DRAFT

PRECISION MECHANISMS FOR SPACE INTERFEROMETERS
A TUTORIAL

Michael L. Agronin

JPL
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

SPIE Spaceborne Interferometry Conference
Orlando, Florida
April 16, 1993
OUTLINE

1. MOTIVATION

20 ACTUATOR COMPONENTS

3. DESIGN EXAMPLES

4. TIPS FOR SPECIFYING ACTUATORS
1. MOTIVATION

- There is a strong correlation between the quantity and quality of science from space-born interferometers, and the number of moving parts on the spacecraft.
 - More baselines (and trolleys) = more star comparisons
 - Steerable mirrors enables better pointing accuracy, fainter targets
 - Articulated solar panel enables greater sky coverage.

- New NASA philosophy: “It’s the price, stupid.”

- Moving parts are expensive, and therefore not strongly compatible with this philosophy.

- To maximize salability, spaceborne interferometer designs must minimize actuator cost while maximizing science quality and quantity.

- Interferometer designers must have the knowledge to design a system with the simplest, most reliable, and least expensive actuators possible.
2. ACTUATOR COMPONENTS
ACTUATOR COMPONENTS

2.1 BEARINGS

- Devices which *predictably* constrain motion in some axes, allow motion in others.

- The best, most commonly used bearings for precision space applications are:
 - Angular-contact ball bearings
 - Flexures

- The most promising future bearing technology is:
 - Magnetic suspensions
2.1.1 Angular Contact Ball Bearings

- Duplex pair before preload
- Preloaded Back-to-Back, or DB: Resists cross-axis moment
- Preloaded Face-to-Face, or DF: Does not resist cross-axis moment
2.1.1 Angular Contact Ball Bearings

Insert drawing of Dahl Friction

Equation

Rules of hysteresis loops.
2.1.2 Flexures

insert drawing
2.1 Bearing Comparison

<table>
<thead>
<tr>
<th></th>
<th>Ball Bearing</th>
<th>Flexure</th>
<th>Magnetic Suspension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of motion</td>
<td>Continuous</td>
<td><±10°</td>
<td>Continuous</td>
</tr>
<tr>
<td>Stiffness of constrained axes</td>
<td>Highest, predictable</td>
<td>Predictable</td>
<td>High but bandwidth-limited, predictable</td>
</tr>
<tr>
<td>Axis of rotation precision</td>
<td>Runout as small as 0.0001"</td>
<td>Moves with rotation</td>
<td>Equivalent to ball bearing</td>
</tr>
<tr>
<td>Friction, torsional stiffness</td>
<td>Dahl friction, difficult to predict</td>
<td>Predictable torsional stiffness, increases with load capability.</td>
<td>Virtually zero friction and torsional stiffness</td>
</tr>
<tr>
<td>Life</td>
<td>Prediction based on previous experience</td>
<td>Can be designed for infinite life</td>
<td>Limited by electronics only</td>
</tr>
<tr>
<td>Temperature range</td>
<td>Limited</td>
<td>Widest</td>
<td>Wide</td>
</tr>
<tr>
<td>Contamination</td>
<td>Lubricant must be contained</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Availability</td>
<td>Wide variety of sizes, configurations</td>
<td>Generally requires custom design</td>
<td>No NASA flight heritage</td>
</tr>
</tbody>
</table>
2.2 Prime Movers

- Common prime movers for precision flight actuators:
 - DC brushless motor
 - Stepper motor
 - Voice coil
 - “Smart Materials” (piezoelectric, electrostrictive, etc.)
2.2.1 DC Brushless Motors

Square-Wave Commutation

\[\tau_{\text{total}} \approx I_1 K_T \cos(\theta) + I_2 K_T \sin(\theta) \]

Sinusoidal Commutation

\[l_1 = I \cos(\theta), \quad l_2 = I \sin(\theta) \]

\[\tau \approx I K_T \]

High resolution angle knowledge required, Torque ripple \(\approx 0 \)

\(\theta \)
2.2 Motor Comparison

<table>
<thead>
<tr>
<th></th>
<th>Brushless motor</th>
<th>Stepper motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion increment</td>
<td>Continuous</td>
<td>1.6 rads to 26 mrads per mechanical step, 125 urad per microstep</td>
</tr>
<tr>
<td>Power efficiency</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Holding torque</td>
<td>Requires power</td>
<td>Passive detents at mechanical steps</td>
</tr>
<tr>
<td>Rate stability</td>
<td>Smooth</td>
<td>Inherently poor</td>
</tr>
<tr>
<td>Torque modelability</td>
<td>Easy to model</td>
<td>Difficult to model</td>
</tr>
<tr>
<td>Open-loop operation</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Mechanical impedance</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Electronic Complexity</td>
<td>Complex</td>
<td>Simple</td>
</tr>
</tbody>
</table>
2.3 Displacement Sensors

