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Abstract

Perception control consists in optimally tuning sensor or
processing parameters in order to increase perception ef-
ficiency under requirement constraints or while adjusting
to the environment. In this paper, wc address perception
control in the task of obst acle detection for cross-country
navigation. We show how to maximize the vehicle safety
at a gives velocity, or inversely how to derive the maxi-
mum speed for a given safety. This optimization problem
requires the joint analysis of (i) how the vehicle velocity
sets looli-ahead requirements, (i) how the computational
cost of perceplionisrelated to the perception variables,
window of attentionand image resolution, aud (iii) how
the reliability of the obstacle detection system is related
to thesc variables. This criterion relics on experimental
performance statistics. Oursystem has beenimplemented
aud testedin outdoor operation.

1 Introduction

Perception, defined as signal acquisition and interpre-
tation, is traditionally considered asa complex and
computationally expensive process. However, current
perception systems arc often doing more than neces-
sary for the task at hand. A parallel approach to brute
for-cc sensor developinent is to consider perception as
acontrollable process, i.e. to usc available knowledge
for purp oscfully tuning the sensor’s controllable vari-
ables, in order to optimally perform the task.This
approach has also beentermed active. perception [l],
perceplion planning [2], lask- directed perceplion [3] or
sensor management, and is recciving increasing atten-
tion.

Know] edge relevant to perception control includes (i)
the environment (world model), (ii) the sensor, or per-
ceplion system (including processing imodules), (iii)
the task itsclf (performance criterion). This knowledge

1This work was supported by the Nat ional Aeronautics and
Space Administration (NASA) and the Defense Advanced Re-
search Projects Agency (1D ARPA)

is usually inaccurate and/or incomplete. Perception
parameters include the sensor location, physical and
device acquisition parameters (aperture, focus, focal
length, gain, . . .) and processing parameters. Opti-
mally achieving a task means minimizing perception
cost (computation time) and maximizing performance
(reliability). Usually these arc competing goals and
modeling how changing parameters affects both per-
formance and cost is essential.

This paper shows how to instantiate these general per-
ception control issues for the specific task of obstacle
detection during cross-country navigation of a robot
vchicle. Obstacle detection is an essential component
of robot vehicle systems for planetary exploration, de-
{ense reconnaissance, and other applications. In this
context, the role of perception control is to allocate
computing resources SO as t0 increase n avigation cfli-
ciency while staying within specified safety margins.
One of the primary ways to reduce the computational
cost. of perception is to process sub-win clews of theim-
age. This foc.us-of-attention technique is often used in
road-following and feature-tracking systems [4] [5] [6].
In this paper, wc extend this by explicitly taking into
account geometric uncertainties and by adding the im-
age resolution as a controllable parameter.

In order 1o determine the perception parameters max-
imizing safety at a given driving speed, wc must (i)
derive apereeption reliability measure and relate it
to the controllable variables of the perception system,
(if) analyze how the computational cost of perception
depends on these variables, (iii) understand how the
driving speed and the computation time set require-
ments on the part of the path that must be observed
at cach step (look-ahead requirement) and (iv) show
how the previous three issues arc interrelated and how
to solve the resulting optimization problem. The pa-
per begins with a review of the design of the obstacle
detection system in section 2, then addresses the above
issues in sections 3 to 6. Section 7 discusses the imple-
mentation of the control strategy and the experiments
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that have been performed to date.

2 Obstacle detection for
cross-country navigation

W c require that the vehicle drive continuously at a
velocity for which “adequate” safety margins in the
presence of obstacles can be assured. For simplic-
ity, wc have begun by developing a perception control
methodology assuming that the response to detecting
an obstacle is to stop before it. The methodology ap-
plics to any range imaging sensor and a variety of ob-
stacle detection algorithms; in this paper, wc apply
it to a passive, stereo vision-based range imaging sys-
tem and a very simple obstacle detection algorithm
that J L has previously demonstrated in successful
outdoor navigation experiments withbotl | NASA and
military vehicles [7] [8].

The main processing steps of the stereo vision and ob-
stacle detection system arc as follows:

1. build bandpass-filtered image pyramids from an
input stereo image pair;

2. performcross-correlat ions on any single level of
the stereo image pyramid to estimate disparity at
every pixel (nominally) of the image pair at the
chosen level of resolution;

3. compute the range from the disparity at every
pixel,

4. apply obstacle detection algorithms to the result-
ing range image.

