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Abstract

While the gcncritl  class  of most scheduling prob-
lems  is NP- hard in worst-case complexity, in
practice, for specific distributions of problems and
constraints, domain-specific solutions have been
shown 10 perform in much better than cxpacntia]
time. Unfortunately, constructing such techniques
is a knowledge-irrkmsivc and time-consuming
proecss  that  rwquircs  a deep undcrskmding  of the
domain and the schcdulcr.  The goal of our work
is to develop techniques to allow for autonmtcd
lemming of an cffcctivc  domain-specific sc.mch
slratcgy  given a general problem solver with a
ftcxiblc  conkol  archilccmrc.  In this approach, a
learning systcm  scarchcs  a space of possible con-
trol strategies, using statistics 10 evaluate perform-
ance over the cxpcc(cd problcm  distribution. Wc
discuss an application of the approach to schedul-
ing .wttc]litc  communications. Using problcm  dis-
tributions based on actual mission rcquircmcnls,
our approach identified a strategy that on average
dccrcxscd thcamount of CHJ timer cquircd to pro-
ducc a schcdulc  by 78%. On a related distribution
the approach lc.mncd  a strategy that enabled the
schcdulcrto  solve  1670 more scheduling problems
within computational rcsourcc  limitations.

1  INTRODLJCTION

Genera] problcm solving tasks like pkumingand  scheduling
arc inherently complex. Ncvcr(hclcss, in man y practical sit-
uations these cornplcx  problems hove reasormblc solutions
(e.g. traveling salcsrwm problcrn [Hcld70]). Oflcn wc can
take advantage of the structure of o domain or the distribu-
tion of problems to formulate effect ivc soiut  ions to complex
problems. lJnfortunatcly,  a system designer must devote
considcmblc  cxpcnsc to the performance aspects of an algo-
rithm.

in this arliclc we invcsligatc  the use of a machine learning
approach to automatically improve a problcm  solver with
respect to a specific domain and distribution of problems.
TIc ovcmll learning problcm  wc arc ad(ircssing  can bc spc-
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cificd as follows. Given a flexible pcrfornmnce  clcmcnt  PE
with control points Cf’I.  .. C’Pn, where cxach control point
C’fi  has a set of a]tcrnat  ivc rncthods Mj,]..  .Mj,~,l a CO/IItd
Nrdegy is a selection of o method  for each control point in
PIi (c.g,  S1RA7’=  WIJ,M2,6JW3,1 ,...>). A control strategy
dctcrmincs  the ovcrnll  Lwlmvior of the schcdulcr.  It may ef-
fect pro~rtics  like computational efficiency or the quality
of its solut ions, Let PE(STJ7A7) bc the problcm solver oper-
ating under a particular control strategy. The function
U(PE(.WRA7), d) is a red valued ufililyfwction  that is a
mcmsurc  of lhc goodness of the behavior of the schcdulcr
over problcm d. The goal of Icarning  can bc expressed as:
given a problcm  distribution D, find SIRA7’  so as to nlaxi-
mi/.c the expci-(ed  urilify of PE. F.xpcctcd utility is defined
formally as:

~ U(PE(.HR,47),d) X protmbility(d
dE D

F:or example, in a planning systcm  such as PRODIGY [Min-
ton88], when planning to achicvc  a goal, control points
would bc: how to select an opcra[or 10 usc to achicvc the
gool;  how to select variable bindings to instantiate the oper-
ator;  etc. A method for the operator cboicc control point
might be a set of control rules to dclcrminc which operators
to usc to achicvc various goals plus a default operator choice
method. A strategy would bc a set of control rules and de-
fault methods for every control point (e.g., onc for operator
choice, onc for binding choice, CIC.).

Our proposed solution to [his  Icaroing problcm,  sometimes
called the u[ili(y problem [Minton88], is embodied in the
COMPOSER system, COMPOSER can bc chamctcrizcd
as a hill-climbing search in the spncc of possible strategies.
The Icmming systcm alternately corijccturcs  possible con-
trol strategies and statistically cwrluatcs thcm to dctcrminc
how WCII they cnhancc  cxpcctcd  utilily.

In this paper wc dcscribc  an applicat ion of (hc COMt’OSER
framework to Icaming search strategies for an aulomatcd
scheduling tcchniquc  in a NASA domnin of space-craft
comnlunicfition  scheduling. Iwo important aspects of this—.

1. NCMC  that a mcthd nmy consist of sndlcr elements so that a
n]ctllocl may h, a set of control rules or a combination of heuristics.



evaluation arc that the task and problcm distribution are
based on a real-world situation, and the scheduling ap-
proach  was dcvclopcd indcpcndcnt]y  of our lemming work
[Bel192]. This success, along with previous results in artifi-
cial planning domains [Gratch91,  Gratch92], demonstrates
COMPOSER’s flexibility and its potential to identify bene-
ficial knowledge in practical lemming problems.

