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Abstract

Statistical modeling and evaluation of the performance
of obstacle detection systems for Unmanned Ground Vehicles
(UGV’'s) is essentia for the design, evaluation, and comparison
of sensor systems. Inthis paper, wc address this issue for imag-
ing range sensors by dividing the evaluation probleminto two
levels; quality of the range data itself and quality of the obstacle
detection agorithms applied to the range data. Wc review exist-
ing models of the quality of range data from stereo vision and
AM-CW LADAR, then used these to derive a ncw model for
the quality of a simple obstacle detection algorithm. This model
predicts the probability of detecting obstacles and the probabil-
ity of false darms, as a function of the size and distance of the
obstacle, the resolution of the sensor, and the level of noise in
the range data, Wc evaluate these models experimentally using
range data from stereo image pairs of a gravel road with known
obstacles at several distances. The results show that the approach
is apromising tool for predicting and evaluating the performance
of obstacle detection with imaging range sensors.

1 Introduction

In semi-autonomous, cross-country navigation of UGV'’s,
obstacle detection is achieved primarily by processing data
from imaging range sensors. For example, both scanning
laser range-finders LADAR) and stereo vision systems
have been used in demonstrations of cross-country naviga-
tion by prototype UGV’s. To date, sensor limitations have
forced these demonstrations to usc relatively large obsta-
cles (e.g. > 50 cm) and low driving speeds (c.g. <15
km/h). To complement research on improving the scn-
sors, there is now a need for quantitative methodol ogies
for modeling and evaluating sensor performance. Such
mcthodologies will be useful for measuring progress, for
system design, and for comparing competing technolo-
gics. Although such methodol ogies have been developed
in other domains, they have not yet been applied to obsta-
cle detection sensors for UGV navigation.

To be more specific, wc address obstacle detection
from range imagery alone, where range images arc 2-D
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arrays of 3-D range measurements produced by LADAR,
stereo vision, or other closely related sensors. For this
problem, performance modeling and evaluation has ques-
tions at two levels: (1) how good is the range data itself
and (2) how good are the obstacle detection algorithms that
are applied to the range data? Ideally, wc would like to
answer these gquestions with a common methodology that
appliesto LADAR, stereo vision with daylight or thermal
cameras, and possibly other sensors.

The quality of range data can be evaluated in terms
of random and systematic errors, Theoretical models of
random errors have been developed for both LADAR [1]
and stereo vision [2, 3, 4, 51. Systematic errors, or biases,
have been examined experimentally for LADAR in [6]
and for stereo in [7]. For the quality of obstacle detection,
arelevant theoretical framework exists for modeling the
probability of detection and false alarms in classical de-
tection problcms [8]. This framework has been applied to
obstacle detection with LADAR for a spacecraft landing
application [9]; however, no work has been done yet on
applying this to obstacle detection for ground vehicles.

In this paper, wc focus on obstacle detection with
range images produced by stereo vision. Scction 2 ¢lab-
orates on our motivation and overall methodology for de-
signing and evaluating obstacle detection sensor systems.
Section 3 addresses the quality of range data by review-
ing stochastic models for random errors in both stereo
and LADAR range imagery, then by conducting an ex-
perimental evaluation of random and systematic errors in
range images produced from stereo images of gravel roads
with known obstacles at various distances. Section 4 con-
ducts an ana ogous development for the quality of obstacle
detection, For a simple obstacle detection algorithm wc
have used in real-time, outdoor demonstrations, this sec-
tion derives models for the probability of detection and
false alarms, then evaluates the models experimentally us-
ing the range imagery produced in section 3. On the de-
sign side, the results show promise for being able to usc
probabilistic performance models to predict error rates for
different sensor parameter choices. On the experimental
evaluation side, the results show that our methodology is
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Figure 1: Overall methodology

auseful 1001 for quantitatively measuring the performance
of obstacle detection with imaging range sensors.

