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Abstract

While the general class of most scheduling prob-
lems isNP- hard in worst-case complexity, in
practice, for specific distributions of problems and
constraints, domain-specific solutions have been
shown 10 perform in much better than exponential
time. Unfortunately, constructing such techniques
is a knowledge-irrkmsivc and time-consuming
process that requires a deep understanding of the
domain and the scheduler, The goal of our work
is to develop techniques to allow for automated
lemming of an effective domain-specific scarch
stratcgy given ageneral problem solver with a
flexible control architecture. In this approach, a
learning system scarches a space of possible con-
trol strategies, using statistics 10 evaluate perform-
ance over the expected problem distribution. Wc
discuss an application of the approach to schedul-
ing satellite communications. Using problem dis-
tributions based on actual mission requircments,
our approach identified a strategy that on average
decreased theamount of CPU timer required to pro-
duce aschedule by 78%. On arelated distribution
the approach learncd a strategy that enabled the
schedulerto solve 1670 more scheduling problems
within computational resource limitations.

1 INTRODUCTION

Genera) problem solving tasks like planning and scheduling
arc inherently complex. Nevertheless, in man 'y practical Sit-
uations these complex problems have reasonable solutions
(e.g. traveling salesman problem [Held70}). Often wc can
take advantage of the structure of a domain or the distribu-
tion of problems to formulate effect ive solut ions to complex
problems. Unfortunately, a system designer must devote

considerable expense to the performance aspects of an algo-
rithm.

in this article we investigate the use of a machine learning
approach to automatically improve a problem solver with
respect to a specific domain and distribution of problems.
The overall learning problem wWc arc addressing can be spe-
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cificd as follows. Given aflexible performance element PE
with control points CP;...CP,, where each control point
CP; has a set of alternative methods Mi, 1. -Mi,k,l acontrol
strategy isa selection of amethod for each control point in
PE(e.g,STRAT = <M} 3,M2,6.M3,1 ,..>). A control strategy
determincs the overall behavior of the scheduler. 1t may ef-
fect propertics like computational efficiency or the quality
of itssolut ions, Let PE(STRAT) be the problem solver oper-
ating under a particular control strategy. The function
U(PE(STRAT), d)isarcal valued wility function that is a
measure Of the goodness of the behavior of the scheduler
over problem d. The goal of learning can be expressed as:
given aproblem distribution D, find STRAT" SO as to maxi-
mize the expected utility of PE. Expected utility is defined
formaly as:

z U(PE(STRAT), d) X probability(d)

de

For example, in a planning systcm such as PRODIGY [Min-
ton88], when planning to achicve a goal, control points
would bc: how to select an operator to usc to achicve the
goal; how to select variable bindings to instantiate the oper-
ator; etc. A method for the operator choice control point
might be a set of control rules to determine which operators
to usc to achicve various goals plus a default operator choice
method. A strategy would be a set of control rules and de-
fault methods for every control point (e.g., onc for operator
choice, onc for binding choice, etc.).

Our proposed solution to this learning problem, sometimes
called the urility problem [Minton88], is embodied in the
COMPOSER system, COMPOSER can bc characterized
as a hill-climbing search in the space of possible strategies.
Thelearning system alternately conjectures possible con-
trol strategies and statistically cvaluates them to determine
how well they enhance expected utility.

In this paper wc describe an applicat ion of the COMPOSER
framework to leaming search strategies for an automated
scheduling technique ina NASA domain of space-craft
communication scheduling. Two important aspects of this

1. Notethata method may consist of smaller elements so that a
method may be a set of control rules or a combination of heuristics.




evaluation arc that the task and problem distribution are
based on a real-world situation, and the scheduling ap-
proach was developed independently of our lemming work
{Bcl192). This success, along with previous resultsin artifi-
cial planning domains [Gratch91, Gratch92], demonstrates
COMPOSER' sflexibility and its potential to identify bene-
ficial knowledge in practical lemming problems.