Common displacement sensors for precision flight actuators:

- Resolver
- Inductosyn™
- Optical encoder
- Potentiometer
- Linear (or Rotary)-Variable Differentiator Transformer (LVDT / RVDT)
2.3.1 Resolver, Inductosyn™, and LVDT

An Inductosyn is a multi-pole “pancake” resolver with printed windings.

- Up to 1024 poles/rev available.
- Absolute knowledge obtained with an additional single pole winding, or correlation between an N-pole and an N-1 pole winding.

An LVDT is similar to a resolver, with a moving core and fixed windings.
2.3 Sensor Comparison

<table>
<thead>
<tr>
<th></th>
<th>Resolver</th>
<th>Inductosyn™</th>
<th>Encoder</th>
<th>Potentiometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td><100 μrad</td>
<td><1 μrad</td>
<td>25 μrad</td>
<td>10 mrad</td>
</tr>
<tr>
<td>Mass</td>
<td>Highest</td>
<td>Low</td>
<td>High</td>
<td>Lowest</td>
</tr>
<tr>
<td>Power</td>
<td>High</td>
<td>Highest</td>
<td>Low</td>
<td>Lowest</td>
</tr>
<tr>
<td>Integration with motor</td>
<td>Simplest</td>
<td>Requires tighter alignment than resolver</td>
<td>Separate assembly connected by flexible coupling</td>
<td>Separate assembly connected by flexible coupling</td>
</tr>
<tr>
<td>Reliability</td>
<td>High</td>
<td>High</td>
<td>Limited by LED</td>
<td>Subject to electrical noise and wear</td>
</tr>
<tr>
<td>Signal transfer</td>
<td>Requires rotary transformer or leads</td>
<td>Requires rotary transformer or leads</td>
<td>None</td>
<td>Requires brushes</td>
</tr>
<tr>
<td>output</td>
<td>Analog sine & cosine or digital word</td>
<td>Digital word</td>
<td>Digital word or quadrature pulses</td>
<td>Analog</td>
</tr>
<tr>
<td>Electronics complexity</td>
<td>Complex</td>
<td>Most complex</td>
<td>Simple</td>
<td>Simplest</td>
</tr>
</tbody>
</table>
Actuator Components

2.4 Transmissions

- Common mechanical transmissions for precision flight actuators:
 - Spur gears
 - Planetary gears
 - Harmonic drive
 - Ball screw/roller screw
 - Band drive (rotary to linear, rotary to rotary)
2.4.1 Harmonic Drive

Actuator Components

Flex Spline (output) with N-2 teeth

45° rotation of Wave Generator

180° rotation of Wave Generator

Circle Spline (fixed) with N teeth

Wave Generator (input)

Characteristic Error

Frequency: Twice per input revolution

Hundreds of mrads

1 output revolution

Gear Ratio = -N/2 :1

Flex Spline rotates 1 tooth in opposite direction for 180° of Wave Generator rotation
2.4.2 Ball and Roller Screws

Actuator Components

Figures courtesy of SKF
2.4.3 Band Drive
Actuator Components

2.4 Comparison of Transmissions

<table>
<thead>
<tr>
<th></th>
<th>Gear train</th>
<th>Harmonic Drive</th>
<th>Ball/roller screw</th>
<th>Band drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Advantage</td>
<td>Nearly any ratio</td>
<td>60:1 to 200:1</td>
<td>up to 2 mm/rev for ball screw, up to 1 mm/rev for roller screw</td>
<td>Not much greater than 10:1</td>
</tr>
<tr>
<td>Lost motion</td>
<td>Anti-backlash gears available</td>
<td>Gear error</td>
<td>Thread error, Can be preloaded to eliminate backlash</td>
<td>Vitually none</td>
</tr>
<tr>
<td>Fr ct on</td>
<td>Depends on ratio, no. of Passes.</td>
<td>-0.05 Nm</td>
<td>Depends on preload</td>
<td>Extremely low</td>
</tr>
<tr>
<td>Life</td>
<td>Decreases with mechanical advantage</td>
<td>Slightly less than that of ball bearing</td>
<td>Comparable to that of ball bearings</td>
<td>Limited by bearings</td>
</tr>
</tbody>
</table>
Actuator Components

