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ABSTRACT

The lifting of Lozano [9] is generalized, and shown to be one in a large class of liftings
which enjoy the same zero anmihilation properties (i, ¢ Placcinent Of Yran g ssion zeros
to the origin). Many useful properties of the new liftings arc proved, and the results arc
discussed relevant to recent probleins in control theory (i.e., stable plant imverse control
of nonminimum phase systems) and comnunications theory (i.c., stable equalization of
nonminimuim phase channels).

1. INTRODUCTION

In Lozano [9], amultirate sampling method is presented which allows stable inversion of
any lincar time-invariant finite-order plant, regardless of whether it is minimum phase
or nonminiimum phase. The general approach is based on the notion of a mathematical
“lifting” i which a serial-tc)-~)arallcl conversion is performed onthe plant input and output
signals, and mappings arc considered bet ween the veetorized quantitics. The key property
of Lozano’s lifting which 1akes it so useful is that the transmission zeros of the lifted plant
arc annihilated (i. e, placed to the origin). This zero annihilation (ZA ) property allows
the lifted plant to be stably inverted using standard control inethods. Not surprisingly,
this lifting has also been applied to developing stable adaptive control algorithins for
nomminimum phase systems (cf., [3][4][9][210][11 ]).

Since Lozano’s hifting utilizes a horizon size of 2n where n is the plant order, it will be
denoted as the “2n-lifting”. in this paper, Lozano’s 2n-lifting is generalized, and shown
to be one in a large class of liftings which enjoy the same zero annihilation properties.
Unlike the 2n-lifting, the generalized class of liftings allows the use of extended horizons
(3.c., horizons larger than 2n). An iinportant couscquence is that extended horizon liftings
lead to plaut-inverse controllers with siguificantly reduced control gains. This overcomes a
bottleneck associated with the 2n-lifting which has prevented its use inmany applications of
practical interest. A simulation example is provided in which the peak control requirement
is reduced by four order.s of magnitude using an extended horizon approach.

As a dual result, it is shown that arclated class of liftings enables cqualization of nonmin-
iimuin phase chanuels in communication systems. This overcomes the standard bottleneck
of inverting the channel in a stable fashion. In this case, the extended horizon property
allows chanmel inversion by least squares cstimation, which provides smoothing inthe case
of noise.




5> BACKGROUND AND NOTATION

Consider the input/output model,

ACz" Vye = B(27 Mug (2.1a)

Az 1) = 14 Laz*; B(z"")= ) bz (2.1b)
1=

where polynomials 4 and B are assuined to be relatively prime. |t is assumed that b7 O,
so that Umpo]vnomial B can be factored uniquely into the form B(z1) = 2°b; B(z?)
where R(21') is monic and d = 1 is the plant delay. The choiced = 1 isfor coin’cllicllce
only andisnota fundamental restriction. In the casc that d # 1, all subsequent expressions
can be appropriately imnodified without loss of generality.

Choose some horizon time § » 5, The system (2.1) is iterated to give the following gystem

of lincar equations,

Y(kE)= 1Y (k)4 A Y (k—1)4 BUKk) 4 BU(k- 1) (2.2)
where,
[ kN1 [ UkN
Yk 5 U
vy - | vy | (2.3)
YKN4N ULN4 N-1

A; = lower triangular Tocplitz, with first colunn [0,- a4, ..., - ay,0, ..., 07
Ag = upper triangular Tocplitz, with first row [0, . ...0,- @y, . . ..- a1]
By= lower triangular Tocplitz, with first column (b1, b2, .., bn, 0, . .0

I3, = upper triangular Toeplitz, with-first row [0, . ..0, b,,, . . . b2]

Examplel Let n = 3 and N= 4. Then, (2,2) becomes,
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It is convenient to combine terms involving Y (k) in (2.2) and rearrange to give the following
hfting of Albertos [I],

A lbertos* Lifling:

Y(k) =AY (k - 1)+ HU(k)4BU(k - 1) (2.4)
where,
A= (1- A) 14, (2.5a)
H= (I- A)'D (2.50)
B=(1- A) ' (2.5¢)

It is noted that since A jis lower triangular with zeros cm the diagonal, the quantity (- A )
is always inverti ble. Hence the quantities in (2.5) always exist.