2  C O M P O S E R

COMPOSER is statistical approach to improving the ex-
pcctcd  utility of problcm  solving. The overall approach is
one of generate and test hill-climbing. Given an initial
problcm  solver, a transformation generator constructs a set
of possible transformations to the control strategy. F?~ch  of
these ckrngcs is evaluated statistically over the expcctcd
distribution of problems. A transformation is adopted if it
incrcascs  the expected utility of solving problems over that
distribution. The gcncmtorthcn  construcLsa set of transfor-
mations to this ncw strategy and so on. For a complete de-
scription  of the method sec [Gratch92].  The algori(hm  is
summarized in the Appendix.

COMPOSER’s solution isapplicablc  in cases where the fol-
lowing conditions apply.

1. The scmh space is well-structured, In general, the space
of such strategies is so large as to make exhmrstivc  search
intractiiblc.  Because of this difficulty, this general approach
to Icarning can only bc applied when the strategy scnrch
space can be reduced by simplifications. Hill-climbing is

‘one such simplification. Further reductions arc possible if
subsets of the control points can bc considered scpwatcly.
These further sin~plification.s  can bc rcprcscntcd in the defi-
nition  of the transformation gcncralor.

2. There is a supply of training problems so that on adcqualc
smpling of problems can bc used to cstinmtc  cxpcctcd ut il -
ity for various control strategies.

3. Problems can bc solved with a sufficiently low cost in rc-
sourccs  so that the cost of solving problems to cstirwrtc  cx-
pcctcd utility is not prohibiiivc.

4. ‘I?wrc is sufficient rcgukwit y in the domain such that the
cost of lemming a good strategy can bc amortized over the
gains in solving many problems.

COMPOSER can bc seen as onc of a class of statistical ap-
proaches  to improving the exyctcd utilit  y of problcm solv-
ing (SCC also [Greincr92, I-aird92,  Subranmnian92].  The
principle drawback of these techniques is that t hcy find only
local maxima, they may require many examples, and cxan~-
plcs  can bc cxpcnsivc  to process. Furthcrnmrc,  their statis-
tical propcrlics  rest upon assumptions that may not hold in
practice. Grcincr  and Jurisica demonstrate thot. under very
wcok assumptions, the number of examples, or sample  com-
ple.ri(y}  can be bounded by a polynomial function of the ol-
lowablc statistical error [Grcincr92].  Wcfik  nssumpt  ions
arc away of cnsunng  wide applicability, Unforlunatciy,  the

resulting bounds prove too Iargc for most practical applica-
tions (see [13untinc89,  Gratch92]). COMPOSER embodies
stronger statistical assumptions suggested by the Central
I,imit  Theorem [IIogg78  pp. 192-195]. l“hcsc assumptions
drmtically  rcducc the number of examples required to make
statistical decisions, but they potentially limit the applica-
bility of the approach. In previous evaluations these stron-
ger assumptions have proved reasonable: COMPOSE;R’S
assumptions produced smnplc  complexities two to three or-
der of magnitudes lCSS than the weak assumptions adopted
by Grcincr  and Jurisica,  withouf  compromising the statisti-
cal error [Gratch92].  However these promising resultshave
the drawback that they arc based on artificial domains and
problcm  distributions. The ultimate usefulness of our ap-
proach depends on its behavior on real-world domains,
which this paper addresses.

3 ‘l’lIll I)EI;P SPA(X NETWORK

Wc applied the COMPOSER approach to improving, the
pcrfonmmcc of a schcdulcr  operating in the domain  of
spacecraft communication scheduling. q“his is a con\pli-
cfitcd real world domain  that has proved chfillcnging to
state-of-the-arl scheduling techniques. The task is 10 allo-
cate communication rcqucsls  between earth-orbiting satel-
lites and the three 26-n~ctcr  antennas at Goldstonc,  Canber-
ra, and Madrid. These antennas mkc up part of the Deep
Space Network (DSN) that is responsible. for conm~unica-
tion with earth-orbiting and in[cr-planet’ary spacecraft.
Rrch satellite has a set of constraints, cal]cd pr’ojcct  require-
ments,  that define its communication needs. For example,
the Nin~bus-7  satellite must have at Icast four 15-n~inutc
communication slots pcr day, and these slots cannot be
greater than five hours apwl. 1’WO factors complicate Ihc
problcm.  First, antcnmrs  arc a Iimitcd  rcsourcc  – two satcl-
]itcscannot  communicate with Illcsolllcalltcrlrlaat  thcswne
time. Second, sntcllitcs  can only communicate with certain
cmtcnnas al ccrlain  times. depending on their orbits.

Scheduling is doncon a weekly basis, A wccklyschcduling
problcm is dctincd  by three clcmcnts:  (1 ) the set of projects
to bc schcdulcd, (2) the project rcquircmcnts  for each proj-
ect, and (3) a set of time periods specifying all tcmpoml  in-
tervals when a project can Icgally communicate with an an-
tenna. ~“wo time periods conflict if they use the smnc
antcnno  and overlap in temporal extent. A valid schcdulc
specifics a noll-conflicting subset of all possible time peri-
ods where each project’s rcquircmcnts  arc sa(isficd.  Cur-
rently, all scheduling is performed by a human expert, but
thcJct  Propulsion l~~boratory is invest igating  approaches to
automating this process.