Steps (1) to (3) arc described in detail in [8]. To date,
the obstacle detection algorithm (step (4)) has been
kept very simple to enable rea-time implementation
with a single 68040-based CPU.Obstacles arc assumed
to be near-vertical step displacements on an otherwise
flat ground plane. As illustratedin figure 1, the algo-
rithm checks for such obstacles by using pairs of pixels
(r and j) in the same column of the range image to
measure the height displacement between the two pix-
els. For cach pixeli, the included angle between? and
J lines of sight is set to subtend a fixed obstacle size,
denoted stepheight. If the height difference measured
between i and j (denoted h) exceeds a given threshold
1, then the pixel is marked as an obstacle. Au illustra-
tive example is shown in figure 2 where pixels at which
an obstacle has been detected arc outlined.

This obstacle detection system can be controlled at
three levels:

« image resolution (from 64x64 to 512x512),

« window of attention: steps (2),(3) and (4) (stereo
vision and obstacle detection) can each be per-
formed in a specific sub-window.

« detection threshold, which may vary over the im-
age.

To determine how to choose these parameters, we will
develop a model of their effect on the reliability of per-
ception, then derive the mutual constraints between
the perception parameters and vehicle velocity.

O | (camera)

stepheight

P

Figure 2. KExample of obstacle detection result

3 Reliability criterion

The system performance is characterized by the oc-
currence rate of two possible failures: false alarms and
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missed detections. A lower threshold {reduces the
risk of missing an obstacle, but also increases the false
alarm rate, Operating at a higher resolution reduces
the rates of both errors, but at ahigher cost. Decision
theory offers a broad framework for tackling this kind
of trade-off problem.

3.1 Decision theory basics

Suppose that wc have to take adccision d in a space
D) whose consequences dcpecud on an unknown state of
nature w in a space 2, characterized by a probability
distribution p(w). The consequences arc weighted by
a loss function I(d,w).1{w,d) isthe loss caused by
taking the decision d if wis the true state of nature.
The expected loss, or risk, of taking the decision d
without knowing w is:

R(d) = ‘l]/(d, w) p)  dw

Usually, the loss of a correct decision is O and failures
arc associated positive losscs. The problem is to find
the decision that minimizes the risk.

3.2 Obstacle detectability

The process that wc consider is the obstacle detector
at onc pixel. This process includes the detection de-
cision rule: if the measured height his more than the
threshold ¢, the outcome is O (for obstacle), if not the
outcome is @ (for traversable terrain).

The decision problem takes place at the level of the
design of the decision rule, i.e. wc want to specify the
“best” threshold t. The decision parameter ist and
the state of nature is the actual obstacle height h at
the observed 3-1) point P (his O where there is no ob-
stacle). The loss caused by the detection threshold 1 if
the actual height is h, L{t, ), is defined from the cle-
mentary detection losscs C(O, ) and C(8, ). C(O, 1)
is the loss induced by detecting an obstacle if the ac-
tual height is h,and C(@, 1) is the loss corresponding
to anon- detection.

The loss induced by the thresholdt is:

L(t, h) = p(h > 1|h) C(O, h) + p(h < 1|h) C(B, h)
"The probability distribution of / depends on h,but
also on r, the horizontal distance » from the camecras to

P, and tbhc resolution. Consequently, L(t,7) depends
onr and the resolution.

The unknown terrain can be modeled by a flat area
scattered with obstacles of different heights, character-
ized by a prior distribution of h at every point, which
induces a distribution of h at every pixe],l’h(h)~ Given
this a priori information about the terrain, the risk
{expected loss) of processing for a given pixel is:

k(1) = /JhL(t, h)pr(h) dh

Next, it would be logical to integrate the risk over tbc
area of the sub-image being processed. This raises a
number of complexities that wc have not yet resolved,
such as inter-pixc] dependencies. Therefore, in this
paper wc formulate perception control in terms of the
risk at agiven distance, and leave the question of inte-
gration over a sub-image for future work. However, wc
will compensate for the mumber of pixels correspond-
ing to the same image area when comparing diflerent
image resolutions.

3.3 Failure losses

Let H be the maximum height of steps that can be
managed by the vehicle without effort. ‘This height I/
is typically used to define the stepheight parameter in
the detection algorithm. The correct behavior is to
detect an obstacle if h > I, so

C(O, h)thl = C(w,h)h<” =0

Falsc alarm Cy = C(O, h)pcn : if an obstacle is
detected where h <11, the system will either stop and
examince the obstacle with more accurate means, or
plan an avoidance trajectory. This loss is usualy only
time.

