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Abstract
Statistical modeling and evaluation of the performance

of obstacle detcztion sys[cms for Unmanned Ground Vchiclcs
(UGV’S)  is essential for the design, evaluation, and comparison
of sensor systems. In this paper, wc address this issue for inlag-
ing range sensors by dividing the evaluation problcm into two
lCVCIS:  quality of the range data itself and quality of the obstacle
detection algorithms applied to the range data. Wc review exist-
ing models of the quality of range data from stereo vision and
AM-CW LADAR,  then used these to derive a ncw model for
(}IC quality of a simple obstacle dckxtion  algori[hm. This model
predicts the probability of detecting obstacles and the probabil-
ity of false alarms, m a function of the sim and distance of the
obstacle, the resolution of the sensor, and the level of noise in
[hc range data, Wc cvalua[c these models experimentally using
range data from stereo image pairs of a gravel road with known
obstacles at several ctistanccs. The rCSU]L$  show that the approach
is a promising tool for predicting and evaluating the performance
of obstacIc dctc.ction with imaging range sensors.

1 Introduction
In semi-autonomous, cross-country navigation of UGV’S,
obsfaclc detection is achicvcd primarily by processing data
from imaging range sensors. For example, both scanning
laser range-finders (LADAR) and stereo vision syslcms
hrwc been used in demonstrations of cross-country naviga-
tion by prototype UGV’S.  To date, sensor limitations have
forced these demonstrations to usc rclalivcly  large obsta-
CICS (e.g. > 50 cm) and low driving speeds (C.g.  < 15
km/h). To complcrncnl  research on improving the sen-
sors,  there is now a need for quantitative methodologies
for modeling and evaluating sensor performance. Stsch
mclhodologics  will bc useful for measuring progress, for
systcm design, and for comparing competing tcchnolo-
gics. Although such methodologies have been dcvclopcd
in other domains, they have not yet been applied to obsta-
CIC dctcztion sensors for UGV navigation.

To bc more specific, wc address obstacle detection
from range imagery alone, where range images arc 2-D
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arrays of 3-D range measurements produced by LADAR,
stereo vision, or other closely related sensors. For this
problcm, performance modeling and evaluation has ques-
tions at two lCVCIS: (1) how good is the range data itself
and (2) how good are the obstacle detection algorithms that
are applied to the range data? Ideally, wc would like to
answer lhcse  questions with a common methodology that
applies to LADAR,  stereo vision  with daylight or Utcrmal
cameras, and possibly other sensors.

The quality of range data can be evaluated in terms
of random and systematic errors, Theoretical models of
random errors have bwn developed for both LADAR [1]
and stereo vision [2, 3, 4, 51. Systematic errors, or biases,
have been cxarnined  experimentally for LADAR in [6]
and for stereo in [7]. For the quality of obstacle detection,
a relevant theoretical framework cxisfs  for modeling the
probability of dckztion  and false alarms in classical de-
tection  problcms [8]. This framework has been applied to
obstacle detection with LADAR for a spacecraft landing
application [9]; however, no work has been done yet on
applying this to obstacle detection for ground vchiclcs.

In this paper, wc focus on obstacle detection with
range images produced by stereo vision. Seclion  2 elab-
orates on our motivation and overall methodology for de-
signing and evaluating obstacle detection sensor systems.
SWion 3 addresses the quality of range data by review-
ing stochastic models for random errors in both stereo
and LADAR range imagery, then by conducting an cx-
pcrirncn[al cvalua[ion of random and systematic errors in
range images produced from stereo images of gravel roads
with known obstacles at various distances. Section 4 con-
ducts an analogous development for the quality of obstacle
detection, For a simple obstacle detection algorithm wc
have used in real-time, outdoor demonstrations, this sec-
tion derives models for the probability of dctcxxion  and
false alarms, then evaluates the models experimentally us-
ing the range imagery produced in section 3. On the de-
sign side, the rcstrlts  show promise for being able to usc
probabilistic performance models to predict error rates for
different sensor parameter choices. On the cxpcrimcntal
evaluation side, the results show that our methodology is
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Figure  1: Overall methodology

a useful 1001 for quantita[ivcly  measuring the performance
of obstacle detection with imaging range sensors.