Polynomial A is divided into B to give impulse responsc sequence { ki },

B(z' ]) OO\ :

— hiz™! 2.6
1=

The Markov paramcter seq uence { hy } is not assumed to be convergent (i.c., the system

may be unstable). Using the Toeplitz strut.turc of A 1 and I3; and relation (2.6), it can

be shown [1][3] that the matrix H in(2.4) (2. 5b) can be written in terms of the impulse

responsc parameters,

by 0 - 0]

}12 }l]

H= (2.7)

: 0
hn -+ hg Iy

This is the desired expression for H, i.e,
H:= lower triangular Tocplitz, with first columnn [k, ke, . . .. hn)"

Since the delay is unity by assuinption (i.c., d = 1), the matrix H has a nonzero diagonal
(i.e., hy¥# 0), and is always invertible.




3. GENERAL1IZEDL]FTINGS

Inthis scetion, a new class of liftings will be defined by generalizing the lifting of Albertos
(2.4). Yor this purpose, it will be useful to construct the “small” vector Yo (k) from Y (k)
as follows,

Yo (k)2 S,V (k) € Ko

x N
where Sy, € R is a selection matrix which sifts out oy clements of Y (k) for inclusion
into Y,(k).
The matrix Sy is most conveniently constructed from a 0-1 vector py. For example, if
py = [1,1,0,0] then Yy(k) € R? contains the first two clemnents of Y(k) € R* and the
sclection matrix is given as, 000

S, =
++ (0100,
A systematic method to construct Sy is defined as follows: form a diagonal matriz from the
entrics of vector py, and then remove allrows made up entirely of 0s. This cc)llstruc.tie]]
defines the mapping W @ RN - R° *N for which ouc can write S, = W(p,). Since p,
can be uniquely reconstructed by alogical “or” over the coluinns of Sy, the mmapping W is

onc-to-onec,

Using the above notation, the following “small” vectors are defined,

Yo(k) 2 S, Y (k); Sy £ W(p,) € Bov*N (3.1a)
U(k) 2 S, UK S 2 W(pu)e kow*N (3.10)
Yo(k) £ SgY (k) S5 & W(p5) € REIN-onxN (3.1¢)

where Py and p, arc specified O-1 window vectors, and p;isdcfiuod as the ()-) complement
of py.

The vector Y(k)inu(3.1¢) is denoted as the complementary output since it is comprised of
all clements of the vector Y (k) which are not included in Y, (k). A formula to reconstruct
Y (k) from Y,(k) and Y (k) is now derived. 1t is noted that the quantity S, = [ST, (S¢)T)?
. . . . L . -1 . .

is a permutation matrix. Hence its inverse is its transpose, i.e., Sy Sy =1, which gives
upon cxpanding,

SySy 4 (S5)TSE =1 (3.2a)
Multiplying both sides of (3.2a)ontheright by Y (k) gives the deisred formula,
y(k)= S),(K)+ (s5)" v (k) (3.20)

xample 2 Fig. 1 graphically depicts partial horizon vectors U, and Y, for the case
N =6, as determined by window vectors p, = [0,1,1,1, O, O] andp, = [0, 0,1,1,1, O]. In
this case, py =11, 1,0,0,0, 1] and one can compute,

. 010000 001000
Dy = u ) = O O , S y = w y) = 1
"-1386%9 3 )= 00001 0




Sy = W(p) =
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Using the notation developed above, a new famnily of liftings will be defined by generalizing,
the lifting of Albertos (2.4), As a key step, it will be assumed that U(k) 18 chosen as zero
oulside the window defined by p,. Matheinatically this can be written as,

(I-STsHU(k)= 0 (3.3)