3,1 1.1/-26 SCIIICDLJ1.ER

l’hc 1X-26 schcdulcr  is a heuristic approach to the schcdul-
ingproblcrn  [1)c1192].  It providcsa good platform forlcan~-
ing as it can bc modified easily to incorporate ahcmativc
hcurislic strategies. Furthcnnorc,  it uscs  an expert crafted
control strategy that provide a challenging, base-line to
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judge learned knowledge, Ilerc is also significrrrd motiva-
tion to improve thccffcctivcncss  of the dcfarrlt control strat-
egy. If 1-R-26 is chosen to repkrcc  the human schcdulcr,  it
will serve m onc module in a l,argcr interactive system. This
systcm  must make many rcpcatcd calls to the schcdulcr  to
compare variants of each wcctdy schcdrrle.  For this rctison,
LR-26 must provided solutions in a timely fashion.

Scheduling is formulrrted  as a O-1 integer programming
problcm  [Taha82].  This is a rncthodology  for finding an as-
signment  to integer variables that maximizes the value of an
objcctivefunctiou.  subject to a set of linear constraints. The
objcctivc  function characterizes the “vahrc” of the solution.
Many constraint ~~tisfaclion  problems (CSP) are cmily  cast
as integer programming problems [Mnckworth92]. In the
DSN domain. time periods arc treated as 0-1 integer vari-
ables (O if the time period is cxcludcd from the schcdulc  or
1 if it is inchrdcd), the objective is to maximiz.c the number
oftimcpcriods  inthcschcdulcsubjcct  tolhcprojcct  rcquirc-
mcnts  and temporal conflict constraints which arc cx-
prcsscd as sets of linear incqunlilics.  Integer programming
is NP-h,ard,  turd the size of our scheduling pmblcms nmkcs
the conventional approach impractical: a typical problcm
has approximately 650 varioblcs  and 1300 constraints.
LR-26 embodies a heuristic approach called Iqgrangian  re-
laxation [Fishcr81 ]. I~ngrangian  relaxation requires identi-
fying some constraints that, if removed, rmrkc  the problem
computationrdly  cmy. ‘Ilresc constraints arc “relaxed,”
meaning they no longer act as constmints  but instmd
n~odify  the objective function. A relaxed objcctivc  function
is automatically genemtcd such that satisfying rchrxcd con-
straints increases the value of the relaxed solution. q’hc rc-
lnxcd problcm  is by definition easy to SOIVC and it is hoped
that by finding the highest valucrckrxcd solut ion, onc fortu-
itously wtisfics  the unrelaxed constraints, Frmhcrmore,
cachrclaxed constraint hasa weight associated with it when
it is added to the objective function. By systematically ad-
justing  these weights and rc-solving  the relaxed problcm, a
solution to the unrchrxed  problcm  is often efficiently dis-
covcrcd.  Even if the unrelaxed problcm cannot bc solved
in this marrncr, this weight artjustmcnt  cycle can move the
schcdulcrcloscr  to a solution, allowing the unrehrxcd solu-
tion to bc discovered with lCSS search. L,R-26 rchrxcs inter-
an(cnna constraints. This rcprcscnkrtion  fficilikrtcs  fin effi-
cient implici t  rcprcscnlation of tcrnporol conf l i c t
constraints, which rmrkc up more than tmlf of nll  constraints
in a typical problem.

LR-26 combines Iagrangian  relaxation with standard cor~-
straint  mtisfaction  se,arch techniques, The schcdulcr per-
forms depth-tirst search through a space of partial  sched-
ules.  A variable is assigned a VOIUC of it] if the associrrtcd
timcperiod  is included in the partial schcdulc,  OU[ if it is cx-
cludcd from the p,artial schcdulc. ‘IIIc schcdulcr  constructs
a complctc  schcdulc  by incrementally extending the p,artial
schcdrrlc.  First it nttcmpts to cornplctcly extend the schcd-
UIC using the lagrangian  rckrxnlion  method. If the rckrxcd
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solution wtisfics all constraints it is returned, Otherwise, a
set of possible extensions to the partial schcdulc is created
and these arc recursive explored. Exlcnsions  arc created by
choosing an unsatisfied constraint, identifying a set of un-
committed variables in the constraint, and assigning possi-
ble wrhrcs  to these variables. The set of extensions arc
placed on a stack to implement the depth-first search. The
search continues until a sohrtion is uncovcrcd  or a timc-
bound is reached. Currently the schcdulcr  implements a ti-
rnc-bound  of five CPU minutes as it was observed that if a
sohrtion  is not found in the first five CPU minutes, it is not
likely bc bc found even with considerably more resources.

LR-26 can bcvicwcd  as arcctrrsivcrrpplication  of four con-
trol decisions: (1) perform Iagrangian  weight adjustment,
tcrmirmting if a viable solution is found: otherwise (2)
choose an unsatisfied constraint, (3) construct a spanning
set of extensions to the partial schcdulc that  satisfy the con-
straint, and (4) dctcrminc  an order to explore these exten-
sions. The schcdulcr  embodies a hcurist  ic method for each
of these control operations. These operations provide natu-
ral poinls  at which to insert altcrmrtivc  Icwmcd methods.