Missced detection Cy, = C(§, h),spy @ if an obstacle
of h> 11 is not dctccted, two cases must be considered.
If the vehicle has lower level sensors, it may be able
to avoid locally the unexpecied obstacle, an the loss
is only time. If not, the failure will result in a crash
and put an end to the mission. in tbc latter case, it
is better to consider the false alarm risk and the crash
risk as two different criteria

Replacing these values in the previous formula gives:

H
k() = Cj/ p(h > tR)pr(h)dh +
0

[<S)
C‘m/ P(il < ilh)])h(h)dh
h

=H
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3.4 Experiments] evaluation

W have experimentally evaluated the performance of
our system from a statistical set of images, It con-
sists of sets of 100 images a flat area with no obstacle
and scts of 100 images of the same area with onc ob-
stacle placed at a given distance, for three different
obstacle sizes (20cm, 30cm or 40cm) and three differ-
ent distances (6m,10.5m,15m). The image in figure 2
is actualy one of these images, with two obstacles at
10.5m. Both obstacles have been correctly detected,
and wc can aso scc a fase alarm in the distance (at
approximately  25m).

The probability of detection p(i)Z f) has been regis-
tered for flat ground and for each obstacle sSize a cach
distance, for 15 different stepheights (9cm-79cn), 15
threshold values for each stepheight and at two reso-
lutions (64 and128). This globally yields a -1 ta-
ble, registering how the detection probability varies
withthe actual obstacle licight /i, the distance 7, the
stepheight, the threshold € and the resolution.

Y2y
é‘l.oh s
a)
A
EO.S P
/
0.6 /
/
0.4 v
0.2 X
6 8 10 12 14 16
R (m)

Figure 3: Dectection statistics. From top {o bottom:
30cm obstacle, 20em obstacle, flat ground. Plain line,
circles: resolution 64. Dashed ling, triangles: resolu-
tion 128. The stepheight is 29¢m and the threshold is
20cm

Figure 3 shows scctions of this table for three actual
heights (30cm, 20cm and flat ground), at resolution
64 and 128. As compared with a theoretical stochas-
tic model of detection, that we derived from the dis-
parity variance, these results showed that systematic
range errors (mainly bias occurring at disparity discon-
tinuitics) have significant effects. Theresults shown
here arc not raw data but upper-bound values cov-
cring these effects. More details on this performance
evaluation can be fount] in [7] and [9].

As the threshold valuc has no eflect on the compu-
tation time, it can be determined a priori for each

distance and each resolution. Figure 4 shows the risk
versus distance, at resolution 64 and 128, for a con-
stant image area (i.e. 1 pixel a 64, 4 pixels at 128).
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Figure 4: Global risk at resolution 64 (plain line), and
128 (clashed line). Missed detection loss is 100, false
alarm loss is 1. The stepheight is 29c¢m. The obsta-
cle distribution is pa(0)= 0.8, px(0.2) = 0.09 and
m (03) = 0,01,

4 Look-ahead requirements

The most conservative way to ensure vehicle safety
is to enable il tostop before colliding with any de-
tected obstacle. This defines a minimum |ook-ahead
distance and determines the part of the path that must
be checked for obstacles at each processing step. This
is illustrated by figure 5. At each processing step, the
acquisition and processing of the stereo pair take time
t..If an obstacle is detected, braking only begins af-
ter an actuation latency t,, and the braking distance
is v2/2a, for initiad speed v and deceleration rate a.
Finally wc must allow for the horizontal distance from
the camera coordinate frame origin to the vehicle front
bumper, noted d..Adding al these terms gives the to-
tal distance from the cameras to the place where the
vehicle is able to stop:

ro =d, + v(lc 4 ta) + v?/(2a) 1)

If the vehicle does not need to stop and begins a new
perception step at ¢y, then it will next be able to stop
a distance:

r1=104 vl = do 4 v (2 + 1a) 4 v/ (2a) (2)

Therefore, in the steady state, processing at each step
the path segment between?o and 71 ensures that the
whole path is checked in time. We call the sub-image
corresponding to the path segment the window of at-
tention. This polygon is basicaly the projection of the
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path segment onto the image plane, but geometric un-
certainties about the system itself and the environment
must betaken into account for computing it,. This is
detailed in section 6.