Cousider the following nonminimal state-spacw realization of the Albertos lifting (2.4)
determined using the small vectors in (3.1) andidentity (3.3),

BRI (I BT

O - Y (k)
SORICAOIR @3507)
Substituting for the state in the output equation (3.5a) gives the alternative output equa-
tiomn,

Y(k-1)

Yo(k)= [Sy4 S,DBST] {Us(k - 1)

] + SyHSTUL(k) (3.5b)

Foranal ysis purposes, it is convenient to transforin the open-loop plant using the similarity
transformation 7' where,

Ya(k) Y (k)
Ye(R) | = T ] (59)
Ua(k) Ush)
C . S¢ |0
T;.[M]; = 8 0 M = [5 | (3.7)
Sy £ Wipy) (38)

It can be verified that transformation 7' is square andinvertible. Furthermore, 7' is in
the formn of a permutation mairic which rcorders the state such that the components of
Y, appear first, and the remaining elements follow in the specified order. Since 7' is a
perimutation matrix, theinverse of T is given siinply by its transpose (cf., Barnett [2], pp.
374), i.e,

17 = 17 [T, M7 (3.9)

Transforming the open-loop dynamics (3.4) by the similarity transformation (3.6)(3.7),
gives rise to a very uscful representation denoted as the Generalized Lifting Systern Model,

)




Generalized Lifling Systemn Model, G(pu, py):

Yi(k)] [ SyAST S,A(SH)T SyBSI | Pk
YER) | = SLCIAS?Z‘ 5S¢ A(SS ) S¢ B ST ek - )
Us(k) | 0 0 0 To(k -
SIS
4 [ScHST Ul(k) (3.10)

- .

It is noted that the generalized lifting G(py, py) is defined uniquely by the choice of sclection
windows p, and p,, from which the wmatrices Sy, Sy, Sy are calculated. The Generalized
Lifting system model (3.10) is depicted in the block diagram of Fig. 2. It is scen that Y,
and Y form two coupled subsystems which are driven by a common input U,. 1t is also
noted that the transmission zeros of the transfer function from Ug(k) to Ys(k) are affected
by the choice of windows py and py. This is a key feature which will be used to advantage
in Jater developments.

The lifting G(pu, py) generalizes anumber of existing results. For example, the lifting (2.4)
in Albertos []], is equivalent to the choice of windows,

A lbertos: Lifting:

N

pu s [1,1,051,1 (3.110)
N

py: [1,1,.,1,1 (3.117J)

The 2n-Iifting in [9] is equivalent to the choice of windows,

Lozano’s 2n-Lifting:

)

g n el
p=1[0,1,1,...,1,0,...,0] (3.120)
11-1 n
C-./\-\
py = 0,0,-0,1,1,...,1 (3.121)

Since each choice of p,and p, gives rise to a unique lifting, therearca total of 2V4!
possible generalized liftings over a horizon of length N. Aside from (3.11) and (3.12), 1t
appcars that none of these new liftings have been investigated in the literature. It will be
scen subsequently that many of these new liftings have very useful properties.




4. ZERO ANNIIIILATION

In the previous scetion a new class of liftings was introduced. In this section, we will focus
only on those liftings for which the transmission zeros of the (squared down) lifted system
lic at the origin.

For notational convenience, we define the “small” natrix H, by,
_- T
Hy= S,HUS, (4.1)

The quantity H, appears in many expressions and will play an iinportant role in subsequent
proofs. The matrix H, can be obtained dircetly from p, and p, by writing p, along the
top of H and p, along the side of H. This arrangement is depicted graphically in Fig. 3.
The matrix H, is then the submatrix defined by the elements of H having 1’s along both
borders. 1'wo properties of interest concerning Hy arce,

Output Tracking (O T') Condition:

HHi=1 (4.2)
Input Tracking (1T') Condition:

Hin, 1 (4.3)

where superscript “1” denotes the Moore-1'cnrmc inverse. It is noted that both the OT
and I'T conditions are satisfied if H, is square and invertible.

The property of placing transmission zeros of the lifted plant to the origin is characterized
in the next result.