3.2 PROIII,IHU IIIS1l?IIIUTION

Wcconstructc.d  a distribution of scheduling problems using
the rcquircmcnts  and time periods of mtcllites  using the
deep space network. Ideally, wc would usc the identical
problcm distribution faced by the human experts in this do-
main. Unfortumrtcly,  not all of this information is in elec-
tronic form and thus is difficult to present to the L,R-26
schcdulcr. I’here dots, however, exist a lnrgc electronic da-
tabase of information for many of the projects in the deep
space network. Wc used this datnbasc  to construct a large
body of schcdrding problems that arc rcprcscntativc  of, if
not identical to, [hc type of problems faced by the human
schedulers. Problems ,arc gcncratcd by randomly choosing
combinations of projects from the trvailablc  data. The re-
quirements  and time pcnods rcprcscnt the rcquircmcnts  and
time periods of actual projects. T’hc primary diffcrcrrce be-
tween these and actual problems lies in the particular con~-
binations  of projects that appear in the schcdulc.

Wc performed sornc initial cwdrmtions of the I.R-26schcd-
ulcr on these gcncratcd problems. Wc observed that some
problems could not bc solved by the schcdulcr using any of
several scmch control strategies even with hargc rcsourcc
bounds. This is consistent with the observation that the
scheduling problcm is inherently NP-IIard  - there will be
some problems that cannot bc efficiently solved, even with
good heuristics. These problems tend todihrlcany pcrform-
anccimprovcmcnt  that wc might gain through Ic,arning. For
our cxpcrimcnts  we eliminated this complicating factor by
constructing our problcm distributiorl  without  these urt-
solvcd  problems. lhcsc problems were identified by solv-
ing each ranckn{y  gcncratcd  problcm multiple times using
aborrl twcnly dit’fcrcnt  search strategies (the strategies were
identified during our pilot investigations). If a problcm
corrki  not bc solved by any of the slmtcgics  within the time



bound, it was not added to the experimental distribution.
For comparative purposes wc include n secondary set of ex-
periments  that incorporaic  these unsolved problems. For a
complctc  dmcription  of how training examples arc gcncr-
atcd, scc [Gratch93].

3.3 EXI’ECIKI)  UTI1 .lTY

h the DSN domain a chief concern is with the con~putation-
al efficiency of the scheduler. There is a strong need that  the
schcdulcr  return quickly on avcrngc. This behavioral pref-
erence can be expressed by a utility function related to the
compulat ional effort required to SOIVC  a problcm.  As the ef-
fort to SOIVC a problcm incremes,  the utility  of the problcm
solver on that problcm should dccrca.sc. In this paper wc
chamctcrizc  this prcfcrencc  by making utility the negative
of the CPU time required by the schcdulcr on a problcm.

3.4 IIINIRISTICS FOR 1.R-26
LR-26 combines lagrangian relaxation and constraint satis-
faction search techniques to incrcasc  scheduling efficiency.
Nevcrlhclcss,  scheduling is still quite cxpcnsivc.  While the
problems arc of sufficient complexity that some search is
unavoidable, allcrnatc  search control methods can drasti-
cally impact the amount of search required, especially as
there is substantial repetition in this domain. Many projects
usc the antennas for many years, and their project rcquirc-
mcnts  vary little across weeks. Because possible slots for
specific antennas communicating with spacecraft are dic-
tated by spacecraft orbits, the space of potent ial conmmni-
cation slots also contains significant rcgutarity.  This sug-
gests that heuristics can bc crafted to exploit this regularity
to improve pcrfonnnnce.
Many heuristics have been suggcslcd  to improve schedul-
ing efficiency. Often these heuristics arc stated as general
principles (e.g. “first instantiate v,ariablcs  that maximally
constraint the rest of the sc,arch space” [Dcchtcr92])  and
there may be many ways to realize thcm in a particular
schcdulcr  and domain. Furlhcrmorc,  there arc almost cer-
tainly  interactions bctwccn methods used at different con-
trol  points that m.akcs it difficult to construct a good overall
stmtcgy.  lhcsc factors conspire to make manual develop-
ing and evaluation of heuristics a tedious. time consuming
Krsk that requires significant know]cdge  about the domain
and schcdulcr.  As a result, only a Iimitcd  set of alternate
heuristics were considered in LR-26’s  dcvclopmcnt.  Wc
formalized a much larger set for automatic consideration.
As dcscribcd  previously, there ‘arc four basic control points
in I.R-26: a weight adjustment mcthod,constmint  sckction
method, a method for constructing altcrnotivc solutions for
the constraint, and method for ordering these alternatives.
Wc altow for both a primary and secondary sort function to
order candidate constraints, so there arc cffcctivcly  five
control points. A controt  strategy consists of a particular
heuristic method for each of the five controt points. For
I-R- 26 there mc 4 altcmativc  methods for the Iagrangian
weight adjustment control poin(, 7 alternative methods for