2 Motivation and Methodology
To molivatc  our approach, wc will briefly consiclcr  lhc
larger context of using range sensors for obstacle detection
for UCW’S. Given that wc wanl  to drive at a given spccxl
and detect obstacles of a given size, lhc basic qucslions
arc (1) how far ahead do we have 10 dclcct  thOSC obsta.
CICS and (2) what sensor resolution do wc need 10 dctccl
obstacles at that distance? The first  question boils down
to reaction timu  it can be answered by cslimaling  the dis-
lancc required to stop the vehicle in case of an obstacle,
given the iniLial  velocity, (lccclcration  rate, and lalcncy
limes for pcrccplion and acluation. In [10], wc have taken
this approach to show that  a minimal bok-ahead distance
is:

ffl = Clc + ?10 (2t..  + f.) + 1);/(20) (1)

where vo is lhc initial velocity, a is the dccclcration rate, tC
and td arc latency tirncs  for pcrccp[ion  and acwalion,  rc-
spcztivcly, and d. is Lhc distance the cameras arc mounted
behind the nose of the vchiclc.

The second question has clcmcnts of both geome-
try and statistics, because wc must take into account both
the angular resolution of a pixel and the uncertainty in-
troduced by noise. In purely gcnmctric terms, it is easy
to derive how many pixels are subtended by an obstacle;

however, noise makes obstacle dctcztion  a stochastic pro-
CCSS, and geometry alone does not capture the stochastic ,
clcmcnt,  Thcrcforc, rcliabili[y  must b dcfhrcd in proba-
bilistic tcrrns, for example by designing the vision system
to achicvc a specified dctcclion  probability.

Our overall methodology is illustrated in tigurc  1. In
this papx,  wc consider the right branch of the figure by
deriving thcmrctical  models of obstacle dctcctabilily  and by
evaluating the validity of these models cxpcrirncntally.  As
stated earlier, the cnd goal of this work is to estimate the
sensor resolution rcquircxl to achicvc given Icvcls  of relia-
bility in obstacle detection. As shown in figure 1, the res-
olution  rcquircrncnl translates into computational rcsourcc
rcquircmcnts  nccxtcd  to process the imagery within given
latency limits. Wc have addressed the left branch of the
figure, dealing wilh look-ahcxid  distance and computation
rcquircmcnts,  in [1 O]. There wc have also analyzed how
all of these factors arc related and shown how 10 control
perception to optirnizc  the velocity/reliability trade-off,

In the balance of this paper, wc first consider how
sensor noise affects the quality of the range data, then
address how noise in the range data affects the quality of
obstacle dctcclion.

3 Quality of Range Data
Wc address this issue smcifically  for stereo vision; analo-
gous rcsulls  for LADAR arc giv&r in [6]. We will begin by
bricfty  reviewing our stereo algorithm, then discuss math-
cmalical  moctcls of performance and cxpcrirncntal  evalu-
ation  of the validity of those models.

3.1 Stereo Matching Algorithm
The algorithm is dcscribcd in detail in [1 1]; here wc re-
view the characteristics rclcwmt to lalcr scztions on per-
formance modeling and evaluation, The algorithm has the
following stages:

1.

2.

3.

4.

5.

input stereo image pairs arc transformed into band-
pass image pyramids by a diffcrcncc-of-Gaussian
type pyramid transformation.

Image similarity is measured by computing the sum-
squared-diffcrcncc (SSD) for 7 x 7 windows over a
fixed disparity search range.

Disparity is estimated by finding the SSD nlinimurn
indcpcndcntly  for each pixel.

Confidcncc measures are computed by estimating
posterior probabilities for the disparity estimates at
each pixel; where the probability falls below a preset
threshold, the pixel is marked m having no disparity
estimate.

Sub-pixel disparity estimates are obtainul  by filting
parabolas to the three SSD values surrounding the
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SSD minimum and taking the disparity estimate to
be the minimum of the parabola.

6. The resulting disparity map is smoothed wi~h a 3 x 3
low-pass filter to rcducc noise and artifacts from the
sub-pixel estimation process.

For textured, outdoor images, this algorithm produces dis-
parity cstima(cs  for almost every pixel in the image. The
algorithm has been implcmcmted in a real-time syslcm that
produces range images from Lhc 60 x 64 ICVC1  of the im-
age pyramid in approximatcl  y onc second pcr frame. The
systcm  has been installed on two robot vchiclcs  and used
to dcmonstralc  obstacle dclection,  on gravel roads and in
sand y off-road terrain, at speeds up to lhrcc kilometers per
hour. For rcfcrcncc, these systems have baselines of 25
to 35 cm and fields of view of 30 to 40 dcgrWs.