Lemmal zero Annihilation)  Assume thet windows py and py satisfy,

Zero A nuhilation (ZA) (conditions:

BsT .o (4.4a)
ASHT =0 (4.41)
wh ere,
Su = W(pu); Sy = Wlpy); Sy + W(py)
Then,

(i) the generalized lifting (9.1 0) has the simplified representation (cf., Fig. 4),

-

TYo(k - 1)+ HU(k) (4.5a)

Yi(k) = S,AS
YE(k) =- S¢AS, Yy (k - 1)+ SSHSTU(k) (4.5b)

(ii) Y 18 unobservable from v, and has stable (deadbeat) dynamics

Furthermore,




(iii)

(iv)

If Hein (4. 1) 18 Square and invertible,thenthe transmission zero.~ of the lifled transfer
function (3.10) from Usto Y, arc annthilated (i. c., lie at the origin).

If the OT condition (4.2) issalisfied then the transmaission zeros O the“squared down'’:
lifted transfer function (8. 10) from V (where U, == HIV ) to ¥, arc annihilated.

Proof: Results (i) and (ii) follow by substituting the ZA conditions (4.4) into (3.10), to

give,
Yo (k) Y(k- 1)
YE(R) | = Ay | YE(k—1) | 4 BU(R) (4.6)
Ul (k) Uy(k - 1)
Yo(k—1)
Yo(k)=C, | YE(k--1) | 4 D,U(k) (4.7)
Uo(k - 1)
where,
SyASYT 0 0 SyHST
Ay = |ScAST 0 0| I, = |S;HST (4.8)
0 0 0 1
C, = [ SyASy, O O] ; Dy -H, (4.9)

According to standard definitions (cf., Davison and Wang [8]) values of A satisfying,

A,— Al B,|
dct[ c, Dr] = 0 (4.10)

arc the transmission zeros of the transfer function from Uy (k) to Y, (k) defined by the
st ate-space u10del(A,, By, C),, 1,,). Consider the following identity,

dCt(G) = dCt(Gzz)dCt( ':1] - 6112 ;;2] GQ]) (4]])
. FaY 111 G]ﬁ . . Goo i B TR T
where, G = G and the inverse of Ga2is assumed to exist. Assuining that H,
191 722

is invertible, t#e identity (4.1 1) can beapplied to (4.1 O), which gives upon substituting

(4.8)(4.9),
-1 O 0
det X -2x-1 0 1 (- A) N4 o,
[ X 0 - AT

which proves (iii). Result (iv) follows by an identical analysis assuming that the OT
condition (4.2) holds, and that the simplified plant (A, B,, C,, DD, ) in (4.6)-(4.9) has been
squared down by a precompensator H}, M



Lemma lisimportant Since it gives conditions which py and py must satisfy fox the
generalized lifting G(rhoy, py) to have its transmission zeros at the origin. All results in
1 ;emna 1 can be simply understood by comparing Fig. 3 with Fig. 4 and by noting, all of
the blocks that have vanished under the ZA conditions. It is seen that Y€ no longer couples
into the Y, subsystem. Furthermore, the Y subsystem has becomne deadbeat i.e., all of
the poles of the Y subsystemn are at the origin. Most importantly, there is now only one
forward pathfrom U, to Y,. Clearly somcthing drastic has happened to the system zeros.
Rigorously, if H, is square invertible, result (iii) of Lemma 1 states that the transimission
zeros Of the transfer function from U, (k) to Y, (k) have been placed to the origin (i.e.,
annihilated). If H, is not squarc butthe or” condition holds, result (iv) of Lemnma 1 states
that the zeros the lifted plant “squared down” by a precompens ator H} are annihilated.

5. EXTENDED 11 ORIZON LIFTI NGS
Thenext result introduces a new class of liftings which satisfy the conditions of ] .emma 1.