2 COMPOSER

COMPOSER is statistical approach to improving the ex-
pected utility of problem solving. The overall approach is
one of generate and test hill-climbing. Given an initial
problem solver, a transformation generator constructs a set
of possible transformations to the control strategy. Each of
these changes is evaluated statistically over the expected
distribution of problems. A transformation is adopted if it
increases the expected utility of solving problems over that
distribution. The generator then constructsa Set of transfor-
mations to this ncw strategy and so on. For a complete de-
scription of the method sec [Gratch92]. The algorithm is
summarized in the Appendix.

COMPOSER' s solution isapplicable in cases where the fol-
lowing conditions apply.

1. Thesearch space is well-structured, In general, the space
of such strategies is so large as to make exhaustive search
intractable. Because of this difficulty, this general approach
to learning can only be applied when the strategy scarch
space can be reduced by simplifications. Hill-climbing is
‘one such simplification. Further reductions arc possible if
subsets of the control points can be considered separately.
These further simplifications can be represented in the defi-
nition of the transformation generator.

2. Thereis a supply of training problems so that an adequate
sampling of problems can be used to estimate expected util -
ity for various control strategies.

3. Problems can be solved with a sufficiently low cost in re-
sources SO that the cost of solving problems to estimate ex-
pected utility is not prohibitive.

4. There is sufficient regularit y in the domain such that the
cost of lemming a good strategy can be amortized over the
gains in solving many problems.

COMPOSER can be seen as onc of aclass of statistical ap-
proaches to improving the expected utilit y of problem solv-
ing (scc aso [Greiner92, Laird92, Subramanian92}. The
principle drawback of these techniques is that t hcy find only
local maxima, they may require many examples, and exam-
ples can be expensive to process. Furthermore, their statis-
tical properties rest upon assumptions that may not hold in
practice. Greiner and Jurisica demonstrate that. under very
weak assumptions, the number of examples, or sample coni-
plexity, can be bounded by a polynomia function of the al-
lowable statistical error [Greiner92)]. Weak assumpt ions
are a way of ensuring wide applicability, Unfortunately, the

resulting bounds prove too large for most practical applica
tions (see [Buntine89, Gratch92]). COMPOSER embodies
stronger statistical assumptions suggested by the Central
Limit Theorem [Hogg78 pp. 192-195]. These assumptions
drastically reduce the number of examples required to make
statistical decisions, but they potentialy limit the applica-
bility of the approach. In previous eva uations these stron-
ger assumptions have proved reasonable: COMPOSER’s
assumptions produced sample complexities two to three or-
der of magnitudes Icssthan the weak assumptions adopted
by Greiner and Jurisica, without compromising the statisti-
cal error [Gratch92}. However these promising resultshave
the drawback that they are based on artificial domains and
problem distributions. The ultimate usefulness of our ap-
proach depends on its behavior on real-world domains,
which this paper addresses.

3 ‘'l DEEP SPACE NETWORK

Woc applied the COMPOSER approach to improving, the
performance of a scheduler operating in the domain of
spacecraft communication scheduling. This isacompli-
cated real world domain that has proved challenging to
state-of-the-arl scheduling techniques. The task is 10 allo-
cate communication requests between earth-orbiting satel-
lites and the three 26-meter antennas at Goldstone, Canber-
ra, and Madrid. These antennas make up part of the Deep
Space Network (DSN) that is responsible. for communica-
tion with earth-orbiting and in[cr-planet’ ary spacecraft.
Each satellite hasa set of constraints, called project require-
ments, that define its communication needs. For example,
the Nimbus-7 satellite must have at least four 15-minute
communication slots per day, and these slots cannot be
greater than five hours apart. Two factors complicate the
problem, First, antennas are alimited resource — two satel-
lites cannot communicate with the same antennaat the same
time. Second, satellites can only communicate with certain
antennas al certain times. depending on their orbits.

Scheduling is doncon a weekly basis, A weekly scheduling
problem is defined by three elements: (1) the set of projects
to be scheduled, (2) the project requirements for each proj-
ect,and (3) a set of time periods specifying all temporal in-
tervals when a project canlegally communicate with an an-
tenna. Two time periods conflict if they use the same
antenna and overlap in temporal extent. A valid schedule
specifics a noll-conflicting subset of all possible time peri-
ods where each project’s requirements arc satisfied. Cur-
rently, all scheduling is performed by a human expert, but
theJet Propulsion Laboratory isinvest igating approaches to
automating this process.