the constraint sclc.ction  (e.g., 9 for the primary sort and 9 for
the secondary sort – excluding the primary sort but includ-
ing the possibility y of no second.ary sort), 2 alternative n~cth-
ods for constructing alternative solutions to a constraint,
and 4 altcrnat  ivc methods for ordering altcmat  ivc solutions
to a constraint.
Examples of methods for the weight adjustment arti per-
form adjustments at every search node, perform only at root
node, never pcrfonn adjustments. Heuristics for selecting
constraints involve features of the constraints and con-
straint  graph. Prefer the shortest constraint (c.g, the onc that
mcnt ions the fewest unbound varinblcs)  and prefer the con-
straint thal mentions the variables that temporally conflicts
wiih the most other variables arc examples of constraint se-
lection rncthods (recall variables correspond to tin~c-per-
iods).  For constructing altcnmtive  solutions, there wc.re 2
methods: force the first variable in the constraint into the
schcdulc foronc child and out forthc second child; and con-
struct a child for each variable in the constraint, forcing that
variable into the schcdulc. Examples of alternative order-
ing methods include preferring high conflict variables and
prcfcn  ing  low conflict variablcsz.  These heuristics can bc
viewed as variable ordering heuristics from the CSP litera-
ture [Dcchtcf12].
13xhfiastivcly scorching the spocc ofpossiblc  control stmte-
gics is in general computationally  infcxiblc.  As there are
roughly 4x9x9x2x4=.2592 possible strategies in the L,R-26
control strategy stzarch space, to exhaustively search the
control strategy space, taking  a significant number of exam-
ples pcr strategy (fifty) at a cost of 5 CPU minutes pcrprob-
lcm would require approximately 450 CPU days.
A simple way to organize the search through this strategy
space would bc to treat all control pointsa equal andconsid-
cr all single step changes from a given point. This was the
method wc used in our PRODIGY il]]~)lcn~c[]ti]tiol)
[Gratch92]. lnstcxld.  wc used ourknowlcdgcof  the schcdul-
cr to take advantage of interactions (or lack thereof) bc-
1 wccn control points. ‘i’hc intent of this organiz,at  ion is 10 re-
duce the branching factor in the strategy search and improve
the expcctcd utility of locatty optimal solutions. This ap-
proach lcd to a transformation gcncralor  that implements a
Iaycrcd  search through the strategy space. Each control
point is assigned to a lCVCL  The control strategy space is
search bycwrluating  all combina~ionsof  mcthodsat  asinglc
Icvcl, adopting the best combinations, and then moving
onto the next lcvc].  ‘1’hc organization is shown below:

Level O: weight adjustment
Level 1: constructing alternatives
Level 2: secondary constraint sort, child sort
1.CVC1  3: primary constraint sort

9L. ‘l”his isa prinle cxamplc  of the difficultyofdetcn~~i[~il~g  good heu-
ristics. Selec!inghigh conflictvariahlc  has Ihcbcncfit of rapidly fcwcing
nlarlytil]lc-~rio~isttlhc  inorout  ofllw sclIedulc (e.g.  rech]cingthcnunl-
bcrof  steps to solu[iun).  Sclcc!ing  low conflict in[crvals  advocates add-
ing [Ilose!irl]e-l>cri{>ds  which COSI  Iittlc, andthus l]~aysalisfycmstrail~(s
will]oul causing. cmltlic[s  [Ikchlcr921.
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llc weight adjustment and altcrnalivc  construction control
points were separated bczrusc  they arc relatively indcpcn-
dcnt from the other control points. While there is clearly
some interaction lmwccn weight search, alternative con-
struction, and the other control points, a good schxtion  of
methods for pricing and altcrnrrtivc  construction should
perform WC1l across all constraint and child sorLs.  The pri-
mary constraint sort was scparalcd  into another lCVC1  bc-
causc it was the SOIC control point that the implcmcnlor  of
LR–26 had spent time cxpcrimcrding  and optimizing.
‘bus, wc bclicvcd that it was unlikely the default strategy
could be improved upon, and hence relegated to a scp,amte
ICvcl.

.
Given this transformation gcncralor,  COMPOSER will first
entertain weight adjustment methods, then alternative con-
struction methods, tbcn combinrrtions of secondary con-
straint sort and child sort methods, and finally primary con-
straint sort methods. Searching the structured space
involves evaluating at most 4+2+9x4+9=51  strategies.

This structure can be viewed as the conscqrrcnce  of mscrt-
ing ccrkrin  t ypcs of rclat ions bet wecn control points. Indc-
pcndcncc relations indicate cases in which a contro]  point
can be viewed as primarily indcpcndcnt  of another control
point.  A set of control points A can bc divided inlo sets B
and C if every control point in A is indcpcndcnt  of every
control point in B. Dominance relations indicntc  that the
clurngcs  in utility from changing methods for onc control
point arc much larger than the changes in utility for another
control point. Again, a set of control points  A canbc divided

‘into sets B and C when every control point in B dominntcs
every control point in C. Finally, inconsistency rclat ions in-
dicate  when a method MI for control point X is inconsistent
with method M~ for control point Y. This mcons that any
strategy using these methods for these control poinls  need
not be considered.