Theorem1 A class of generalized liftings G(py, py) which satisfy both the ZA and O T
conditions 1s Of the following form,

Eztended Horizon Lifting (0T Form):
N

~ =~
m

£ r 1 q 11- 1
/_./\_..\ ,-—/\._\
.=0,.701,. 1,010,125 T,0,...,0,0,....0] (5.1a)

n-1 n

m £ p 9
Py* Om,/’ 707"-10101-"10’1’1""’]] (51b)

where m > 0 and £ > 0 are arbitrary, g= O, p € BPisan arbitrary (or null) 0-1 vector
chosen 1d entically in both p, and py; and 1> 018 the order Of the irreducible plant (2.1).
Furtherm ore, if the s ystem (2. 1) is obtained by a zero- order hold (ZOH ) digitization of a
continuous-time plant, the integer q > 0 can be chosen arbitrarily.

Proof: By definition, the matrix B in (2.5¢) has the sparse forin B = [O4)X] where
Oy € RN*N-n41 s g matrix of all ‘0" clements, and X, € RN *"~1 . By construction of S,
from p, in (5.1 a), the nonzero elenents of Sy multiply only elements of O in the product
BST Nence BST = o. Likewise, the matrix A in (2.5a) has the sparse form A =[0,]X,]
where O, € RN - ™ is a matrix of all “O” elements, and Xq€ RN ““. By construction
of Sy frompg (i.e., O-1 complament of pyin (5.1b)), the nonzero clements of Sy multiply
ouly clements of O, in the product A(SS)”. Hence A(S;)T =- 0 andtheZA counditions
(4.4) are satisfied.

In order to show the OT condition, first considerthe case where ¢ > O. Then choice (5.1)
cnsures that Hy is of the form (cf., Fig. 3),

_p (X | F 0
Ho =) (X X ’H) (5.2)




where F € RPX? js lower triangular with anonzero diagonal (and hence is invertible), and
H C R™*"is given by,

h,,_'q ’l]_’q

’}_{ - . .

h?n—l g-1 hn—}q 153)

Since F is full rank, it follows from the special structure of (5.2) that H, is full raukif H has
full rank. To show that H has full rank, let (A, b, ¢) bec any minimal (i.e., controllablcand
obscrvable) state-sl)acc realization of the trausfer function (2.1 ). The Markov paramcters
{hi} can be written as fti = cAY! b,i= 1,..., co.Substituting into (5.3) gives,

cA™e 1y cA%b
H = : : (5.4)
cA?He-2, o cAmiedy
= 0AC] (5.5)
where I i's  areversed identity (i.e., I=1[c, .. .. enls J = [en, . .. .¢1]),and Qand C arc!

obscrvability and controllability matrices of (A, b, ¢), respectively. Since (A, b, ¢) is con-
trollable and observable, it follows that O and C are cach full rank. The fact the systemn
(2.1) is obtained by a ZOH digitization iinplics that A ¢ pnxn is full rank (i.c., A is 4
state-trallsitio]] matrix). These facts together imply that H in (5.2) is full rank and hence
H, is invertible.

If the system (2.1) is not obtained by ZOH digitization, thematrix A may not be full

rank. 1llowever, the results still hold with the restriction that ¢ = O since in this casc A?
is replaced by identity matrix I in relation (6.5), which is always full rank. [

Theorem1is important because it generalizes Lozano’s 2n-lifting to a much larger class of
liftings which enjoy the same zero annihilation propertics. Note that the extended horizon
liftings have total horizon length N =- m + £+ p 4 ¢-2n - 1, which can be chosen longer
than Lozano’s lifting for which N = 2n. Hence the name “extended horizon”. It will bLe
see] 1th at these ext ra degrees of frecdom will overcome several diflicult ics associated with
the 27/-lifting.

The following, result is essentially a “dual” to the previous theorem.