2 Motivation and M ethodology

To motivate our approach, wc will briefly consider the
larger context of using range sensors for obstacle detection
for UGV’s. Given that wc want to drive at a given speed
and detect obstacles of a given size, Ihc basic questions
arc (1) how far ahead do we have to detect those obsta-
cles and (2) what sensor resolution do wc need to detect
obstacles at that distance? The first question boils down
1o reaction time; it can be answered by estimating the dis-
tance required to stop the vehicle in case of an obstacle,
given the initial velocity, deceleration rate, and latency
limes for perception and actuation. In [10], wc have taken
this approach to show that aminimal bok-ahead distance
is.

di=d.+v0 2, +1,) + v} /(2a) 1)
where v isthe initial velocity, ais the deccleration rate, .,
and ¢, arc latency times for perception and actuation, re-
spectively, and d. isthe distance the cameras arc mounted
behind the nose of the vehicle.

The second question has clements of both gcome-
try and statistics, because wc must take into account both
the angular resolution of a pixel and the uncertainty in-
troduced by noise. In purely geometric terms, it is easy
to derive how many pixels are subtended by an obstacle;

however, noise makes obstacle detection a stochastic pro-

cess, and geometry alone does not capture the stochastic ,

element. Thercfore, reliability must be defined in proba-
hilistic terms, for example by designing the vision system
to achicve a specified detection probability.

Our overal methodology isillustrated in figure 1. In
this paper, wc consider the right branch of the figure by
deriving theoretical models of obstacle detectability and by
evaluating the validity of these models experimentally. As
stated earlier, the end goal of thiswork isto estimate the
sensor resolution required to achieve given levels of relia-
hility in obstacle detection. As shown in figure 1, the res-
olution requirement translates into computational rcsourcc
requirements nceded to process the imagery within given
latency limits. Wc have addressed the left branch of the
figure, dealing with look-ahcad distance and computation
requirements, in [1 O]. There wc have aso analyzed how
all of these factors arc related and shown how to control
perception to optimize the velocity/reliability trade-off,

In the balance of this paper, wc first consider how
sensor noise affects the quality of the range data, then
address how noise in the range data affects the quality of
obstacle deicction.

3 Quality of Range Data

Woc address this issue specifically for stereo vision; analo-
gous results for LADAR arc given in [6]. We will begin by

bricfly reviewing our stereo algorithm, then discuss math-

ematical models of performance and experimental evalu-
ation of the validity of those models.

3.1 Stereo Matching Algorithm

The algorithm is described in detail in [1 1]; here wc re-
view the characteristics relevant to later sections ON per-
formance modeling and evauation, The algorithm has the
following stages.

1. input stereo image pairs arc transformed into band-
pass image pyramids by a difference-of-Gaussian
type pyramid transformation.

2. Image similarity is measured by computing the sum-
squared-diffcrence (SSD) for 7 x 7 windows over a
fixed disparity search range.

3. Digparity is estimated by finding the SSD minimum
independently for each pixel.

4. Confidence measures are computed by estimating
posterior probabilities for the disparity estimates at
each pixel; where the probability falls below a preset
threshold, the pixel is marked as having no disparity
estimate.

5. Sub-pixel disparity estimates are obtained by fitling
parabolas to the three SSD values surrounding the
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SSD minimum and taking the disparity estimate to
be the minimum of the parabola.

6. The resulting disparity map is smoothed witha3 x 3
low-pass filter to reduce noise and artifacts from the
sub-pixel estimation process.

For textured, outdoor images, this algorithm produces dis-
parity estimates for almost every pixel in the image. The
agorithm has been implemented in a real-time system that
produces range images from the 60 x 64 level of the im-
age pyramid in approximatel y onc second per frame. The
system has been installed on two robot vehicles and used
to demonstrate obstacle detection, on gravel roads and in
sand y off-road terrain, at speeds up to three kilometers per
hour. For reference, these systems have baselines of 25
to 35 cm and fields of view of 30 to 40 degrecs.