3.2 Statistical I’crformance Models
For stereo vision, performance depends on many factors,
including the contrast and spatial frequency of texture in
the inlcnsily  signal, the noise lCVC1 in the images, various
artifacts introduced in the stereo matching process, and the
true range to the objects in the sccnc.  Wc need 10 char-
acterize  both the random errors caused by noise and the
systematic errors, or biases, resulting from artifacts. Wc
will develop mathematical models of the random errors,
and examine both the random and the systematic errors
cxpcrimcnlally.  Wc began to examine these issues in [7];
this paper reviews and extends the previous work, then
uscs these results in section 4 in characterizing the quality
of obstacle dctcclion.

Distributions of random errors need 10 bc examined
both for the estimated disparily  map and for the range
estimalcs  resulting from the nonlinear operation of trian-
gulation.  In both cases, there will bc uncertainty at &lch
pixel and there may bc corrcla(ion  in the errors for neigh-
boring pixc]s  (i,c. the noise may not bc white),

First consider the distribution of disparity cslimatcs
at each pixel. For good cslimatcs  of solid surfaces, wc
expect the distribution to bc unimodal  and compact about
the mean. At sub-pixel rcsohltion,  the precision (vari-
ance) of a disparity estimate reflects statistical fluctuations
around lhc Sub-pixel mean. The precision will vary in-
versely  with the slope of the image intensity derivative
I,(x, y) = 81(z, y)/13z along the scanlinc [1 1]. Assuming
a flat, fronto-parallel surface, an approximate model for
the variance of a disparity estimate is

(2)

where a; is lhc variance of noise in the image and the
denominator is a sum over the window of squared, ccnlral-
diffcrcncc  derivative estimates. A more elaborate variance

model that takes into account slanted disparity surfaces is
derived in [13].

Several factors induce statistical correlations bclwecn
errors for nearby pairs of pixels. These factors include:
(1) the spatial filtering employed in creating the image
pyramids, which correlates the noise in the low-resolution
images, (2) the fact that matching windows for adjacent
pixels overlap, which will induce correlation in the dis-
parity cslimatcs  even if the image noise is not corrclatcxl,
and (3) the application of the noise-rcxluction filter to the
estimated disparity fields. Such correlation will affect the
uncertainly of terrain slope estimates computed from lo-
cal range diffcrenccs,  The multiple contributing factors
make the correlation somewhat complicated to model the-
oretically;  instead, wc will fit an empirical model 10 the
experimental rcsul ts prcscntcd below.

Even if disparity errors arc Gaussian, the nonlinear
triangulation operation produces non-Gaussian errors in
range cstirnatcs.  It is customary to ignore this by nmdcl-
ing range as approximately Gaussian and to estimate the
variance of range errors by Iincarimt  error propagation.
Wc cxarnimxt  this approximation in [7] by deriving the
“true” distribution of range and comparing it to the Gaus-
sian approximation. The agrccmcnt  was good, except that
skew in the true distribution bccomcs more pronouncwt  as
the mean disparity gets C1OSC to zero. Wc conchrdc that,
for present purposes, range estimates arc WCII modclkxt as
Gaussian distributed, with standard deviation

fl~ m i?#2 . (3)

where Z is the 3-D coordinate expressing the distance
from lhc cameras. Note that range estimates for nearby
pairs of pixels will be corrclatcd,  bccausc of the correlation
dcscribcd earlier in the disparity estimates.

For comparison, the standard dcvialion  of range nma-
surcmcnts  made by AM-CW LADAR has been modcllcd
as [1, 6]: r,

(4)

where p is the surface rctlcctancc  and a is the angle of
incidcncc of the laser beam on lhc surface. For UGV ap-
plications, o gets closer to 90 dcgrccs  the further ahmd
the sensor looks; thcrcforc,  this compounds the effect of
the increasing range term in the numerator. Since the
graphs of (3) and (4) may cross over, comparing the per-
formance  of stereo and LADAR will require calibrating
the constants of proportionality for each sensor.