Theorem 2 A class of generalized liftings G(py, py) which satisfy both the ZA and IT
conditions 18 of the following form,

Extended Horizon Lafting (IT Form):
N

m e n q n -1
l}
~—N— e N
pu= 0,..,0,0,...0 711 ..1, 0,....00,..0 (5.6a)
m 14 P q n-—1 n

Py~ IO,---, Oa]a-“’ 1,f/p\’ 0, ' "'DlO""’ 0’ ]’ ]’ ’1 (5(Y))



(i)

(i)

(ii1)

where m > 0and > 0 arearbilrary, q= O, p ¢ R? isan arbitrary (or null) O-1 wvector
chosen vdentically in both pyand py; and n> 013 the order of the irreducible plant (12. 1).
Furthermore, if the system (2. 1) 18 obtained by a zero-order hold (ZOH) digitizatio n of a
continuous-tumnce plani, the integer q > 0 can be chosen arbitrarily.

Proof: TheZA conditions fol | ow using the same arguments found in the proof of
Theoremm 1. Cousider the IT condition (4.3). Given the! lifting (5.6), H,hasthe forn,

P n
p(F O

Hy= n| X H (5.7)
C\X X

From the structure of (5.7) it follows that H, has full rank if both 7 and ?{ have full rank.
The remainder of the proof isidentical to the proof of Theorem 1. .

Properties of Lozano’s 2n lifting follows dircctly from its interpretation as a special case
of theliftings in Theorein 1 and Theorem 2.

Corollary 1 Lozano’s2n -lifling (3.12) salisfiesthe ZA, 01 and 11’ conditions.

Proof: Thelifting (3.12) it is equivalent to the special case of the liftings in Theorerns
1 and 2 where 721 =0, {=0, p=1, p= [0], q = O. "

G. DISCUSSION

The advantages of the extended horizon liftings in (5.1) and (5.6) relative to Lozano’s
2n-hfting arc as follows,

If one chooses £ > 0 in (5.1), there are more control inputs than outputs in the lifted
system (i.e., 0, > 0y). It is shownin Sect. 7that these cxtra degrees of freedom can be
used to design acont roller which minimizes a quadratic control cost while simultancously
satisfying a deadbeat tracking objective. This significantly reduces control gains compared
with Lozano’s lifting.

If one chooses € >0 in (5.6), there arc more outputs than inputs in the lifted systein (i.e.,
0y > 0y). It is shown in Sect. 8 that these extra degrees of freedoin canbe used t7 minimnize
a quadratic error when estimating the mput fromm mecasurcments of the output. This
is significant for reducing noise in probleins of nonminimum phase channel equalization.
Furthermore, the p vector can contain additional message information to incrcasethe
channel throughput.

If onc chooscsm > 0 in (5.1) or (5.2) there is an extra m + 7' scconds of free time which
can be used to perform computations (where 7' is the sampling interval). Since m can be
choscn arbitrarily, the usc of extended horizon liftings for either coutrol or equalization
applications is not constrained by real-tilnc computer limitations. ‘This is particularly
useful for adaptive implementations which involve additional computation.

11



7. APPLICATION TO PLANT INVERSE CONTROL

The placeinent of the transmission zeros to the origin by the class of extended horizon
liftings (5.1) allows stable invertibility of the transfer function from Ug(k) to Yi(k). A
control law which will be disc ussed next deadbeats the response Y, (k) to follow the desired
Ya(k), subject to the minimization of a quadratic control cost.

‘1’0 derive the desired controller, define the output error as,
E(k) = Ya(k) - Y,(k) (7.1)
Substituting (4.5a) into (7.1) gives,
(k)= - SyASIY(k - 1) - HU,(k) + Ya(k) (7.2)

Consider the problem of forei]lg the error in (5.3) to zero inasiugle step, while iminimizing:
a quadratic control cost penalty, i.e.,

lx]x% UT (kYU (k) (7.3)

?

subject 1o

E(k)= o (7.4)

In light of the () 'I' condition (4.2), this minimization problemn can be solved uniquely to
give [5)[6],

Zero A nnihilation Periodic (ZA P) Control Law:

u:(k) = }1}(— SyASTY,(k - 1) + Yd(k)) (7.5)
= K°Y,(k — 1) + L°Yy(k) (7.6)
wherce the corresponding feedback gains are defined as,
Ke = ~HIS,ASY (7.7a)
|.°= H} (7.70)

Here the superscript “o” is chosen to emphasize the fact that the control nulls (i.e., dead-
beats) the output. Also, in light of the OT condition, H, has full row rank and one can
write Ht=HY(H,HI)™? (cf., Barnett [2]).