3.2 Statistical Performance Models

For stereo vision, performance depends on many factors,
including the contrast and spatial frequency of texture in
theintensity signal, the noise level in the images, various
artifacts introduced in the stereo matching process, and the
true range to the objects in the scene. Wc need to char-
acterize both the random errors caused by noise and the
systematic errors, or biases, resulting from artifacts. Wc
will develop mathematical models of the random errors,
and examine both the random and the systematic errors
experimentally. Wc began to examine these issues in [7];
this paper reviews and extends the previous work, then
uses these results in section 4 in characterizing the quality
of obstacle detection.

Distributions of random errors need to bc examined
both for the estimated disparity map and for the range
cstimates resulting from the nonlinear operation of trian-
gulation. In both cases, there will bc uncertainty at cach
pixel and there may bc correlation in the errors for neigh-
boring pixels (i.c. the noise may not bc white),

First consider the distribution of disparity estimates
at each pixel. For good cstimates of solid surfaces, wc
expect the distribution to be unimodal and compact about
the mean. At sub-pixel resolution, the precision (vari-
ance) of a disparity estimate reflects statistical fluctuations
around the Sub-pixel mean. The precision will vary in-
verscly with the slope of the image intensity derivative
I.(2,y) =0I(z,y)/ 0z dong the scanline [1 1]. Assuming
a flat, fronto-parallel surface, an approximate model for
the variance of a disparity estimate is

202
2 n (2)

02 ,
¢ Y oryew Ua(z, y)1?

where o2 isthe variance of noise in the image and the
denominator is a sum over the window of squared, central-
differcnce derivative estimates. A more elaborate variance

model that takes into account slanted disparity surfaces is
derived in [13].

Several factors induce stetistical correlations between
errors for nearby pairs of pixels. These factors include:
(1) the spatial filtering employed in creating the image
pyramids, which correlates the noise in the low-resolution
images, (2) the fact that matching windows for adjacent
pixels overlap, which will induce correlation in the dis-
parity estimates even if the image noise is not correlated,
and (3) the application of the noise-rcxluction filter to the
estimated disparity fields. Such correlation will affect the
uncertainly of terrain slope estimates computed from lo-
cal range differences. The multiple contributing factors
make the correlation somewhat complicated to model the-
oretically; instead, wc will fit an empirical model to the
experimental results prescnted below.

Even if disparity errors arc Gaussian, the nonlinear
triangulation operation produces non-Gaussian errors in
range cstimates. It is customary to ignore this by model-
ing range as approximately Gaussian and to estimate the
variance of range errors by lincarized error propagation.
Woc examined this approximation in [7] by deriving the
“true” distribution of range and comparing it to the Gaus-
Sian approximation. The agreement was good, except that
skew in the true distribution bccomes more pronounced as
the mean disparity gets closcto zero. Wc conchrdc that,
for present purposes, range estimates arc well modelled as
Gaussian distributed, with standard deviation

Uzocadzz . (3)

where 7 is the 3-D coordinate expressing the distance
from the cameras. Note that range estimates for nearby
pairs of pixels will be cormrelated, because of the correlation
described earlier in the disparity estimates.

For comparison, the standard deviation of range mea-
surements made by AM-CW LLADAR has been modelled
as[1, 6]:

% @)
72 % Jpeosa

where p is the surface refiectance and « is the angle of
incidencc of the laser beam on the surface. For UGV ap-
plications, o gets closer to 90 degrees the further ahead
the sensor looks; therefore, this compounds the effect of
the increasing range term in the numerator. Since the
graphs of (3) and (4) may cross over, comparing the per-
formance of stereo and LADAR will reguire calibrating
the constants of proportionality for each sensor.