3.1 1.1/-26 SCHEDULER

The LR-26 scheduler is a heuristic approach to the schedul-
ing problem [Bell92]. It providesa good platform for learn-
ing as it can be modified easily to incorporate alternative
heuristic strategies. Furthermore, itusesan expert crafted
control strategy that provide a challenging, base-line to




judge learned knowledge, There is also significant motiva-
tion to improve the effectiveness of the default control strat-
egy. If LR-26 is chosen to replace the human scheduler, it
will serve as onc module in a larger interactive system. This
system must make many repeated calls to the scheduler to
compare variants of each weekly schedule. For this reason,
1.R-26 must provided solutions in a timely fashion.

Scheduling is formulated as a O-1 integer programming
problem [Taha82). Thisis amethodology for finding an as-
signment to integer variables that maximizes the value of an
objective function, subject to a set of linear constraints. The
objective function characterizes the “valuc” of the solution.
Many constraint satisfaction problems (CSP) are easily cast
as integer programming problems [Mackworth92]. In the
DSN domain. time periods arc treated as 0-1 integer vari-
ables (O if the time period is excluded from the schedule or
1if itisinchrdcd), the objective is to maximize the number
of time periods in the schedule subject to the project require-
ments and temporal conflict constraints which arc ex-
pressed as sets of linear inequalities. Integer programming
is NP-hard, turd the size of our scheduling problems makes
the conventional approach impractical: a typical problem
has approximately 650 variables and 1300 constraints.
LR-26 embodies a heuristic approach called lagrangian re-
laxation [Fishcr81]. Lagrangian relaxation requires identi-
fying some congtraints that, if removed, make the problem
computationally easy. These constraints arc “relaxed,”
meaning they no longer act as constraints but instcad
modify the objective function. A relaxed objective function
is automatically gencrated such that satisfying relaxed con-
straints increases the value of the relaxed solution. The re-
laxed problem is by definition easy to solve and it is hoped
that by finding the highest vatuerclaxed solut ion, onc fortu-
itously satisfies the unrelaxed constraints, Furthermore,
cachrelaxed constraint hasa weight associated with it when
it is added to the objective function. By systematically ad-
justing these weights and re-solving the relaxed problem, a
solution to the unrelaxed problem is often efficiently dis-
covered. Even if the unrelaxed problem cannot be solved
in this manner, this weight adjustment cycle can move the
scheduler closer to a solution, allowing the unrelaxed solu-
tion to be discovered with less search. LR-26 relaxes inter-
antenna constraints. This representation facilitates an effi-
cient implicit representation of temporal conflict
constraints, which make up more than half of all constraints
in atypical problem.

LR-26 combines lagrangian relaxation with standard con-
straint satisfaction search techniques, The scheduler per-
forms depth-tirst search through a space of partial sched-
ules. A variable is assigned a valuc of in if the associated
time period isincluded in the partial schedule, ot if itis ex-
cluded from the partial schedule. The scheduler constructs
acomplete schedule by incrementally extending the partial
schedule. First it attempts to completely extend the sched-
uvle using the lagrangian relaxation method. If the relaxed

solution satisfics all constraints it is returned, Otherwise, a
set of possible extensions to the partial schedule is created
and these arc recursive explored. Extensions arc created by
choosing an unsatisfied constraint, identifying a set of un-
committed variables in the constraint, and assigning possi-
ble values to these variables. The set of extensions arc
placed on a stack to implement the depth-first search. The
search continues until asolution iSuncovered or atime-
bound is reached. Currently the scheduler implements a ti-
me-bound of five CPU minutes as it was observed that if a
solution is not found in the first five CPU minutes, it is not
likely be be found even with considerably more resources.

LR-26 can be viewed as arccursive application of four con-
trol decisions: (1) perform lagrangian weight adjustment,
terminating if aviable solution is found: otherwise (2)
choose an unsatisfied constraint, (3) construct a spanning
set of extensionsto the partial schedule that satisfy the con-
straint, and (4) determine an order to explore these exten-
sions. The scheduler embodies a heurist ic method for each
of these control operations. These operations provide natu-
ral points a which to insert alternative learned methods.