3.3 Experimental Evaluation
To experimentally evaluate the quality of bolh range esti-
mation  and obstacle dctcdon,  wc collcetcd  an ensemble
of SICK?O pairs of a flat, gravel road with and without ob-
stacles  of known geometry. The obstacles consisted of
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(a) (b)

(c) (d)

Figure 2: 7W images: (a) large obstacles al 50 feet (b) small obstacles a~ 50 feet (c) large obstacles at 20 feet (d) small
obstacle.s at 20 feet,

four KCLIIIgUhU’  boards 1 meter (m) wide by 10, 20, 30,
and 40 cc.nlimctcrs  (cm) high, which were coated  with
gravel from lhc road to provide realistic tcxlum. Sets of
100 stcrcm pairs were [akcn wi[h roughly coJManl  illunli-
nation for each of the following cases: the road without
obsmclcs,  the road with the two largest obstacles (30 and
40 cm) placed al 20, 35, 50, 6S, or 80 fczt, and the road
with the lwo smallest obstrrclcs  (10 and 20 cm) placed at
the same set of distances. Example images from these data
sets arc shown in Figure 2. These images were proccsscd
at 60 x 64 and 120 x 128 rcsolu~ion  to gcncratc  sample
statistics for the performance measures of interest.

3,3.1 Bias

To look for possible biases in the range estimates,
wc computed the mean of the estimated disparity images
for each set of 100 stcrc.a pairs and plotlcd range protilcs

for sclcctcd  columns of the mean range images. Figure 3
shows profiles for individual columns just inside lhc left
cclgc  of the 30 cm obstacle, for each of the five distances
from the camera and for two image resolutions. Several
bias arlifacts  arc evident. First, the total pcrccivcd  hci.ght
of the obskqclc was always grcatc.r than the true hcigh[,
and bccamc  more so the further away the obstacle was
placed. Wc altributc  this to a bias introduced by the finite
siT,c  of the SS1) window. That is, for area-based matching
algorithms, disparily estimates tend to rcllccl  the highest
contrast texture in the matching window; this hinds to
cause a “halo” around the obstacles within which the range
estimates arc ncady the same as the range to Urc obstacle.
Since the si~.c of this halo is tixcd in the image plane (one
half the width of the matching window), its size in 3-
D grows with the distance to the obstacle.. Thcrcforc,  the
obstacles tend to look larger  in the range image the farther
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Figure 4: 60x64 (dolled) and 120x128 (solid) protilcs
overlaid for obstacle at 35 feet.

away they are. Since the halo is an image-plane cffcc(,
the 3-D error is rcduccd for higher image resolutions, as
can bc sczn by comparing the 60 x 64 and lhc 120 x 128
rcsulls  in Figures 3a and 3b; Figure 4 shows [his more
explicitly by overlaying profiles for both resolrr[ion  from
the 35-foot data.

Several other effects offset this halo effect, First, the

obstacles appear more slanted with increasing distance,
whereas in reality they were nearly vcrLical in all cases).
This is certainly duc to their smaller size in the image.
Also, at large distances the halo cffczt was sometimes
ovcrwhclrncd by loss of contrast and texture, which have
the rcvcrsc cffccl of making the obstacle blend in with the
background.

Another type of artifact appears to be duc to biases
in sub-pixel disparity estimation. The sub-pixel disparity
estimation algorhhm  appears 10 be biased toward inlegcr
disparity estimates. For flat ground, this imposes a rip-
ple patlcm on the range data, which can be seen at C1OSC

range in Figure 3b. In the past, wc have seen other arti-
facts around high contrast intensity edges [15] and around
occluding boundaries of objects [7]; wc have also noticed
that the amount of bias depends on the boundary texture
and contrast. However, wc will not explore these here.
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Hislogram of disparity cslimalcs  at a single pixel, overlaid with Gaussian distribution
the sample data. (b) Frequency plot of sample standard deviations of disparity for all

pixels-in the image, for 60x64 (solid) and 120x1 28 (dashed) resolutions. (c) Average correlation of disparity estimation
errors for pixels in the same column, empirical values (solid) and tilted  model (dotted) for 60 x 64 rcsolu(ion. (d) and
(e) Range profdcs for 60x64 resolution, for 30cm obstacle at 20 feet: (d) overlay of profiles from five stereo pairs; (c)
cnvclopc and mean (dashed line) of range protilcs  from 100 stereo pairs.

3.3.2 Dispersion

Figure 5 shows results of cxpcrimcnts  to evaluate Ihc
theoretical model of random errors. Wc began by examin-
ing the assumption that disparity estimates arc Gaussian
distributed. Figure 5a shows a histogram of disparity es-
timates  for a typical pixel from 100 stereo pairs of the
gravel road. A Gaussian distribution with these paranlc-
tcrs is overlaid on the histogram. The corrcspondcncc is
good enough for our present purposes.