3.3 Experimental Evaluation

To experimentally evaluate the quality of both range esti-
mation and obstacle detection, wc collected an ensemble
of stereo pairs of aflat, gravel road with and without ob-
stacles of known geometry. The obstacles consisted of
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(d)

Figure 2: Test images: (a) large obstacles a 50 feet (b) small obstacles at 50 feet (c) large obstacles at 20 feet (d) small

obstacle.s at 20 fest,

four rectangular boards 1 meter (m) wide by 10, 20, 30,
and 40 centimeters (cm) high, which were coated with
gravel from the road to provide redlistic texture. Sets of
100 sterco pairs were taken with roughly constant illumi-
nation for cach of the following cases. the road without
obslacles, the road with the two largest obstacles (30 and
40 cm) placed at 20, 35, 50, 6S, or 80 feet, and the road
with the two smallest obstacles (10 and 20 cm) placed at
the same set of distances. Example images from these data
sets arc shown in Figure 2. These images were processed
at 60 x 64 and 120 x 128 resolution to gencrate sample
statistics for the performance measures of interest.

3.3.1 Bias

To look for possible biases in the range estimates,
wc computed the mean of the estimated disparity images
for each set of 100 stereo pairs and plotted range profiles

for selected columns of the mean range images. Figure 3
shows profiles for individual columns just inside the left
cdge of the 30 cm obstacle, for each of the five distances
from the camera and for two image resolutions. Severa
bias artifacts arc evident. First, the total perceived height
of the obstacle was aways greater than the true height,
and became more so the further away the obstacle was
placed. Wc attribute this to a bias introduced by the finite
size of the SSD window. That is, for area-based matching
algorithms, disparity estimates tend to refiect the highest
contrast texture in the matching window; this hinds to
cause a “halo” around the obstacles within which the range
estimates arc ncarly the same as the range to the obstacle.
Since thesize of this halo isfixed in the image plane (one
half the width of the matching window), its sizc in 3-
D grows with the distance to the obstacle.. Therefore, the
obstacles tend to look larger in the range image the farther
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Figure 3: Range profiles for 30cm obstacle at 20, 35, 50, 6S, and 80 feet, respectively, for (a) 60x64 resolution, (b)

120x 128 resolution,
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Figure 4. 60x64 (dolled) and 120x128 (solid) profilcs
overlaid for obstacle at 35 feet.

away they are. Since the halo is an image-plane effect,
the 3-D error is reduced for higher image resolutions, as
can be seen by comparing the 60 x 64 and the 120 x 128
results in Figures 3a and 3b; Figure 4 shows this more
explicitly by overlaying profiles for both resolution from
the 35-foot data.

Several other effects offset this halo effect, First, the

obstacles appear more slanted with increasing distance,
whereas in reality they were nearly vertical in all cases).
Thisis certainly duc to their smaller size in the image.
Also, at large distances the halo effect was sometimes
overwhelmed by loss of contrast and texture, which have
the reverse effect of making the obstacle blend in with the
background.

Another type of artifact appears to be duc to biases
in sub-pixel disparity estimation. The sub-pixel disparity
estimation algorithm appears 1o be biased toward integer
disparity estimates. For flat ground, this imposes a rip-
ple pattern on the range data, which can be seen at closc
range in Figure 3b. In the past, wc have seen other arti-
facts around high contrast intensity edges [15] and around
occluding boundaries of objects [7]; wc have also noticed
that the amount of bias depends on the boundary texture
and contrast. However, wc will not explore these here.
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Figure 5: Dispersion statistics, (a) Histogram Of disparity cstimates at a single pixel, overlaid with Gaussian distribution
having same standard deviation as the sample data. (b) Frequency plot of sample standard deviations of disparity for al
pixels-in the image, for 60x64 (solid) and 120x1 28 (dashed) resolutions. (c) Average correlation of disparity estimation
errors for pixels in the same column, empirical values (solid) and fitted model (dotted) for 60 x 64 resolution. (d) and
(e) Range profiles for 60x64 resolution, for 30cm obstacle at 20 feet: (d) overlay of profiles from five stereo pairs; (C)
cenvelope and mean (dashed line) of range profiles from 100 stereo pairs.

3.3.2 Dispersion

Figure 5 shows results of expcriments to evaluate the
theoretical model of random errors. Wc began by examin-
ing the assumption that disparity estimates arc Gaussian
distributed. Figure 5a shows a histogram of disparity es-
timates for atypical pixel from 100 stereo pairs of the
gravel road. A Gaussian distribution with these parame-
ters isoverlaid on the histogram. The correspondence iS
good enough for our present purposes.