3.2 PROBLEM DISTRIBUTION

We constructed a distribution of scheduling problems using
the requirements and time periods of satellites using the
deep space network. Ideally, wc would usc the identical
probiem distribution faced by the human experts in this do-
main. Unfortunately, not all of thisinformation isin elec-
tronic form and thus is difficult to present to the 1.R-26
scheduler. I"here dots, however, exist alarge €lectronic da-
tabase of information for many of the projects in the deep
space network. Wc used this database to construct a large
body of scheduling problems that arc representative of, if
not identical to, the type of problems faced by the human
schedulers. Problems are gencrated by randomly choosing
combinations of projects from the available data. There-
quirements and time periods represent the requirements and
time periods of actual projects. The primary difference be-
tween these and actual problems lies in the particular com-
binations of projects that appear in the schedule.

Woc performed some initia evaluations of the 1.R-26 sched-
uler on these gencrated problems. Wc observed that some
problems could not be solved by the scheduler using any of
severa search control strategies even with large resource
bounds. This is consistent with the observation that the
scheduling problem is inherently NP-Hard - there will be
some problems that cannot be efficiently solved, even with
good heuristics. These problems tend todilutcany perform-
ance improvement that we might gain through learning. For
our experiments We eliminated this complicating factor by
constructing our problem distribution without these un-
solved problems. These problems were identified by solv-
ing each randomly gencrated problem multiple times using
about twenty different search strategies (the strategies were
identified during our pilot investigations). If a problem
could not be solved by any of the strategics within the time



bound, it was not added to the experimental distribution.
For comparative purposes wc include a secondary set of ex-
periments that incorporate these unsolved problems. For a
complete description of how training examples arc gener-
ated, scc [Gratch93].

33 EXPECTED UTI1 ITY

In the DSN domain a chief concern is with the computation-
al efficiency of the scheduler. There is a strong need that the
scheduler return quickly on average. This behavioral pref-
erence can be expressed by a utility function related to the
computat ional effort required to solve aproblem. Asthe ef-
fort to solve aproblem increases, the utility of the problem
solver on that problem should decrease. In this paper wc
characterize this preference by making utility the negative
of the CPU time required by the scheduler on aproblem.

3.4 HEURISTICS FOR LR-26

LR-26 combines lagrangian relaxation and constraint satis-
faction search techniques to increase scheduling efficiency.
Nevertheless, scheduling is still quite expensive. While the
problems arc of sufficient complexity that some search is
unavoidable, alternate search control methods can drasti-
cally impact the amount of search required, especidly as
there is substantial repetition in this domain. Many projects
usc the antennas for many years, and their project require-
ments vary little across weeks. Because possible slots for
specific antennas communicating with spacecraft are dic-
tated by spacecraft orbits, the space of potent ial communi-
cation slots also contains significant regularity. This sug-
gests that heuristics can be crafted to exploit this regularity
to improve performance.

Many heuristics have been suggested to improve schedul-
ing efficiency. Often these heuristics arc stated as genera
principles (e.g. “first instantiate variables that maximally
constraint the rest of the search space” [Dechiter92]) and
there may be many ways to realize thcm in a particular
scheduler and domain. Furthermore, there arc almost cer-
tainly interactions between methods used at different con-
trol points that makes it difficult to construct a good overall
strategy. These factors conspire to make manua develop-
ing and evauation of heuristics a tedious. time consuming
task that requires significant knowledge about the domain
and scheduler, As aresult, only alimited set of alternate
heuristics were considered in LR-26’s development. We
formalized a much larger set for automatic consideration.

Asdescribed previoudly, there are four basic control points
in LLR--26: a weight adjustment method, constraint selection
method, a method for constructing aiternative solutions for
the constraint, and method for ordering these alternatives.
Wc allow for both a primary and secondary sort function to
order candidate constraints, so there arc effectively five
control points. A control strategy consists of a particular
heuristic method for each of the five control points. For
L.R- 26 there are 4 alicmative methods for the lagrangian
weight adjustment control point, 7 aternative methods for

the constraint sclection (e.g., 9 for the primary sort and 9 for
the secondary sort — excluding the primary sort but includ-
ing the possibility y of no second.ary sort), 2 aternative meth-
ods for constructing aternative solutions to a constraint,
and 4 alternat ive methods for ordering alternative solutions
to a constraint.