For convenience the ZAP control law is summarized inthe block diagramn of Fig. 5. We
have the following result.

12



(i)

(ii)

(iii)

Lemma 2 (ZA P Control) Consider the closced-loop system arising from the O T' cat ended
horizon lifting (5.1) under ZA P control (7. 6). Y’hen,

The quadratic conirol cost (7.3) is minimized at cach stage, subject to the dea dbeat tracking
constraint (7. y

All closed-loop poles are at the origin (v.e., the closed-loop response 13 deadbeat), and hence
Y, (k) converges to Ya(k) in a single step,

The closed-loop system 1s inlernally stable (e.9., Y(k) remains bounded).

Proof: Result (i) follows fromthe () 'I' condition (4.2) and well known minimum-norm
propertics of the Moore- Penrose inverse (cf. , Barnett [2]). Now forin the closed-loop systen
from the simplified lifted plant (4.5) uuder ZAP control (7.6),

Y, (k) Y (k- 1)
YE(RY| = Aa | YE(k = 1) | 4 BaYa(k)
Us(k) Us(k - ]) 17 8 )
where,
(I- H, HDS,AST 0 .t
Ag = S{1 -- HSTHISHASY 0 0|; DBa= |SiHSIH]
[ _H)S,ASY 0 0 1} I

Results (ii) and (iii) fol | ow by substituting the OT condition (4.2) into (7.9), and noting
that the resulting closed-loop matrix is stable with all of its cigenvalues at the origin. e

Result (i) of Lemna 2 is important because it indicates that control gains associated
with using extended horizon liftings will be significantly reduced comnpared to those from
using, the 2n-lifting. Result (iii) of Leimina 2 is immportant because it ensures that the
complement ary output Y reinains “well behaved” even though it is not being controlled
directly.

Remark 1 Instead of deadbeat control, a pole placcinent scheme can be obtained by
modifying the deadbeat constraint (7.4) to become E(k) = aF(k - 1) in which case the
ZAYP control becomes US(k) = K°Y,(k - 1) + L°Ya(k) — al°E(k - 1). ]

Example 3 As an example, a 12-state nonmminimum phase transfer function is shownin
Fig. G (Imlc-zero plot,sampling time T' :-.025 sccs), adopted from the ASTREX flexible
strut.turc model [6] [7]. The open-loop response to an initial condition is shown in Fig,.
7. A simulation is first run using the deadbeat control (7.6) with the Lozano’s 2n-lifting,
m= 0, £=0, p==1 p= [0, n= 12, ¢g= O, N=2n= 24, andusingY;= O (i.e, a
vibration damping objective). The respouse is shown in Fig. 8 to reach --3 x 10'at the
output and 500 at the input. As expected from the theory, the response is deadbeat after
a single horizon. However, this control law is unusable since the units are in volts, and
the allowable range 1sonly 41 O Volis. 1t is emphasized that these extraordinarily large
responses are typical of the 2n-lifting due to the fact that the plant is inverted on a horizon
Of length N . 7' = .6 scconds.
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Inan attempt to get a practical response with the 2n-lifting, the pole placement control
of Remark1is used. The choice «=.5 ismade to get approximately a 10 second decay
time (any slower would be worse than the open-loop response). The results are simnulated
but not shown here since it turns out that the responses are reduced 50%, and are still
unacceptably large by several orders of magnitude. The ZAP contro] using an extended
horizon lifting m = O, £= 40, p =0, q = 0, n= 12, N =63 is tried next. The results
arc shown in Fig. 9 where it is seem that both the input and output arc well within the
alowable ranges. The deadbeat nature of the response is also noted, as the vibrations arc
damped instantancously after the first horizon. L

8. APPLICATION TO CH ANNEL EQUALIZATION

An nnportant problem in comimunications is that of equalizing a nonminimum phase chan-
nel. Thie usual problem is that the channel cannot be inverted ina stable fashion. However,
using the 1T extended horizon lifting (5.6), this problen can be overcome.