t braking distance

acluation latency

computation ti mc

Figure 5: Path segment to be chiecked

Finally, 1, must be equal to the computation time re-
quired to process the window of attention. I'lhe com-
putation time is a function of the size of the window
of attention ant] iheresolution?. Wc have determined
the values of the coefficients of this function by bench-
marking our algorithms. The area of the window of at-
tention, through projection equations, is itself a fune-
tion of r. and rjand the resolution (from now on de-
noted p). ‘] ‘herefore, the computation time isaaso a
function of 70,7y, ancl p,and the third equation is:

te="T:(ro,71, P) (3)

5 Optimization

The performance criterion that we want to optimize is
the risk of the obstacle detector, as defined in 3, at the
look-ahcad distance 71-1t is a function of »; and the
resolution p, increasing with »y and decreasing with
resolution. The problemisto minimize the risk under
the constraints (1), (2) and (3).

These three equations link the five variables
70, 71,16, v, p. Eliminating o and £, in (3), using (1)

? More precisely, the comput at jon time reduces to three
terms: a constant term (images acquisition, conmmunication de-
lays and perception control), a term proportional to the area of
the window of attention (triangulation and obstacle detection),
and a term proportional to t he window area and t he resolut ion
(stereo correlation, because the disparity scarch range is propor-
tional to resolution).

and (2), yields an equation linking 71, v and p. There-
fore, for a given resolution and a given velocity, solving
this equation for rdetermines uniquely the window
of attention and conseguently the corresponding risk.
Figure 6 shows the risk at distance r1, versus velocity,
at resolution 64 and 128.

% 0.10
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Figure 6: Risk versus velocity with focus of attention

If velocity is a task requirement, wc select the resolu-
tion (and consequentl y the window of attention) corre-
sponding to the lowest risk. in our particular case, the
best resolution, between 64 and 128, is 128. Inversely,
wc can determine the maximum velocity that is com-
patible with a given level of risk. This latter way is
more interesting if the risk is a probability of mission
failure.
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Figure 7: Risk versus velocity without focus of atten-
tion

In order to estimate the gain earned hy focusing atten-
tion,lct us now return to a system that processes the
whole image (but detections are discarded if they arc
outside the path segment), In this case, the computa-
tion time only depends on resolution. The correspond-
ing risk is shown on figure 7. The velocity compatible
with a given risk is aways much lower than for the at-
tentional system, and that demonstrates the value of
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focusing attention. Also, it is interesting to note that
now resolution 64 is better than 12$, because higher
resolutions arc much more costly in this casc.

6 Focus of attention

The path scgment that must be observed at each step
isa 3-D polygon defined by two curvilinear distances
along the path,rg and 71, and the width of {he ve-
hicle. The subpart of the left image where obstacles
must be detected, which we call the detection poly-
gon, is the projection of the path segment onto the
image plane, after transformationin the camera refer-
ence frame, through the vehicle reference frame. This
can be written as follows, with the following notations:
D is the detection polygon, 7' is the vehicle attitude
with respect to the path, Trc is the calibrated trans-
form between the vehicle aud the (left) camera, andll
is the calibrated camera perspective projection.

D=UoTreoTr(P)

planned trajectory
" dead-rccknoning estimate
aclual trajectory

......
...........
.....
e,
.......
.....

planned path

Figure 8: Path scgment uncertainty

It is important, to take into account, the uncertainties
of every component in this computationin order to
cnsure that the vehicle never enters a non-processed
area. We achieve this by explicitly propagating uncer-
taintics. We usc a probabilistic. first-order representa-
tion of uncertainty (covariance matrices). |“irst-order
propagation requires only the jacobian matrices of cv-
cry transformation with respect toeach parameter.

L.et us examine each termm of the equation in turn.
I'irst, the 3-1) path segment itself is uncertain, because
the vehicle will not follow exactly the path for three
reasons.

o the dead-reckoning inaccuracy,

« {hetrajectory execution control allowance,

e the inaccuracy of the terrain model on which the
path has been planned.