Examples of methods for the weight adjustment are: per-
form adjustments at every search node, perform only at root
node, never perform adjustments. Heuristics for selecting
constraints involve features of the constraints and con-
straint graph. Prefer the shortest constraint (e.g. the onc that
ment ions the fewest unbound variables) and prefer the con-
straint that mentions the variables that temporally conflicts
with the most other variables arc examples of constraint se-
lection methods (recall variables correspond to time-per-
iods). For constructing altemative solutions, there were 2
methods: force the first variable in the constraint into the
schedule forone child and out for the second child; and con-
struct a child for each variable in the constraint, forcing that
variable into the schedule. Examples of aternative order-
ing methods include preferring high conflict variables and
preferting low conflict variables?. These heuristics can be
viewed as variable ordering heuristics from the CSP litcra-
ture [Dechter92].

Exhaustively scorching the space of possible control strate-
gicsisin general computationally infeasible. As there are
roughly 4x9x9x2x4=.2592 possible strategies in the LR-26
control strategy search space, to exhaustively search the
control strategy space, taking a significant number of exam-
ples per strategy (fifty) at acost of 5 CPU minutes per prob-
lcm would require approximately 450 CPU days.

A simple way to organize the search through this strategy
space would be to treat all control pointsaequal and consid-
erall single step changes from a given point. This was the
method wc used in our PRODIGY implcmentation
[Gratch92]. Instead. wc used our knowledge of the schedul-
er to take advantage of interactions (or lack thereof) be-
1ween control points. The intent of this organization is 10 re-
duce the branching factor in the strategy search and improve
the expected utility of locally optimal solutions. This ap-
proach led to a transformation gencrator that implements a
layered search through the strategy space. Each control
point is assigned to alcvel. The control strategy space is
search by cvaluating all combinations of methodsat asingle
level, adopting the best combinations, and then moving
onto the next level. The organization is shown below:

Level O: weight adjustment

Level 1: constructing alternatives

Level 2: secondary constraint sort, child sort

Yevel3: primary constraint sort

2. ‘I"hisis aprimeexample of thedifficulty of detenmining good heu-

nistics. Selecting high conflict variable hasihe benefit of rapidly forcing
many time-periods tobe in or out of the schedule (e.g. reducing the num-
ber of stepsto solution). Selecting low conflict intervals advocates add-
ing those time-periods which costlittle, and thus may satisfy constraints
without causing. conflicts [Dechter92].




The weight adjustment and alternative construction control
points were separated because they arc relatively indepen-
dent from the other control points. While there is clearly
some interaction between weight search, alternative con-
struction, and the other control points, a good selection of
methods for pricing and alternative construction should
perform well across all constraint and child sorts. The pri-
mary constraint sort was separated into another level be-
cause it was the soic control point that theimplementor of
LR—26 had spent time experimenting and optimizing.
‘bus, wc believed that it was unlikely the default strategy
could be improved upon, and hence relegated to aseparate
level.

Given this transformation gencrator, COMPOSER will first
entertain weight adjustment methods, then aternative con-
struction methods, then combinrrtions of secondary con-
straint sort and child sort methods, and finally primary con-
straint sort methods.  Searching the structured space
involves evaluating at most 442+9x4+9=51 strategies.

This structure can be viewed as the conscquence of assert-
ing certain t ypes Of relat ions bet ween control points. Inde-
pendence relations indicate cases in which a control point
can be viewed as primarily independent of another control
point. A set of control points A can be divided into sets B
and C if every control point in A isindependent of every
control point in B. Dominance relations indicate that the
changes in utility from changing methods for onc control
point arc much larger than the changes in utility for another
control point. Again, a set of control points A canbe divided
‘into sets B and € when every control point in B dominates
every control point in C. Finally, inconsistency relations in-
dicate when amethod M; for control point X isinconsistent
with method M, for control point Y. This means that any
strategy using these methods for these control points need
not be considered.

