each step
is a. 3-1) polygon dcfinccl by two curvilinear distances
a l o n g  the pat]), r. and rl, and t,hc width of the vc-
hiclc. I’hc subpart of tl)c left image where obstacles
must bc dctcctcd, which wc call the detection poly-
gon, is the projection of the path segment onto  tlIc
image plane, after transforlnation  in tllc camera rcfcr-
cncc fralnc,  through tllc vchiclc rcfcrcncc  frame. ‘1’his
can bc written as follows, with lII)c following notations:
1) is the dctcctiou  polygon, l’I/ is the vchiclc attitlldc
wit]]  respect to the path, Y)w is the c.alibratcd trans-
form bctwccn  tl)c vclliclc aud the (]cfl) camera, ancl II
is the calibrated camera pcrspcclivc  projection.

@mcd  Imjcctory
. . . . . . . . . . . . .

dead-rccknoning estimate
‘“”’’”””’”’”’  P.cwnl  Irajcctory

“’””,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
““”  . . . . . . . . . . . . . . . . . . . . . . . . .

phmllcd  PaLh

ligurc 8: l’atll  scglncllt  uncertainty

It+ is important, 10 take into  account, tl]c uncertainties
of every component in this coml)utation  iu order to
c]lsurc that the vchiclc never enters a non-proccsscd
area. WC acllievc this by cxplicit)ly propagating unc.cr-
taintics. Wc usc a probabilistic. first-order rc})rcsenta-
tion of uncertainty (covaria)lcc matrices). l“irst-order
propagation requires o])ly tlhc jacobian  matrices of ev-
ery transformation wit])  respect to cacll }Jaramctcr.

l,ct us examine each tcrln  of the equation in turn.
l“irstl, the 3-1) pat]l segment itself is uncertain, bccausc
tllc vcl)ic]c  will not  follow exactly ttlc pat]) for three
reasons:

●  tl]c dcacl-rcckoniug il)accuracy,

● tllc trajcctlory  execution c.olltrol allowaucc,

the inaccuracyof  the terrain modclon which the
path l~asl>cclll>lall~~cd.

have so far bounded the two last uncertainties by
constant, 3-1) values, and the dead-reckoning inaccu-
racy by a variance growing as the square of traveled
distance. Any representation of 3-1) rotations can bc
used (Nulcr angles, quatcrmions,  . . . ) and wc have used
the rot ation vector rcJlrcscnt  ation. The camera cali-
bration  inaccuracy has been bounded by a uniform
to]crancc  in the image plane.
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l’imrc 9: Sub-winclows  of attention: detection poly-
gon, range polygon, disparity rectangle

‘1’IIC computation of the window of attention is illus-
trated by figure 9. First the uncertain vertices of the
path scgmc]lt are projcctcd, and then the detection
polygon is obtaiucd  as the convex hull of the possi-
ble locatioas  of the projcctcd  vcrticcs.  l’lic  possible
location of each uncertain vertex is approximated by
the rcctanglc  including the ellipse corresponding to a
95% probability of presence for a Gaussian distribu-
tion. lrinaliy, as the performance evaluation showed
that obstacles arc generally detected at the fcw pix-
CIS prcccding  their base (bccausc  of bias effects), the
polygon is enlarged downwards by the size of the cor-
relation winclow.

Actually, two windows of attcntioa arc ncccssary,  bc-
causc tllc sub-window where rauge is required, called
the range polygon, is not tllc same as the detection
])olygon. ]ndccd,  applying the detection algorithm at
a given pixel also requires a range mcasurcmcnt  above
it (recall figure 1). q’hc range polygon is obtained by
enlarging (upwarcls) the detection polygon by the num-
ber of pixc]s corresponding to sfephcighi  at each row.