To evaluate the overall precision of disparity esti-
mates, wc computed the sample standard deviation of dis-
parity estimates at each pixel, averaged over al images
in the data set. Relative frequency plots of the standard
deviations for disparity maps estimated at 60 x 64 and
120 x 128 resolution arc shown in Figure 5b. The average
of the standard deviations in both cases is around 0.05, or
1/20th of a pixel. Because the signal to noise ratio of the
images at the two resolutions may differ, it was not clear
a priori how the precisions would compare; experimen-
tally, wc see that doubling the resolution has doubled the
effective precision (in terms of angular resolution). The
average of the standard deviations is lower a the obstacle

edges, around 0.03 pixels: thisis duc to the higher con-
trast of the obstacle boundary as compared with the empty
road (sce Figure 2).

To evaluate the the spatial correlation of estimation
errors, wc computed the sample covariance matrix

N
—— 1 ™ 3 3
Eouyr, 1) == D _ldwn) ~ faCulld@) - jia(w))

i=1

for an entire column of the disparity map, then estimated
the sample correlation coefficient for successive displace-
men tS;

C/O\U(yl ) y2)

)=y — )= 6a(y1)5 ()

Theresults arc plotted in Figure 5¢. As expected, disparity
errors are very highly correlated for small displacements.
The correlation drops to near zero at a displacement of
eight pixels; since the matching window was 7 x 7, this
conforms to the suggestion that overlap in matching win-
dows is the dominant factor in correlating the errors, and
is near zero when the matching windows do not overlap.
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The dotted curve overlaid in the figure shows the function
r(r) =exp(-0.08 7' %), (5

which matches the experimental data very well in the re-
gion of interest. Wc will incorporate this in the obstacle
detectabilty model of the following section,

So far, we have examined random errors in disparity.
Itis still desirable to confirm the distribution models for
range estimates obtained from disparity. In [7], wc briefly
experimentally examined the distribution of of range cs-
timates and concluded that it conformed reasonably well
with a Gaussian error propagation mode]. In this paper, wc
add a simple, experimental check of the spatial correlation
already noted for disparity. Figure 5d shows segments of
elevation profiles for five stereo pairs. The profiles tend to
shift back and forth as a unit; that is, the inter-frame shift
of the entire profile is much greater than the inter-pixel
shift of pixelswithin the same frame. ‘1" his confirms the
corrclated error model above.

3.4 Discussion

Based on these results, wc draw the following conclusions
about random and systematic errors in sterco range esti-
mates. Regarding random errors, a model approximating
errors as Gaussian at each pixel and spatially correlated
over short distances is supported experimentally and ap-
pears to be adequate for usc in deriving initial probabilistic
models of obstacle detectability. For systematic errors, wc
have seen significant systematic errors in disparity estima-
tion, such as the halo and sub-pixel cffects noted earlier. It
will be desirable to find agorithm refinements that reduce
these cffects; aso, it may be neccssary to take such effects
into account when predicting resolution requircments for
obstacle detection. Questions remain open about how weli
wC can estimate the uncertainty of range estimates using
contrast measures from a single image; however, wc lcave
these in order to turn to modeling the quality of obstacle
detection.

4 Quality of obstacle Detection

Wewill now usc the models of range uncertainty obtained
in the previous section to derive statistical models of the
uncertainly in obstacle detection. As a starling point, wc
address asimple algorithm that wc have used successfully
in rea-time demonstrations of obstacle detection on gravel
roads [ 7], we believe that the basic techniques developed
here will be applicable to more elaborate obstacle detec-
tion algorithms. The balance of this section parallels the
structure of the previous section; wc first review the obsta
cle detection algorithm, then derive statistical performance
models for that algorithm, and then examine the validity
of the models experimentally.