35 EXTRACTINGUTILITY INFORMATION

To perform its evauations, COMPOSER must determine,
given a current control strategy, a transformation, and a
problem, what improvement the transformations provides
over the current strategy on that problem. How wc can ex-
tract this information depen dsintimately on the utility func-
tion, the form of the transformations, and the extent to
which wc can model the behavior of the problem solver. In
the best case wc possess a detailed cost model of the prob-
Icm solver that efficiently derives the ramification of pro-
posed modifications without actualy solving the problem
(e.g. [Greiner89, Subramanian90]). In the worst case wc
can resort to brute-force simulation: solve the problem with
and without the proposed modification and observe the dif-
ference in utility between the two solution attempts. In the
former case the cost of processing an example is tied to the
efficiency of manipulating the model. In the later case the
cost istied to the efficiency of the problem solverand grows
lincarly with the number of transformations wc consider.

In the current context wc found it necessary to usc the later,
more costly, aternative. Given m candidate transforma-
tions, COMPOSER solves each problem m+ 1 times; once
with the current control strategy and once using each of the
m transformations. This allows us to generate the mincre-
mental utility values. There arc several issues that lead us
to this particular solution. In particular we found that other
more efficient proposals for gathering statistics (see
[Gratch92, Greiner92]) were not appropriate to this prob-
Icm. We elaborate on this issue in Section 5.

4 EXPERIMENT AND RESULTS

COMPOSER should, with high probability, improve the
expected utility of the scheduler over the distribution of
problems. This can be seen as two basic claims that can be
tested empiricaly. First, COMPOSER should identify
transformations that improve the expert strategy. Second,
COMPOSER should identify these transformations with
the confidence predicted by the statistical theory, Besides
testing these claims, wc arc also interested in two second’ ary
questions. How quickly dots the technique improves ex-
pected Uutility (e.g., how many examples arc required to
make statistical inferences?). Also, many problems are un-
solvable within five minutes with the expert strategy. Can
COMPOSER improve the number of solvable problems?

When COMPOSER lcarns a strategy, its behavior is guided
by a random selection of training examples according to the
problem distribution. As a result of this random factor,
COMPOSER will exhibit different behavior on different
runsof the system. On someruns the systcm may learn high
utility strategies. On other runs the random examples may
poorly represent the distribution and COMPOSER may
adopt transformations with negative utility. The typical be-
havior can be estimated from several runs of the system.

For these experiments alearning run consists of 300 random
training examples. The expeeted utility of all learned strate-
gies IS assessed on anindependent test set of 1 000 randomly
selected examples. A measurement Of learning rate is defer-
mined by recording the strategy leamed by COMPOSER
after every 20 examples. Thus wc can sec the result of learn-
ing with only twenty examples, only forty examples, etc.
To assess statistical error, we perform twenty runs of the
system on twenty distinct training sets.

COMPOSER has two parameters. The parameter 8 speci-
fics the acceptable level of statistical error. This isthe
chance that the technique will adopt a bad transformation or
reject a good one. Thisis set to a standard value of 5%.
COMPOSER bases each statistical inferences on at least rg
examples. ng is set to the empirically determined valuc Of
fifteen,

Recall that we identified severa inherently difficult sched-
uling problems. These problems. if added to the problem
distribution, should make learning more difficult as no
strategy is likely to provide a not iccable improvement with-
in the five minuteresource bound. Nevertheless, it isiny)or-
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Figure 1. Learning curves showing performance as a
function of the number of training examples and table
of experimenta results. Results arc provided for orig-
inal distribution (Distribution 1) and the distribution
including unsolved problems (Distribution 2).

tant to show that COMPOSER behaves correctly under a
distribution that includes these problems. Wc¢ created a ncw
distribution by incorporating these problems into the origi-
nal distribution and repeated the experiments. Results for
both sets of experiments arc shown in Figure 1. The original
distribution is called Distribution 1 while the second is re-
ferred to as Distribution 2.

The results support the two primary claims. For Distribu-
tion 1, COMPOSER learned search control strategies that
yielded a significant improvement in performance. 1t re-
duccd the average time to solve a problem from 57 to 27 sec-
onds (a 5370 improvement). There is modest variance in the
expected utility of the strategies learned in the twenty trials.
The best of these strategics required only 12 seconds on av-
erage to solve a problem (an improvement of 78%). The ob-
served statistical accuracy remained well within the theo-
retically predicted bound: of 93 transformations adopted

across the twenty trials. only 3% decreased expected utility.
It ook an average of 58 examples to adopt each transforma-
tion. The expert strategy was unable to solve 7% of the
scheduling problems within the resource bound. One strat-
egy learned by COMPOSER reduced this number to 370.