To evaluate the overall precision of disparity csti-
matc,s, wc computed the sample skandard  deviation of dis-
parity estimates at each pixel, averaged over all images
in the data set. Relative frequency plots of the standard
deviations for disparily  maps estimated at 60 x 64 and
120 x 128 resolution arc shown in Figure 5b. The average
of the standard deviations in both cases is around 0.05, or
l/20th  of a pixel. Because the signal to noise ratio of the
images at the two resolutions may differ, it was not clear
a priori how the prccisions would compare; experimen-
tally, wc sw that doubling the resolution has doubled the
effective prtxision  (in terms of angular resolution). The
average of the standard deviations is lower at the obstacle

edges, around 0.03 pixels: this is duc to the higher con-
trast of the obstacle boundary as compared with the empty
road (SCC Figure 2).

To evahratc the the spatial correlation of estimation
errors, wc computed the sample covariancc  matrix

‘ S [J(Y*) - /M/dl[&)  - l,(w)]Cal(yl  , .W) = ~
/=1

for an entire  column of the disparity map, then estimated
the sample correlation coefficient for successive displacc-
mcn ts:

The rcsrrlts arc plotted in Figure 5c. As expected, disparity
errors are very highly correlated for small displacements.
The correlation drops to near zero at a displacement of
eight pixels; since the matching window was 7 x 7, this
conforms to the suggestion that overlap in matching win-
dows is the dominant factor in correlating the errors, and
is near zero when the matching windows do not overlap.
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l’hc dotted curve overlaid in the figure shows the function

r(r) z CXP(–0,08 rl ‘E) , (5)
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which matches the experimental data very well in the re-
gion of inlcrcst.  Wc will incorporate this in the obstacle
dckctabilty  model of the following section,

So far, wc have examined random errors in disparity.
It is still desirable to confirm the distribution models for
range estimates obtained from disparity. In [7], wc briefly
experimentally examined the distribu~ion  of of range es-
timates  and concluded thal it conformui  reasonably WCI1
with a Gaussian error propagation mode]. In this paper, wc
add a simple, cxpcrimcntal  check of lhc spatial correlation
already noted for disparity. Figure 5d shows segments of
elevation profiles for five stereo pairs. The profiles tend to
shifl  back and forth as a unit; that is, the inter-frame shift
of the entire profile is much grcalcr than the inter-pixel
shift of pixels within the same frame. ‘I’his confirms the
corrclalcd  error model above.

3.4 Discussion
Based on these results, wc draw the following conclusions
about random and systematic errors in s~crw range esti-
mates. Regarding random errors, a model approximating
errors as Gaussian at each pixel and spatially correlated
over short  distances is supporlcd  cxpcrimcntally  and ap-
pears to bc adequate for usc in deriving initial probabilistic
models of obsk~clc dctcck~bilily,  For systematic errors, wc
have seen significant systematic errors in disparity estima-
tion, such as the halo and sub-pixel cffccls  nolcd earlier. It
will be desirable to find algorithm rcfincrncnts  that reduce
these cffccls; also, it may bc ncccssary  to take such cffcc[s
into account when predicting resolution rcquircmcnts  for
obstacle dclcction. Qucslions remain open about how WCII
wc can estimate the uncertainty of range estimates using
contrast measures from a single image; however, wc kavc
these in order Lo turn to modeling lhc quality of obstacle
detection.

4 Quality of obstacle Detection
WC will now usc the models of range uncertainty obtained
in the previous section to derive statistical models of the
uncertainly in obstacle dctcclion,  As a starling point, wc
arldrcss  a simp]c  algorithm that wc have used successfully
in real-time demonstrations of obstacle dctcclion on gravel
roads [7], We believe that the basic techniques dcvclopcd
here will be applicable to more elaborate obstacle detec-
tion algorithms. The balance of this section parallels the
structure of the previous section; wc first review the obsta-
cle detection algorithm, then derive statistical performance
models for that algorithm, and then examine the validity
of the models experimentally.