<§ " H
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Figure 6: Obstacle detection algorithm

4.1 Obstacle Detection Algorithm

The obstacle detection algorithm is illustrated in Figure 6.
Obstacles arc assumed to be near-vertical step displace-
ments on an otherwise flat ground plane. The algorithm
checks for such obstacles by using pairs of pixels (» and
#2) in the same column of the range image to measure the
displacement in range and height between the two pix-
els. For each pixel p1» the included angle between the
pmand p; lines of sight is set to subtend a fixed obstacle
size, denoted the stepheight S. Thus, the included angle 0
is constant on each scanline, but varies from large at the
bottom of the image to small at the top of theimage. The
3-D vectors P1and P,arc estimated in the camera coordi-
nate frame, then rotated into the vehicle coordinate frame
and differenced to estimate the two components of surface
slope. Starting with the disparities d1 and d2 measured at
P1and p,, respectively, the entire transformation is given

by
o= [n]-[h

AP [ an ] = R, — Py)

1

AR
kyn/da by /dy

“([Megm ] -1 ]) o
where i is the image row coordinate of pixel pi,Psis
avector in camera coordinates, R is the rotation matrix
that transforms between camera and vehicle coordinate
frames, and k, and k, are constants that subsume camera
calibration parameters for foca length, image aspect ratio,
and stereo baseline. The obstacle detection decision rule
is based on AP. Since the components of this vector arc
highly correlated, very little islost by simply declaring
an obstacle to exist at pixel » if the measured change
in height, AH, excecds a given threshold ¢. Asthisalso
gives a simpler statistical model, in this paper wc use only
Al for clarity. As an example, to detect obstacles larger

hi
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Figure 7:  Theorctical standard deviation of measured
change in height (¢.a7) versus true range for 30 cm obsta-
cle observed at 60 x 64 resolution, based on equation (7)
with o4 = 0.05 pixel. Solid curve.: »(r) = §(0). Dashed
curve: experimental r(7) (equation (5)).

than, say 30 cm high, wc sct S = 30 cm, measure AH,
and decide there is an obstacle present if AH >t, where
t<S.

4.2 Statistica Performance Models

To derive amodel of the reliability of obstacle detection
requires a model of the probability density function (pdf)
Al of AH, To obtain this, wc will model AP as
jointly Gaussian and derive its covariance matrix L‘i]x by
linear error propagation from the covariance matrix 2:d, d;
of dy, d2. Assuming that the uncertainly in disparity isthe
same at p; and p,, this yields

. = . - 1 o(1) Jp
LAP =J Ld;,dz J7 — l:(f‘z{J 7‘(7_) ,.]17 ) (7)

where J is the Jacobian of (6) and »(7) is the spatial
corrclation coefficient of the estimation errors for di and
d2. For obstacle detection based on thresholding A}],
the reliability of detection will depend on the standard
deviation 9 a i obtained through this error propagation.
Figure 7 plots 9 an versus range for an image resolution
of 60 x 64 pixels, using experimental values of ¢4 and
»(7) from the previous section. For this resolution, a 30
cm obstacle subtends about 6 pixels at 5 meters; therefore,
AH estimates for this distance and greater will be affected
by the correlated disparity measurements, as shown by
comparing the solid and dashed curves in the Figure.
The next step in modeling the quality of obstacle de-
tection iS to derive the conditional probability of deciding
that an obstacle occurs at pixel p1, given that a step of
height H actually exists there. Thisis obtained by inte-
grating f(A I |H) over all possible measurements above

the threshold:

HAH > t1H) = /oo J(AHHYdAH

1 /°° oxp (_ 1(AH —H)?
V2roan Ji 2 oy

This conditional probability is a kcy tool for analyzing
obstacle detection performance, because it embodies both
the probability of detecting an obstacle that is actualty
present (P;) and the probability of afalse aarm (P) [8].
For example, the conditional probability 74 of detecting
an obstacle of asize H1, given that such an obstacleis
actually present (i.e. has its base a pixel 1), isthe integral
W AH > t|H,).Figurc 8a shows P4 versus range for
stepheight S= 30 cm, # = 30 cm, and a threshold ¢ =20
cm. For a disparity standard deviation of o4 = 0.03 pixels,
which is the mean at obstacle edges, the model predicts
amost perfect detection over distances from 5 10 25 m,
For o4 = 0.05 pixels, Pz decreases to 0.988 at 25 m. Since
this model applies to detection performance at a single
pixel, detection performance would be better for obstacles
covering severa pixels in width.