7 Illustrative examples and
implementation issues

l’igurc  10: Window of attention: resolution 64

Figure 11: Window of atltcntion:  resolution 128

W C llavc experimentally cllcclicd tl)c validity of our
dcsigll ill tl)c following (llol]-cxl]a~lstlil’c)  way. ‘1’l)c de-
tection  systcm  was running continuously with a static
window ofattcnt$ion,  and (Il)c vchiclc was drivel] at cons-
tant spcccl along a straight, ]Jatll. Figures 10 and 11
SIIOW the range and tllc detection polygoIIs  correspond-
ing to the same risk lCVC1,  rcspcc.tivcly at resolution 64
(at 11.2 knl/li) and resolution 128 (at 13.54 knl/11).
‘J’l)c  corrcspondiug  look-allcad  dis(anccs  arc 10 m and
17 m, and tl]c computation times  arc 0.88 s and 1.5
s. So far, wc IIavc only visually chcckcd  (using video
means) that the parts of tllc path that are consecu-
tively proccsscd  actually overlap (i.e. the patl] is en-
tirely  observed).

Computing the window of attention takes about 0.08
second on a 68040 processor, and wc may wonder is
it is ncccssary  to compute it at each step.  On onc
hand, soJnc variables involved in the projection of the
path segment arc dynamic: the vchick! attitude (with
respect to the path), the path, and the terrain map
may change. On the other hand, these frame-t~framc
variations can be considered as additional uncertain-
ties, and the same window of attention can be used for
all frames. Such a static window is to bc larger, but
if the variations arc small  (straight path, flat tcrraiu),
the cxt,ra processing time may still be less than the
window computation time.

An effective real-time control is still necessary to cope
with real-world events that are not consistent, with the
models (such as unexpected computation or conmnlni-
cation delays). A simple solution is to design a veloc-
ity controller that tries to reach the maximuln  allowed
sl~ccd, but always check for the distance to the end of
the last  processed path segment, and brakes if it has
to (i.e. if tllc next I)at,h segment obstacle map dots not
come in time). If this happens, the focus window has
also to he rcdcfincd to c.opc with the distance traveled
during deceleration.

8 Future work

“1’hc  above study  is only preliminary ill some aspects,
and many further dcvclopmcnts  can already bc envi-
sioned:

●

b

●

●

l’crformance  models for more sop]listicatcd  obsta-
cle detectors.

Curved path: tllc window of attention must bc
clynamic  and the velocity acljusted to curvature.
Moreover, if the cameras arc mounted on a pan-
and-tilt platform, they can bc aimed so tl)at the
path segment lies cntirc]y  in the flcld of view.

‘1’hc response to a detection can bc more sophisti-
cated:  the braking time can bc used for examining
more closely tllc obstacle, at a higher resolution
for instance.

“1’hc previous idea can bc gcncralizcd  in a coarsc-
to-fine obstac.]c  detection strategy: the path seg-
ment  following tl]c first onc can bc proccsscd  at
a lower resolution, and t,hcn tbc attcnt ion may
bc focused more pr-cciscly  on the places where
potcl)tia]  obstac]cs  have been dctcctcd. 1 ntcrcst-
iugly, the computation time  will depend on the
frequency of alarms  but, wil] still  be predictable
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from frame to frame, cnahling  to adjust tlic vclli-
CIC velocity to tllc roughness of the terrain.

[8]

9 Conclusion

III tkk paper, wc have acldrcsscd  the problcm  of design-
ing and optimally tuning an obstacle clctcction system,
based on stereo vision and capab]c  of focus of atten-
tion. Our main contribution has been to consider at
tl~c same time the relationship bctwccn the algorithm
pcrformancc,  t,hc computation time and the systcm
controllab]c  pa.ramctcrs,  a n d  tllc loolc-allcad  require-
ments  duc to continuous motio]l.  WC IIavc shown lIOW
to dctcrminc  the maximum velocity compatible wit]]  a
guaranteed obstacle clctcction reliability, or inversely
IIOW  to maximize tllc vchiclc safety at a given driving
speed .
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