3.5 EXTRAC1’lNG U1’ILI’I’Y INF’ORMATION

‘Io perform its evaluations, COMPOSER must dctcnninc,
given a current control strmtcgy, a transformation, and a
problcm, what improvement the transfonnn[ions  provides
over the current stmtcgy  on that problcm.  How wc can ex-
tract this inforn~ationdc~  ndsintinmtclyon  the utility func-
tion, the form of the transformations, and the extent to
which wc can model the behavior of the problem solver. In
the best case wc possess a detailed cost model of the prob-
lcm solver that cfficicndy  derives the ramification of pro-
posed modifications without actually solving the problcm
(e.g. [Grcincr89, Subran~ar}ian90]).  In the worst case wc
can resort to brute-force simulation: SOIVC  the problcm with
and without the proposed modification and observe the dif-
fcrcncc in utility between the two solution attempts. In the
former case the cost of processing an example is tied to the
efficiency of manipulating the model. In the later case the
cost is tied to the cfticicncy  of the problcm solvcrand grows
Iincwly  with the number of (ransfonmrtions  wc consider.

In the current context wc found it ncccsxrry to usc the later,
more costly, alternative. Given m crrndidatc  transforma-
tions,  COMPOSER SOIVCS each problcm  m+ 1 times; once
with the current control strategy and once using each of the
m transformations. This allows us to gcncratc the m incre-
mental utility  values  There arc several issues that lead us
to this particuhr  solution. In particular wc found that other
more efficient proposals for gathering statistics (see
[Gratch92, Grcincr92])  were not appropriate to this prob-
lcm. Wc elaborate on this issue in Section 5.

4  ]~xp~;R]h~~NT  AN)) R~;Sul,TS

COMPOSER should, with high probability, irnprovc  the
cxpcctcd  utility of the schcdulcr over the distribution of
problems. This can be seen as two basic clfiims that can be
tested empirically. First, COMPOSER should identify
transformations that improve the expert strategy. Second,
COMPOSER should identify these transformations with
the confidence prcdictcd by the statistical theory, Besides
testing these claims, wc ‘arc also intcrcstcd  in two second’ary
questions. IIOW quickly dots the technique improves ex-
pcctc.d utility (e.g., how many examples arc required to
make statistical infercnccs?), Also, many problems are un-
solvable within five minutes with the cxpcri strategy. Can
COMPOSER improve the number of solvable problems?

When COMPOSER lcfims a strategy, its behavior is guided
by a random selection of training examples according to the
problcm distribution. As a result of this random factor,
COMPOSER will exhibit different behavior on different
runsof the systcm.  On somcruns  the systcm maylcanl  high
utility strategies. On other runs the mdom cxmplcs may
poorly rcprcscnt  the distribution and COMPOSER may
adopt transformations with negative utility. ‘I”hc typical be-
havior  can bc cs[irnatcd  from several runs of the systcm.

Forthcsccxpcrimcnts  alcmmingrun  consistsof  300 random
training cxamplcs.  Thccxpccted  utility of all lc,arncd strate-
gies is assessed on an indcpcndcnt  test set of 1 (X)0 randomly
selected cxmnplcs.  A mcasurcmcnt  of lcarningratci  sdcter-
mined by recording the strategy lcmncd by COMPOSER
after every 20 examples. Thus wc can scc the result of lemm-
ing with only twenty examples, only forty examples, etc.
To assess statistical error, wc perform twenty runs of the
systcm on twenty distinct training sets.

COMPOSER has two p,aramctcrs.  The parameter 6 syci-
fics the acceptable ICVCI  of statistical error. ~“his is the
chance that the tcchniquc will adopt a bad transformation or
reject a good one. This is set to a Wrndard  value of 570.
COMPOSER bases each statistical infcrcnccs  on at Icast JO
examples. no is set to the cmpiricnlly  dctcrmincd  wrluc of
fifteen,

Recall thfit wc identified several inherently difficult sched-
uling  problems. These problems. if added to the problem
distribution, should make Icarning more difficult as no
strategy is likely to provide a not iccablc inlprovcmcnt  with-
in the five minulcrcsourcc  bound. Ncvcrlhclcss,  il isiny)or-
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across the lwcnty trials. only 3% dccrcascd expected utility.
It took an average of 58 examples to adopt cxlch transfornm-
tion. The expert stmtcgy was unable to solve 7% of the
schcdulirrg problems within the rcsourcc bound. One strat-
egy learned by COMPOSER rcduccd  this number to 370.

For Distribution 2, lcm-ncd stmtcgics  rcduccd  the average

4——n—nA o~
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Statistical Error Rate 3% 6940

3$ Expert Strategy 93% 5170
&?~ ‘

avg. across trials 95% 54%
.$2 Ixarncd ———— .—— ..— —— - ————

;~ Strategies best strategy 97% 5970
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Figure 1. Learning curves showing performance as a
function of the number of training examples and lablc
of experimental results. Results arc provided for orig-
inal  distribution (Distribution 1) and the distribution
including unsolved problems (Distribution 2).

tant to show that COMPOSER behaves correctly under a
distribrlion  that includes these problems. Wc crcatcd a ncw
distribution by incorporating these problems into the origi-
nal distribution and rcpcatcd the cxpcrimcnts.  Results for
both sets of experiments arc shown in Figure 1. The originnl
distribution is cnllcd Distribution 1 while the second is re-
ferred  to as Distribution 2.