We have so far bounded the two last uncertainties by
constant, 3-1 values, and the dead-reckoning inaccu-
racy by a variance growing as the square of traveled
distance. Any representation of 3-1) rotations can be
used (Kuler angles, quaternions, . . . ) and wc have used
the rot ation vector represent ation. The camera cali-
bration inaccuracy has been bounded by a uniform
tolerance in the image plane.

path
scgment

uncertain tics

leftimage

Figure 9. Sub-windows of attention: detection poly-
gon, range polygon, disparity rectangle

The computation of the window of attention is illus-
trated by figure 9. First the uncertain vertices of the
path segment are projected, and then the detection
polygon is obtained as the convex hull of the possi-
ble locations of the projccted vertices. The possible
location of each uncertain vertex is approximated by
the rectangle including the ellipse corresponding to a
95% probability of presence for a Gaussian distribu-
tion. Finally, as the performance evaluation showed
that obstacles arc generally detected at the fcw pix-
cls preceding their base (because of bias effects), the
polygon is enlarged downwards by the size of the cor-
relation window.

Actualy, two windows of attention arc nceessary, be-
causc the sub-window where range is required, called
the range polygon, is notthe same as the detection
polygon. Indeed, applying the detection algorithm at
a given pixel also requires a range measurement above
it (recall figure 1). The range polygon is obtained by
enlarging (upwards) the detection polygon by the num-
ber of pixcls corresponding to stepheight at each row.
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7 lllustrative examples and
iImplementation issues

IFigure 10: Window of attention: resolution 64

Figure 11: Window of aticntion: resolution 128

W c have experimentally checkedthe validity of our
designinthe following (non-exhaustive) way. The de-
tection system was running continuously with a static
window of attention, and the vchicle was driven at con-
stant speed a@ong a straight, path. Figures 10 and 11
show the range and the detection polygons correspond-
ing to the same risk level, respectively at resolution 64
(at 11.2 kmm/h) and resolution 128 (at 13.54 km/h).
The corresponding look-ahead distances are 10 m and
17 m, and the computation times arc 0.88 s and 1.5
s. So far, wc have only visualy checked (using video
means) that the parts of the path that are consccu-
tively processed actually overlap (i.e. the path is en-
tircly observed).

Computing the window of attention takes about 0.08
second on a 68040 processor, and wc may wonder is
it is necessary to compute it at each step. On onc
hand, some variables involved in the projection of the
path segment arc dynamic: the vechicle attitude (with
respect to the path), the path, and the terrain map
may change. On the other hand, these frame-to-frame
variations can be considered as additional uncertain-
ties, and the same window of attention can be used for
all frames. Such a static window is to bc larger, but
if the variations arc small (straight path, flat terrain),
the extra processing time may still be less than the
window computation time.

An effective real-time control is till necessary to cope
with real-world events that are not consistent, with the
models (such as unexpected computation or communi-
cation delays). A simple solution is to design a veloc-
ity controller that tries to reach the maximum allowed
speed, but aways check for the distance to the end of
the last processed path segment, and brakes if it has
to (i.e. if the next path segment obstacle map dots not
come in time). If this happens, the focus window has
also toberedefined to cope with the distance traveled
during deceleration.

8 Future work

The above study is only preliminary in some aspects,
and many further developments can aready bc envi-
sioned:

+ Performance models for more sophisticated obsta-
cle detectors.

e Curved path: the window of attention must be
dynamic and the velocity adjusted to curvature.
Moreover, if the cameras arc mounted on a pan-
and-tilt platform, they can bc aimed so that the
path segment lies entircly in the field of view.

« The response to a detection can bc more sophisti-
cated: the braking time can bc used for examining
more closely the obstacle, a a higher resolution
for instance.

« The previous idea can be generalized in a coarse-
to-fine obstacle detection strategy: the path scg-
ment following the first onc can be processed a
a lower resolution, and then thc attent ion may
bc focused more preciscly on the places where
potential obstacles have been detected. 1 nterest-
ingly, the computation time will depend on the
frequency of alarms but willstill be predictable
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from frame to frame, enablingto adjust the vchi-
cle velocity tothe roughness of the terrain.

9 Conclusion

[ 11 this paper, wc have addressed the problem of design-
ing and optimally tuning an obstacle detection system,
based on stereo vision and capable of focus of atten-
tion. Our main contribution has been to consider at
the same time the relationship between the algorithm
performance, the computation time and the system
controllable parameters, and the look-ahead require-
ments due to continuous motion. We have shown how
to determine the maximum velocity compatible with a
guaranteed obstacle detection rdiability, or inversely
how to maximize the vehicle safety at a given driving
speed .
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