I R

Figure 6: Obstacle dctcclion algorithm

4.1 Obs~acle Detection Algorithm
The obstacle detection algorithm is illustrated in Figure 6.
Obstacles arc assumcxt  to be near-vertical step displace-
ments on an otherwise flat ground plane. The algorithm
checks for such obstacles by using pairs of pixels  (pi and
12) in the same column of the range image to measure the
displacement in range and height bctwccn the two pix-
CIS. For each pixel pl, the included angle bctwccn  the
p] and ~Z lines of sight is set to subtend a lixcxl  obstacle
size, denoted the stcpheight  S. Thus, the included angle 0
is constant on each scanlinc,  but varies from large at the
bottom of the image to small  at the top of the image. The
3-D vectors P1 and P2 arc cstimatti  in the camera coordi-
nate frame, then rotated into the vehicle coordinate frame
and diffcrcnccd  to estimate the two components of surface
slope. Starting with the disparities rll and dz measured at
pl and W, rcspw.tivcly,  the entire transformation is given
by

where yi is the irnagc row coordinate of pixel ]li, Pi is
a veztor in camera coordinates, R is the rotation matrix
that transforms bctwczn camera and vchiclc  coordinate
frames, and kY and k. are constants that subsume camera
calibration parameters for focal length, image aspect ratio,
and stereo baseline. The obstacle dcte$tion decision rule
is based on AP. Since the components of this vector arc
highly corrclatwl,  very little is lost by simply dmlaring
an obstacle to exist at pixel PI if the measured change
in height, AH, cxcccds a given threshold t. As this also
gives a simpler statistical model, in this paper wc use only
All for clarity. As an example, to detect obstacles larger
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Figure 7: Theorclicrd  standard deviation of mcasurti
change in height (C7A}{) versus  true range for 30 cm obsta-
cle observed at 60 x 64 rcsolulion,  based on cqualion (7)
with CTd = 0.05 pixel. Solid curve.: r(~) = 6(0).  Dashed
curve: cxpcrimcntal  r(~) (equation (5)).

than,  say 30 cm high, wc SC1 S = 30 cm, measure AII,
and dccidc  there is an obsLtclc prcscnl if AII > t, where
t<s.

4.2 Statistical Performance Models
TO derive a model of (})c reliability of obstacle dctccLion
requires a model of the probability density function (pdf)
J(A]I) of A}I. To obtain this, wc will model AP as
jointly Gaussian and derive its covariancc  matrix .L’4P  by
linear error propagation from lhc covariancc matrix Ed, ,d,
of d], r12. Assuming that the uncertainly in disparily is lhc
same at p] and )2, this yields

[ 11 7’(T) jv ,Xdp = J .x~,,~, JT = C&7 V(T) , (7)

where ~ is the Jacobian of (6) and r(~) is the spatial
corrcla[ion  cocfticicnt  of the cslimalion  errors for rfl and
CIZ. For obstacle dclcction  based on lbrcsholding  A}],
lhc reliability of detection will depend on the standard
dcvialion  ad}{ obtained through this error propagation.
Figl]rc 7 plots UA}{ versus range for an image rcsolutiofl
of 60 x 64 pixels, using cxpcrimcntal  values of ad and
r(~) from lhc previous section. For this resolution, a 30
cm obstacle subtends about 6 pixels at 5 mclcrs; thcrcforc,
Al{ cslimatcs  for this distance and greater will bc affcclcd
by the corrclalcd  disparity mcasurcmcnts, as shown by
comparing the solid and dashed curves in the Figure.

The next slcp in modc]ing Ihc quality of obstacle dc-
tcclion  is to derive the conditional probability of deciding
that an obstacle occurs at pixel pl, given that a step of
hcigh( H actually exists there. This is obtained by inte-
grating j(A II [H) over all possible measurements above

the threshold:

This conditional probability is a kcy tool for analyzing
obstacle detection pcrformancc,  because it embodies both
the probability of detecting an obstacle that is actqally
present (Pd) and the probability of a false alarm (Pj) [8].
For example, the conditional probability Pd of detecting
an obstacle of a size HI, given that such an obstacle is
actually present (i.e. has its base at pixel pl ), is the integral
P(AH > t l?{ 1). F@IrC 8a shows pd versus range for
stcphcight  S = 30 cm, ‘H = 30 cm, and a thrcshoId  t =20
cm. For a disparity standard dcvialion of ad = 0.03 pixels,
which is the mean at obstacle cxtgcs,  the model predicts
almost perfect dctcclion  over distances from 5 10 25 m,
For ad = 0.05 pixels, P~ dccrcascs  to 0.988 at 25 m. Since
this model applies to dclcction  performance at a single
pixel, detection performance would bc better for obstacles
covering several pixels in width.