For Distribution 2, leamed strategics reduced the average
solution time from 165 to 147 seconds (an11% improve-
ment). The best learned strategies required 160 seconds on
average to solve aproblem (an improvement of 15%). The
observed statistical accuracy did not significantly differ
from the theoreticalty predicted bound: of 107 transforma-
tions were adopted across the trials, only 670 decreased ex-
pected utilit y. The introduction of the difficult problems re-
sulted in higher variance in the distribution of incremental
utility values and thisisreflecied in a higher sample com-
plexity: an average of 108 examples to adopt each transfor-
mation. Some improvement was noted on the supposedly
unsolvable problems. Onc strategy learncd by COMPOS-
ER increased the number of solvable problems from 51%
to 59% (a16% improvement).

Most of the learned improvement came from improved
methods for lagrangian weight adjustment, secondary con-
straint sorting, and child ordering. The best learned strategy
performed no weight adjustment, preferred constraints that
contained time periods with high levels of temporal con-
flicts, and, among child nodes, prefer aternatives with few
temporal conflicts. By avoiding the weight adjustment,
COMPOSER implies that there is no utility in using lagran-
gian weights to improve the first relaxed solution. Onc in-
terpretation of the constraint and child methods is that
search should proceed by first identifying a highly con-
strained constraint, and then choose the least constrained
way of satisfying it. It iSinteresting that thisis consistent
with the general reccommendations in the CSP literature
[Dechter92].

5 1) ISCUSSION

This paper evaluates COMPOSER on a real-world domain,
COMPOSER is grounded in a mathematical framework.
While the framework embodies statistical assumptions,
there is a theoretical support for these (the Central Limit
Theorem) and they enjoy wide acceptance in the dtatigtical
community. Admittedly, these statistical approaches have
not seen wide use within machine learning systems, so there
is some reason t0 be cautious about their applicability.
However, the current scheduling results and previous dem-
onstrations in artificial planning domains [Gratch92] pro-
vide growing support for the effectiveness and generality of
the COMPOSER framework.

Animportant aspect of statistical frameworks like COM-
POSER istheir flexibility. In our research wc have applied
the technique to scheduling and planning tasks, in both
cases improving the average time to produce solutions. Co-
hen and Greiner illustratc how such statistical frameworks
can apply to a wide variety of utility functions. For cxam-




ple, by choosing another utility function wc could guide
COMPOSER towards influencing other aspects of 1.R-26s
behavior such as increasing the amount of flexibility in the
generated schedules.

Ourexperience in the scheduling domain uncovered several
aspects of COMPOSER that can be improved. Its perform-
ance is tied to the transformations it is given and the expense
of processing examples. Just as an inductive lemming tech-
nique relics on good attributes, if COMPOSER s to be ef-
fective, there must exist some control strategy in that space
with higher utility than the initial control strategy. Because
of the nature of hill-climbing, even if a good strategy exists,
there is no guarantec that COMPOSER can find it. One may
hove to consider carefully how to explore the transforma-
tion space.

When it is available, knowledge such as dominance and in-
dcpendcnce can improve lemming efficiency and mitigate
the effects of local maxima. Animportant question is to
what extent this information influenced the expected utility
of the learned knowledge in the DSN domain. Wc arc cur-
rently performing a series of experiments to address this
question. Wearc also interested in whether thist ypc of in-
formation could assist learning in our carliecr PRODIGY
implementation. An obvious question is if such informa-
tion can be acquired automatically. Another could help
overcome the problem of local maxima. Onc strategy we
arc investigating is to perform several learning trias, start-
ing the system at a differing random locations in the stratcgy
space. Thisis similar to the training strategy for neural net-
work systems,