The results support the two primary claims. For Distribu-
tion 1, COMPOSER learned search control strategies that
yielded n significant improvement in performance. It rc-
duccd the average tirnc to SOIVC  a problcm  from 57 to 27 sec-
onds (a 5370 improvement). ‘IIcrc  is modest variimcc  in the
cxpcctcd  utilityof  thcstratcgics  lcmmcd  in the twenty trials.
The best of these slratcgics  required only 12 seconds on av-
cmgc to SOIVC  a problcm  (an improvement of 78%). The ob-
served statistical accuracy remained WCII within the theo-
retically  prcdictcd  bound: of 93 transformations adopted

solution time from 165 to 147 seconds (an 11940 in~provc-
mcnt). The best learned strategies required 160 seconds on
rrvcragc to SOIVC a problcrn (an improvcrncnt  of 157o). The
observed Wrtistical  accuracy did not significantly differ
from the theorcticrrlly  predicted barnd: of 107 transfornm-
tions  were adopted across the trials, only 670 dccrcascd  cx-
pcctcd  utilit  y. The introduction of the difficult problems re-
sulted in higher wtrimrcc in the distribution of incrcmcnkrl
utility wducs and this is rcftcctcd  in a higher Mmplc  conl-
plcxit  y: an avcrogc of 108 cxmnp]cs  to adopt each transfor-
mation. Some improvement was noted on the srrpposcdly
unsolvable problems. Onc strtitcgy  Icarncd  by COMPOS-
ER increased the number of solvable problems from 51%
to 59% (a 16% improvcmcn{).

M&t of the Icarncd  in~provcmcnt came from improved
methods for hrgrangian  weight adjustment, secondary con-
straint sorting, and child ordering. The best Icarncd  strategy
performed no weight adjustment, prcfcrrcd  constraints that
contained time periods with high lCVCIS of temporal con-
flicts, and, among child nodes, prefer alternatives with few
temporal conflicts. By avoiding Ihc weight adjustrncnt,
COMPOSER implies that there is no utility in using la.gran-
gian  weights to improve the first relaxed solution. Onc in-
terpretation  of the constraint and child methods is that
search should procccd  by first identifying a highly con-
strained constraint, and then choose the least constrained
way of satisfying it. It is intcrcslirrg  that this is consistent
with the gcncrai  rccommcndntions in the CSP literature
[Dcchtcr92].

5 I )  ISCUSSION

This paper evaluates COMPOSER on a real-world domain,
COMPOSER is grounded in a nmthcmatical  framework.
While the framework embodies statistical assumptions,
there is a theoretical support for these (the Ccntml I..imit
Theorem) and they enjoy wide acccpKu~ce  in the statistical
community. Admittedly, these statistical approaches have
not seen wide use within machine lctarning systems, so there
is some rcmon to bc cautious about their applicability.
IIowcvcr,  the current scheduling rcsrrlts and previous dcn~-
onstra[ions  in artificial phmning domains [Gratch92]  pro-
vide growing support forthccffcctivcncss  and gcncralityof
the COMPOSER framcworti.

An impormnt aspect of statistical frnmcworks  like COM-
POSF,R is their ftcxibility.  In our research wc have applied
the tcchniquc  to scheduling and planning tasks,  in both
cnscs improving the average time to produce solutions. Co-
hen and Grcincr  illus(r:ltc  how such statistical friuncworks
can apply to a wide variety of utility functions. For cxanl-



plc, by choosing another utility  function wc could guide
COMPOSER towards influencing other aspcc[s of LR-26’s
bctmvior  such as increasing the amount of flexibility in the
generated schcdulcs.

Ourcxpcricnce.  in Ureschcdulingdormin  uncovered scvmrl
aspects of COMPOSER that can be improved. Its pcrfom~-
ancc  is tied to the transformations it is given and the expense
of processing examples. Just as an inductive lemming tcch-
niquc relics on good attributes, if COMPOSER is to be cf-
fectivc, there must exist some control strategy in that space
with higher utility than the initial control strategy. Because
of the nature of hill-climbing, even if a good strategy exists,
there is no gwtrantcc that COMPOSER can find it. One may
hove to consider carefully how to explore the transfom~a-
tion space.

When it is available, knowledge such as domimmcc and in-
dcpendcncc can improve lemming efficiency and mitigate
the effects of local  maxima. An important question is to
what extent this information influenced the expcctcd u(ility
of fhc lcmncd Imowlcdgc in the DSN domain. Wc arc cur-
rently  performing a series of cxpcrimcnts  to address this
question. We arc also interested in whether this t ypc of in-
formation could assist learning in our cmlicr PRODIGY
implementation. An obvious question is if such informa-
tion can be acquired automatically. Another could help
ovcrcomc  the problem of local maxima. Onc strategy we
arc invcstigrrting  is to perform scvcml learning trials, start-
ing the system at a differing random Iocrrtions  in the strategy
space. This is similrrr to the trfiining strategy for neural net-
work systems,