If no obstacle is present (e.g. ‘Ho G ‘H = O), the
probability of a false alarm is l; = P(AIJ > tlfio). For
illuslralion,  Figure rcffmd:pdpfvsrb shows 17 as a func-
tion of range. Again, this is a model for performance at
a single pixel; thcrcforc,  estimating the number of false
alarms in an image region requires integrating P! over
the area of the region. If detection performance were in-
dcpcndcnt at each pixel, then the cxpcctcd number of false
alarms would bc l)J multiplied by the numMr of pixels
in the region. For 60 x 64 images, wc typically cstimalc
disparity for on the order of 1000 pixels; using this as
the region size, wc would need Pj <0.001 to have lCSS
than one false alarm pcr frame. The model for md = 0.05
pixels satistics  this for ranges up to 25 meters. Although
this estimate dots not account for the spatial correlation
of disparity errors, the cxpcrimcntal  results below suggest
that it is still a useful guide to the design or evaluation of
the obtaclc  detector.

So far, our discussion of dclcclion  and false alarm
probabilities has only considered simple hypthcscs;  that
is, distinguishing bctwccn  two particular alternatives 7i0

and ‘7{1. In prac~icc,  terrain height variations will occur
over a continuous range of values. We have begun to
address this issue in [10].

4.3 Experimental Evaluation
To evaluate the mode] for dckxtion  probabilities, wc con~-
putcd  detection statistics for the obstacle data sets of Fig-
ure 3. In this paper, wc focus the evaluation on one obsta-
CIC siz~ at various dislanccs.  For false alarm probabilities,
wc found that image cnscrnblcs  of a still sccnc  produced
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Figure 8: (a) Probability of dclcdion  (Pd) versus range for a 30 cm obstacle observed at 60 x 64 resolution, with stcphcight
paramclcr S = 30 cm and decision Urrcshold  t = 20 cm. Solid curvti  cd = 0.03 pixels; dotted curve o~ = 0.05 pixels.
(b) Probability of false alarm (}’f) versus range for S = 30 cm and t = 20 cm. Solid Curve: ad = ().()5 pixcki;  dotted
Curve: C7d  =  ().1  Pbds.

results that were biased by the fixed, underlying intensity
paltcra.  lhcrcforc, wc gcncratcd  an image cnscmblc with
varying intensity signal by acquiring 50 images while driv-
ing a vchiclc down the same flat, obstacle-free road. This
has the added benefit that the results bcm more dircclly
on performance under aclual driving conditions.

Figure 9 shows lhc sample mean and standard dc-
vialion of A 11 estimates at each pixel for the flat road
scqucncc.  ‘1’hc ripple paltcrn  in the means rctlccts  the
sub-pixel biases discussed in section 3. For this data, the
sample standard dcvialion  of disparity ad averaged 0.13
pixels and the disparity cs~ima[ion  errors arc spatially cor-
rclakxt over a much larger distance than for the static data
sets discussed on section 3. This can bc cxplairmd by mul-
tiple causes, including the variations of the vchiclc  attitude
when driving and the variations of the ground shape along
lhc road. Ncvcrthclcss,  using these noise parameters the
trend in sample @A]J  values agrees well with our model.

To examine A}] mcasurcmcnts  with obstacles
prcscrr[,  wc computed  sarnp]c statistics of A 11 for irnagc
windows onc pixel high by lhrcc pixels wide, ccnvxd  at
the based of the lc.fl edge of lhc 30 cm obstacle. Figure
10a shows the sample mean of AII at each distance, wilh
one-u error bars showing the sample standard dcvialion,
For comparison, the tigurc also shows sample means and
standard deviations for the same image windows in the flat
road squcncc. The means show that the obstacles were
pcrccivcd  as smallcr than the lruc height of 30 cm. This
is probably duc to the slant in the cslimahxl  range profiles
(Figure 3). The standard deviations with obstacles present
arc much smaller than without obstacles; this is duc to
the smaller disparity noise at the obstacle boundaries (SCC
section 3).

False alarm performance is shown in Figures 10b
and 10c. The periodic variation, especially evident for
a threshold of t = 15 cm, corresponds with the biased
means of AH seen in Figure 9a. The theoretical Pj using
the sample vahrc of ad = 0.13 pixels provides an upper
bound on the error rate that is fairly reasonable fort = 15
cm, but significantly the error rate for t = 21 cm, Reasons
for this include some negative bias in the samp]c means
(FiglJfC  9a) and the fact that sarnplc  distributions of AH
exhibit sornc skew.

For this data, a threshold of i = 21 cm gives perfect
dclcction  (I’d = 1) at all distances. Since the sample means
of AH vary for each of the five distances, it would not
bc meaningful to plot l’d versus range for fixed t.