1 .t Uy(k) be thesequence of messages to be sent, and assume that an I'T extended horizon
lifting (5.6) is used to transmit the data (i.e., thesignal sent is given by U(k) = ST'U, (k).
The channel is assumned to be a stable lincar nonminimun phase transfer function of the
form (2.1) with order n. I'hell from Thcorein 2 and Leimmma 1, the plant dynamics are
given by (4.5),

Yo(k)= AY(k - 1)+ HU,(k) (8.1)
where
A, = SyAS) (8.2)

At the receiving end, the quantity Y, (k) = S, Y (k) is measured, and it is desired to estimate
the messages Ug(k) which were sent. For this purpose, an output prediction y.(k) is formed
as,

Yo(k)= AY.(k - 1) + H, U (k) (8.3)

and an estimate U, is found by minimizing the least squares criteria,

min (Y., - Y)7(Y, - Y,) (8.4)
U,

Since theIT condition (4.3) holds for the extended horizon lifting, the unique solution to
(8.4) is given by, X
Uy = - HI(AY(k - 1) - Yo(k)) (8.5)

where one can write ]]3:(113'}]3)']}13'si110(3 H, has full coluinnrank (cf., Barnett [2]). It
is noted that this dynamical system represents a stable inversion of the nonminimum phase
chanmnel characteristics. Furthermore, the usc of an extended horizon £ > 0 has allowed
channel inversion by least squares which provides smoothing in case of noise. Lozano’s
2n-lifting in this application would not allow smoothing and would be very susceptible to
noisc. The usc of pin the 1T extended horizon lifting also provides a means for sending
additional information with cach packet, to imnprove the overall throughput.
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9. CONCLUSIONS

A genceral class of liftings was defined and shown to have the same desirable zero anni-
hilation propertics of Lozano’s 2n-lifting. In contrast to the 2n-lifting, all new liftings
have horizons greater than2n, i.e,, they are of the extended horizon type. The use of
extended horizons resolves many difficulties associated with the 2n-lifting. For example, a
Zero Anuihilation Periodic (ZAP) controller is defined for which the control gainscanbe
significantly reduced relative to Lozano’s lifting. This is duc to a quadratic control cost
which is minimized siimultancously with the deadbeat tracking objective. The cffective:
ness was shown in a simulation example where the control torque was reduced 4 orders of
magnitude.

As a dual result, it was shown that arclated class of liftings enables the on-line cqual-
ization of nonminimun phase channcls in commmunication systems. This overcomes the
standard bottlencck of inverting the chanmelin a stable fashion. Here, channel inversion
is accomnplished by least squares cstimation which provides smoothing in the case of noise.
It is worth noting that this channel equalization approach can be made adaptive by using
standard recursive algorithms since the new liftings are lincar-in-th e-parameters. The full
significance of this result remains to be explored.

It is expected that the results contained in this paper will be useful in many arcas of
modern coutrol, neural control, fuzzy control, adaptive control, communications, adaptive
filtering, signal processing, or other applications where a stable systcin inverse is desired
but not possible due to nonminimum phase constraints.
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Figure 1: Vectors U, and Y, defined using windows p,and p,, respectively.
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Figure 4: Generalized Lifting System Model under the Zero Annihilation (ZA) conditions 3S2'=0 and A(S¢)T = 0.
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Figure 7: Open-loop response (plant output).
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Figure 8: Closed-]ool, response using deadbeat control with Lozano lifting: a. plant output; b. control input.
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Figure 9: Closed-loop response using ZAP coutrol with extended horizon lifting m= O, # = 40, p= O, q= O, n=
1'2, N= 64: a. plant output; b.control input.