In the LR-26 domain the cost of procc.ssing each t raining ex-
ample grows linc,arly  with the number of candidates at each
hill-climbing step. While this is not bad from a complexity
standpoint. it can be a pragmatic concern. ~hcre have been
a few proposals torcduce the cxpcnsc in grithcring statistics.
In [Gratch92]  wc exploited properties of the transfomla-
tions to gather statistics from a single solu(ion at tempt. That
system relied on so-called “rejection rules” [Minton88]  that
only avoid backtracking. TIc same tcchniquc could not bc
applied to “prcfcrcnce  rules” that suggest novel scorch di-
rections. Grcincr and Jurisica [Grcincr92]  propose onc
method for evaluating preference rtrlcs from a single soltt-
tion attempt by maintaining upper and Iowcr bounds on the
utility of the novel sem-ch paths. In the LR-26 domain these
bounds arc too weak to discriminate bctwccn altcniativc
search strategies bccmrsc there is virtually no overlfip bc-
twccn the search spaces explored by altcrtmtivc control
strategies. Prcsunmbly  this could also occur in other do-
mains.

Finally, an irnportiint  issue is the notion ofa shifting prob-
lcm distribution. COMPOSER assumes a stnblc dislribu-
tirm of problems. In many domains ibis may no( bc an ap-
propriate assumption. For example, there arc properties in
the deep space network that produccdislribution  shifts: old

sNcllilcs  arc dcxnctivatcd,  ncw ~atcllitcs  arc launched, and
orbits change in a predictable pattern. We ignored these fac-
tors in our cxpcr-imcnts by combining all problems into a
single batch and choosing a random ordering. Onc solution
to shifling  distributions is to usc a moving window of prob-
lems, periodically retraining the system with new problems
added to the front of the window and old problems removed
from the end, A better solution might be to predict and ex-
ploit  predictable shifts to guide its behavior.
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A p p e n d i x

Let PE denote a perfornmncc element. COMPOSER takes
an initial clcmcnt,  PF4, and identifies a scqucncc,P~,  f’Ez,
. . . where each subsequent PE has, with probability 1- &
higher expected utility. TRANSFORMS is a function
that takes  a l’E and returns a set of candidate chimgcs. AP-
PLY(t, Pi?) is a function that takes a transformation, t ~
TRANSFORMS, and a PE and returns a new PE’ that
is the result of transforming PE with t. Let Uj(PE)  dcnoic
the utility of PE on problem j. The change in uiilit  y that a
. .

transformation provides for the jth problem, called the in-
cremental utility of a transformation, is denoted by AU-
j([/PE). ‘I’his is the diffcrcncc  in utility bclwccn  solving the
problcm  with and without the transformation: AUj(t/i’E)  =
Wj(APPI.Y(t,  l’~~) - Uj(PE). COMPOSER findsa PE with
high expcxted  utilily  by identifying transformations with
positive cxpcztcd  incremental utility. The expected incre-
mental utility is estimated by averaging a srrmple of ran-
domly drawn incremental utility values. Given a sample of
n values, the average of that sample is denoted by ~U-
“(1/PE). Ttrc likely difference between the average and the
truccxpectcd  incremental utility depends on the variance of
the distribution, denoted S~(dPE) , and the size of the sam-
ple, n. COMPOSER provides a statistical technique fordc-
tcrmining  when sufficient examples have been gathered to
dccidc, with error 6, that the expected incremental utility of
a transformation is posi~ivc  or negative. T?tc algorithm is
summarized in Figure 2.3

3. . Illis algorid]m  reflects three differcnms from [Gndch92].  “l’he

first is the correction of a typo in the definition of d}(a) that appeared
in the original paper. Ihe second is superficial - afl tmnsfrrm~ations am.
proposed at onct  with the IRANSFORM  function, instead of incre-
mentally. While wc still allow the later, the former reflects the cunent

implementation. Finally, we adopt the 6* term. recommended by
Grcinercmd Junsica. The error at each step is dependent on the cardir]al-
ily of ~. While 8* is overly conservative for most applications, wc feel
this is more reasonable than the overly liberal previous a~woach of ig-

noring  the cardinality of T.

Let PE = P& T = T R A N S F O R M S  j =  O  8“ = &(21Tl)

While more cxarnplcs and T # 0 do

j=j+l

Vt~ T Get AUj(t/PE) /* Gather statistics and find transformations that have rcachcd significance 4/

signi~canf  =

{

sj(dPE)  “
I E 1: j > nO and —==–-—-- e ~

(AU,(tlPE))2 rr2
}

Where Q)(a) = ~ (I i $#@wp{-  o.s~~)dy = d“
.-

T= T- [t C signijleant  : ~,{dPE) < 0] P Discard transformations that dccrcm cxpcccd utility */

If ~1 E stopped: ~,{llPE)  >0 7’hcn P Adopt transformation thnt most increases expcctcd utility */

PE = Apply(x E significant: Vy G significnn( [z”q{xlPE)  > K~(ylf’E)], f’E)

T = T R A N S F O R M S  j =  O  5* = 5/(2JTl)

Return (PE)
Figure 2: ‘I”hc COMPOSER algorithm
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