If no obstacle is present (e.g. Ho=%*-0), the
probability of afalse alarm is P, = p(AH > t|Ho). For
illustration, Figure reff:od:pdpfvsrb shows P as a func-
tion of range. Again, thisisamodel for performance at
a single pixel; therefore, estimating the number of false
alarmsin an image region requires integrating P, over
the area of the region. If detection performance were in-
dependent at each pixel, then the expected number of false
alarms would be 2, multiplied by the number of pixels
in the region. For 60 x 64 images, wc typicaly estimate
disparity for on the order of 1000 pixels; using this as
the region size, wc would need P, <0.001 to have less
than one false alarm pcr frame. The model for ¢4 = 0.05
pixels satisfies this for ranges up to 25 meters. Although
this estimate dots not account for the spatial correlation
of disparity errors, the experimental results below suggest
that it is still a useful guide to the design or evaluation of
the obtacle detector.

So far, our discussion of detection and false alarm
probabilities has only considered simple hyptheses; that
is, distinguishing between two particular aternatives Ho
and Hi. In practice, terrain height variations will occur
over a continuous range of values. We have begun to
address this issue in [10].

4.3 Experimental Evaluation

To evaluate the mode] for detection probabilities, wc com-
puted detection statistics for the obstacle data sets of Fig-
ure 3. In this paper, wc focus the evaluation on one obsta-
cle size at various distances. For false alarm probabilities,
wc found that image cnsembles of a still scene produced

) dAH
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Figure 8: (a) Probability of detection (P%5) versus range for a 30 cm obstacle observed at 60 x 64 resolution, with stepheight
parameter S = 30 cm and decision threshold ¢ = 20 cm. Solid curve: o4 = 0.03 pixels; dotted curve: o4 = 0.05 pixels.
(b) Probability of false alarm (#¢) versus range for S =30 cm and ¢ = 20 cm. Solid Curve: o4 = 0.05 pixels; dotted

curve: 94 - 0.1 pixels,

results that were biased by the fixed, underlying intensity
pattern. Therefore, WC gencrated an image ensemble with
varying intensity signal by acquiring 50 images while driv-
ing avchicle down the same flat, obstacle-free road. This
has the added benefit that the results bear more directly
on performance under actval driving conditions.

Figure 9 shows the sample mean and standard de-
viation of A I7 estimates at each pixel for the flat road
sequence. The ripple pattern in the means reflccts the
sub-pixel biases discussed in section 3. For this data, the
sample standard deviation of disparity o4 averaged 0.13
pixels and the disparity estimation errors arc spatialy cor-
related over a much larger distance than for the static data
sets discussed on section 3. This can be explained by mul-
tiple causes, including the variations of the vehicle attitude
when driving and the variations of the ground shape along
the road. Nevertheless, using these noise parameters the
trend in sample o4 values agrees well with our model.

To examine Al measurements with obstacles
present, WC computed sample statistics of A /7 for image
windows onc pixel high by three pixels wide, centered at
the based of the left edge of the 30 cm obstacle. Figure
10a shows the sample mean of A/ o each distance, with
one-u error bars showing the sample standard deviation.
For comparison, the figure also shows sample means and
standard deviations for the same image windows in the flat
road sequence. The means show that the obstacles were
perceived as smaller than the true height of 30 cm. This
is probably duc 1o the dlant in the estimated range profiles
(Figure 3). The standard deviations with obstacles present
arc much smaller than without obstacles; thisis duc to
the smaller disparity noise at the obstacle boundaries (sce
section 3).