2.5 Signal Transfer

Signal Transfer Devices:
- Cable service loop
- Flex tape assembly
- Slip ring assembly
- Roll ring assembly
- Rotary transformer
2.5 Signal Transfer Comparison

<table>
<thead>
<tr>
<th></th>
<th>Cable</th>
<th>Flex-tape</th>
<th>Slip rings</th>
<th>Rotary transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of motion</td>
<td><180°</td>
<td><360°</td>
<td>continuous</td>
<td>continuous</td>
</tr>
<tr>
<td>Mechanical impedance</td>
<td>Non-linear stiffness, hysteresis</td>
<td>Low non-linear stiffness, hysteresis</td>
<td>Coulomb friction</td>
<td>No mechanical contact</td>
</tr>
<tr>
<td>Life</td>
<td>Limited by fatigue</td>
<td>Limited by fatigue, >10^7 cycles</td>
<td>Limited by wear, >10^7 cycles</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Signal compatibility</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Best for low-bandwidth analog signals</td>
<td>Inefficient for power transfer. Limited to narrow frequency range</td>
</tr>
<tr>
<td>Reliability</td>
<td>Stiffness difficult to predict, can hang up</td>
<td>High</td>
<td>Wear debris can cause shorts</td>
<td>High</td>
</tr>
</tbody>
</table>
3. Actuator Examples

- Direct drive
- Stepper/harmonic drive
- Motor/roller screw
- Linear motion band drive
3.1 Direct Drive

- Low mechanical impedance ideal for disturbance isolation, inertial pointing.

- Used on Galileo (with encoder), proposed for Cassini scan platforms.

- Gyro on scan platform used for control, resolver used for commutation & spacecraft pointing

- Pointing stability: 10μrad over 0.5 sec at rate

- Cost: >$1 million
Actuator Examples

3.2 Stepper motor with Harmonic Drive

- High mechanical impedance for body-relative pointing.
- Used for Magellan and TOPEX solar array drives. Proposed for POINTS solar array drive.
- Several standard sizes available from several vendors
- Output bearing is independent of actuator for ease of integration.
- Cost: $1 million
3.3 Linear Actuator for POINTS Interferometer Articulation

- High mechanical advantage for extreme accuracy.
- Passive holding force to withstand launch loads, flexure torsional stiffness.
- Reliability maximized by minimizing stages.
- Based on Viking & Cassini engine gimbal actuator.
- Range: \(\pm 3^\circ\)
- Accuracy: 2.4 \(\mu\)rad with interferometer feedback
- Cost: \(< 1\) million

![Diagram of linear actuator for interferometer articulation]

- Face-to-face bearing pair
- Roller screw, 1 mm/rev
- Brushless motor with Hall-sensor feedback
- Labyrinth seal
- Bearing pair
- LVDT
- Hard point on fixed optical bench
- Face-to-face bearing pair

Accuracy: 2.4 \(\mu\)rad with interferometer feedback

Cost: \(< 1\) million

JPL

27 M. Agronin 4-14-93
3.4 Linear Band Drive

Proposed for Tropospheric Emission Spectrometer delay line actuation.

- Bearings and motor thermally isolated from -123°C optics.

Breadboard to be tested this summer

- Requirements
 - Range: 17 cm+ turn-around
 - Rate: 2 cm/s
 - Rate stability: ±5%
 - Life: 1 million cycles,

- cost: > $1 million
4. Tips on Specifying Actuators

Rules of Thumb:
- Get actuator engineer involved early in the design phase.
- Try to accommodate devices, or at least major components with heritage.
- Don’t specify a device with heritage unless you thoroughly understand its capabilities.
- Use components with predictable behavior; tests and analyses to prove compliance with requirements as major cost drivers.
- Keep is simple; complexity = cost.

Requirement Tips:

Position and rate performance
- Define terms precisely, and preferably with graphics.

Disturbance spectrum
- Requires integrated structural-optical model of spacecraft.

Launch loads
- Launch loads, not operating loads, size most mechanisms.
- Deployable structures are usually over-constrained when stowed, complicating loads analysis.
- Caging mechanisms are not trivial.

Resource allocation (mass, power, cost)
- Most mechanisms can trade mass for power.