In the LR-26 domain the cost of processing each t raining ex-
ample grows lincarly with the number of candidates at each
hill-climbing step. While thisis not bad from a complexity
standpoint. it can be a pragmatic concern. There have been
afew proposas toreduce the expense in gathering statistics.
In [Gratch92] wc exploited properties of the transforma-
tions to gather statistics from a single solution at tempt. That
system relied on so-called “rejection rules’ [Minton88] that
only avoid backtracking. The same tcchnique could not be
applied to “preference rules’ that suggest novel search di-
rections. Greincer and Jurisica [Greiner92] propose onc
method for evaluating preference rules from a single sotu-
tion attempt by maintaining upper and lower bounds on the
utility of the novel search paths. In the LR-26 domain these
bounds arc too weak to discriminate between alternative
search strategies because thereis virtually no overlap be-
twcen the search spaces explored by alternative control
strategies. Presumably this could also occur in other do-
mains.

Finally, an important issue is the notion ofa shifting prob-
Icm distribution. COMPOSER assumes a stable distribu-
tion of problems. In many domains ibis may not bc an ap-
propriate assumption. For example, there arc propertiesin
the deep space network that produce distribution shifts: old

satellites arc deactivated, ncw satellites arc launched, and
orhits change in a predictable pattern. We ignored these fac-
torsin our experiments by combining all problemsinto a
single batch and choosing a random ordering. Onc solution
to shifting distributions is to usc a moving window of prob-
lems, periodically retraining the system with new problems
added to the front of the window and old problems removed
from the end, A better solution might be to predict and ex-
ploit predictable shifts to guide its behavior.
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Appendix

Let PE denote aperformance el ement. COMPOSER takes
aninitia element, PEg, and identifies a sequence, PEy, PE;,
... where each subsequent PE has, with probability 1- §,
higher expected utility. TRANSFORMS isa function
that takes a PE and returns a set of candidate changes. AP-
PLY(t, PE) is afunction that takes a transformation, t e

TRANSFORMS, and a PE and returns a new PE’ that
is the result of transforming PE with t. Let U;(PE) denote
the utility of PE on problem j. The change in utilit y that a

transformation provides for the jth problem, called the in-
cremental utility of a transformation, is denoted by AU-
J(PE). 'I'his is the difference in utility between solving the
problem with and without the transformation: AU;(1/PE) =
U!-(APPLY(t,PE)) -Uy(PE). COMPOSER findsa PE with
high expected utility by identifying transformations with
positive expected incremental utility. The expected incre-
mental utility is estimated by averaging a sample of ran-
domly drawn incremental utility values. Given a sample of
n values, the average of that sample is denoted by AU-
2(1/PE). The likely difference between the average and the
trucexpected incremental utility depends on the variance of
the distribution, denoted S?(fIPE) , and the size of the sam-

ple, n. COMPOSER provides a statistical technique for de-
termining when sufficient examples have been gathered to
decide, with error §, that the expected incrementa utility of
atransformation is positive or negative. The algorithm is
summarized in Figure 2.3

3. Thisalgonithm reflects three differences from [Gratch92]. The

first is the correction of atypo in the definition of )(a) that appeared
inthe original paper. The second is superficia - all transformations are
proposed at ence with the TRANSFORM function, instead of incre-
mentally. While wc still allow the later, the former reflects the current
implementation. Finally, we adopt the 8* term. recommended by
Greinerand Junisica. The error at each step is dependent on the cardinal-
ity of T. While§*is overly conservative for most applications, wc feel
this is more reasonable than the overly liberal previous approach of ig-

noring the cardinality of T.

LetPE=PE) T = TRANSFORMS j= 0 8" = §/(2ITl)
While more examples and T # 0 do
j=j+1

Vie T: Get AUj(1/PE)

significant = SjurE)
rgnijieant = AUIPE)Y

{ —
T=T- {t € significant : AU{IPE) < 0]
If 3r€ stopped: AU{IPE) >0 Then

1€ L jzn and =<

/* Gather statistics and find transformations that have reached significance */

Where ®{(a) = J (1 /fZ?t)exp{— 0.5y)dy =8"

-

P Discard transformations that decrease expeced utility */

/* Adopt transformation that most increases expected Utility */

PE = Apply(x € significant: Vy € significant [AU{PE) > ZS—U,(yII'E)], PE)

T = TRANSFORMS j= O §" =3/

Return (PE)

Figure 2: The COMPOSER algorithm