False alarm performance is shown in Figures 10b
and 10c. The periodic variation, especially evident for
a threshold of 1 = 15 cm, corresponds with the biased
means of AH seen in Figure 9a. The theoretical P using
the sample value of o4 = 0.13 pixels provides an upper
bound on the error rate that is fairly reasonable fort = 15
cm, but significantly the error rate for ¢ = 21 ¢cm. Reasons
for this include some negative bias in the sample means
(Figure 9a) and the fact that sample distributions of AH
exhibit some skew.

For this data, a threshold of ¢ = 21 cm gives perfect
detection (P; = 1) at dl distances. Since the sample means
of AH vary for each of the five distances, it would not
be meaningful to plot P; versus range for fixed ¢.

Figures 10d to 10f show detection and false alarm
performance at 120 x 128 resolution. At this resolution,
the sample standard deviation of disparity for the fiat road
driving sequence is 0.2 pixels. The figures show that the
uncertainty in A7 and the probability of false alarms at
each pixel arc lower at this resolution that at 60 x 64.
Although it is not clear from the figure, the total number
of false darms pcr frame is also lower. At this resolution,
with a threshold of 21 cm there arc no fase alarms out
to a distance of about 12 m. However, the false adlarm
rate over the distance range wc arc examining is now so
low that the sample size needs to be increased to produce
reliable sample statigtics.

4.4 Discussion

Aswith the range data evaluation in section 3, for obsta-
cle detectability wce find that high contrast intensity pat-
terns and sub-pixel disparity errors induce notable biases
in detection performance. Using ensembles of test images
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Figure 9: Empirical statistics of mecasured AH vs. true range at each pixel (as determincd from nominal ground truth
range data), for 60x64 resolution. () Mean at each pixel, (b) Standard deviation at each pixel, Overlaid curve shows
theoretical 9ay for disparity standard deviation o4 = 0.13, which was approximately the observed vaue for this data.

that include different intensity patterns smooths out some
of these effects, moreover, doing so make our evaluation
conform more closely to real driving conditions.

For false aarms, the model for /%, provides an upper
bound on error rates that is usable for predicting perfor-
mance. Similarly, the model for P4 can bc used to pre-
dict detection rates, provided that wc also allow for biases
in the mean of the perceived obstacle height, Together,
these models contribute to answering the design questions
posed in scction 2; that is, they can be used to predict
image resolutions that will achicve stated requirements on
error rates in detecting obstacles of given sizes. Wc will
conduct such analyses in future work.

5 Summary and Conclusions

Statistical modeling and evaluation of the performance of
obstacle detection systems for UGV's is essentia for the
design, evaluation, and comparison of sensor systems. In
this paper, wc addressed this issue for imaging range sen-
sors by dividing the cvaluation problem into two levels:
qudlity of the range dataitself and quality of the obstacle
detection algorithms applied to the range data. Wcre-
viewed existing models of the quality of range data from
stereo vision and AM-CW |. ADAR, then used these to
derive ancw model for the quality of asimple obstacle
detection agorithm. This model predicts the probability of
detecting obstacles and the probability of false alarms, as
afunction of the size and distance of the obstacle, the res-
olution of the sensor, and thelevel of noise in the range
data. We evaluated these models experimentally using
range data from stereo image pairs of a gravel road with
known obstacles at several distances.

Wec draw two main conclusions from the results.
Firgt, the statistical modeling effort shows promise for be-

ing useful as a practical design tool, because it can be used
to predict the reliability that will be achieved for specific
resolutions or thresholds. Second, our experimental eval-
uation methodology gives valuable, quantitative measurcs
of actual obstacle detection performance, independent of
the predictive modeling issue, The experimental results
also revealed artifacts in the range data that suggest areas
for future agorithm research.

In the future, wc plan to refine the statistical perfor-
mance modeling and evaluation work begun here and to
usc it to (1) measure progress on stereo vision agorithms,
(2) compare the performance of stereo vision with day-
light cameras to other range image sensors, and (3) eval-
vate the performance of more claborate obstacle detection
agorithms. Also, wc believe that quantitative, statistical
performance models like those presented here arc essentia
ingredients in algorithms for intelligent control of percep-
tion, or “active perception”. Wc have begun to apply these
performance models to perception control in [10].
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