Figures 10d to 10f show dctcclion  and false alarm
performance at 120 x 128 resolution. At this resolution,
the sample standard deviation of disparity for the fiat road
driving scqucncc  is 0.2 pixels. The tigurcs show that the
uncertainty in AI]  and tf~c probability of false alarms at
each pixel arc lower at this rcsohrtion  that at 60 x 64.
Although it is not clear from the tigurc, the total nurnbcr
of false alarms pcr frame is also lower. At this resolution,
with a threshold of 21 cm there arc no false alarms out
to a distance of about 12 m. However, the false alarm
rate over the distance range wc arc examining is now so
low that the sample size needs to be incrcasul  to produce
reliable samp]c statistics.

4.4 Discussion
As wilh the range data evaluation in section 3, for obsta-
CIC dctcztability  wc find that high contrast intensity pat-
terns and sub-pixel disparity errors induce notable biases
in detection performance. Using cnscmblcs  of test images



,Wxniucd  tO CVPR’93,  June 1993, New York, NY 10

0.03

-0,05

-0,10

-0,15

I
! 1 J 0.10

‘l~l!i;’s!  , ‘~! R (h)). 0.05... . .

:. 0.00

..
1.
.

!:”
I .

5 10 15
R (m?

(a) (b)

Figure 9: Empirical statistics of mcasurcxt AH vs. true rarrgc at each pixel (as dctcrmincd  from nominal ground truth
range data), for 60x64 resolution. (a) Mean at each pixel, (b) Standard deviation at each pixel, Overlaid curve shows
thcorclical  ~d}J for disparity standard deviation cr~ = 0.13, which was approximately the observed value for this data.

that include different intensity patterns smcahs  out some
of these effects; moreover, doing so make our evaluation
conform more closely to real driving conditions.

For false alarms, the model for 1)~ provides an upper
bound on error rates that is usable for predicting pcrfor-
mancc.  Similarly, the model for f)~ can bc used to pre-
dict dctcclion  rates, provided that wc also allow for biases
in the mean of the pcrccivcd obstacle height, Together,
these models contribute to answering the design questions
posed in scclion  2; that is, they can be used to predict
image resolutions that will achicvc stated rcquircmcnts  on
error rates in dctrxting  obstacles of given sizes. Wc will
conduct shch analyses in futttrc  work.

5 Summary and Conclusions
Statistical modeling and evaluation of the performance of
obstacle detection systems for UGV’S is essential for the
design, cvahration, and comparison of sensor systems. In
this paper, wc addressed this issue for imaging range sen-
sors by dividing the cvaltration  problcm  into two ICVCIS:
quality of the range data itself and quality of lhc obstacle
detection algorithms applied to [hc rarrgc data. WC rc-
vic.wcd cxistirrg  models of the quality of range dala from
stereo vision and AM-CW I. ADAR, then used these to
derive a ncw model for the quality of a sirnplc obstacle
detection algorithm. This model predicts the probability of
detecting obstacles and the probabili~y  of false alarms, as
a function of Urc size and distance of the obstacle, the rcs-
oltttion  of the sensor, and the lCVC1 of noise in the range
data. We evaluated Ihcse models cxpcrimcntally  using
range data from stereo image pairs of a gravel road with
known obstacles at several distances.

Wc draw lwo main conclusions from the results.
First, the statistical modeling effort shows prornisc for be-

ing useful as a practical design tool, bccausc it can be used
to predict the reliability that will be achicvcd  for specific
resolutions or thresholds. Second, our cxpcrimcntal  eval-
uation  rncthodology  gives valuable, quantitative rncasurcs
of actual obstacle detection pcrformancc, indcpcndcnt  of
the predictive modeling issue, The cxpcnmcntd results
also rcvcalcd  artifacts in the range data that suggest areas
for future algorithm research.

In the future, wc plan to rctinc  the statistical perfor-
mance modeling and evaluation work begun here and to
usc it to (1) measure progress on slcrco  vision algorithms,
(2) compare the performance of stereo vision with day-
ligh~ cameras to other range image sensors, and (3) cval-
ualc the performance of more clabomtc obstacle detection
algorithms. Also, wc lwlievc that quantitative, statistical
performance models like those prcscntcd  here arc essential
hrgrcdicnts  in algorithms for intelligent control of percep-
tion, or “active pcrccption”.  Wc have begun to apply these
performance models to perception control in [10].
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