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Abstract

For the first tiine, a unipolar terminal-attractor based neural associative memory
(TABAM) system with adaptive threshold and perfect convergence is presented. By adap-
tively setting the threshold values for the dynamic iteration for the unipolar binary neuron
states with terminal-attractors and inner-product approach, we demonstrate via computer
simulation the achicvement of perfect convergence and correct retrieval. The simulation
is completed with a small number of stored states (M) and a small number of neurons
(N) but a large M/N ratio. An experiment with exclusive-or logic operation using LCTV

SLMs is used to show feasibility of the optoclectronic implementation of the models.
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I. INTRODUCTION

One of the major applications of ncural networks is in the arca of associative memory.
For example, the avalanche of intensive rescarch interests in neural networks was initiated
by the work of Hopfield! in which the associative memory is modeled with an neural
synaptic interconnection matrix and encompasses an interesting computation scheme via
nonlinear threshold and iterations. However, after further investigations, it was found??
that the storage capacity of the Hopfield model is quite limited due to the number of

spurious states and oscillations.

In order to alleviate the spurious states problems with the Hopfield model, the concept
of terminal attractors was introduced by Zak®. However, the theory of the terminal attrac-
tor based associative neural net model proposed by Zak determines that a new synapse
matrix totally different from the Hopficld matrix is needed. This new matrix, which is very
complex and time-consuming to compute, was proven to be able to increase the speed of
convergence and control the basin of attraction®5. Zak’s derivation shows that the Hopficld
matrix only works if all the stored states in the network are orthogonal. However, since
the synapse is changed, the Zak model is completely different from the Hopficld model.

The impact of the terminal attractor on the Hopficld model cannot be determined based

on Zak’s model.

More recently, for the purpose of comparing the Hopfield model with and without the
inclusion of the terminal attractor, Lin ct.at. proposed a terminal attractor based asso-
ciative memory(TABAM) modcl with binary neurons and the Hopfield matrix®. Several
techniques for the optical implementation were introduced which include the application

of the inner-product approach” and the exclusive-or (XOR) operation of the liquid crystal

television spatial light modulator (LCTV SLM)8.

The complexity of the optical implementation of the TABAM is discussed in Ref.
6. 1t is desirable to develop a unipolar neuron model which is more suitable for optical
implementations. In this paper, we present a unipolar inner- product TABAM (UIT) and
a across-talk reduced inner-product TABAM (CRIT). The latter provides a mechanisim to
put the input state vector in the correct basin of the stored vector, then, using the terminal
attractor to accclerate the convergence. Besides, the cross-talk reduced model docs not

require any training time and thercfore is readily for optoclectronic implementation. In



both UIT and CRIT, a dynamical logistic function adaptive thresholding technique is

developed..

Before the optical implementation is designed, it is important first to test via comn-
puter simulation the validity /practicality of the preservation of the Hopfield matrix in UIT
and CRIT even though the stored states are not orthogonal. This simulation needs the
determination of the threshold value that it takes to reach convergence in the associative
recall. For simplicity, only a small number of neurons and a small number of stored states
arc usced for demonstrative simulations. Secondly, the feasibility of an optoclectronic im-
plementation of the technique is demonstrated with a siall number of neurons and stored
states. The application of the sinall-number TABAM for solving pattern classification and

recognition problemns is discussed.
II. ADAPTIVE THRESIIOLD DETERMINATION

In the unipolar system, it is diflicult to implement subtraction using optics. To avoid
subtraction, an adaptive thresholding technique is used. Before the adaptive thresholding
techniques is discussed the TABAM® model is briefly reviewed. In the model, onc assumes

that the i-th component of the state vector a; at time ¢ 4 1 may be written as a function

of t as follows:

M
zi(t+4 1) = Z vi" a™(t) + I, (1)
where
M .
Li== 3" a™(0)g(xi(t)) — "1 E8™ (1),
m=1 N
6" (t) = exp{-p3 Z[ﬂ(ﬂ’i(f)) ="’}
SOED PR RTCHON

=
where g(a;(t)) is a logistic function.
In Eq. (1), v" denotes the ith component of the mth stored vector V™ and  is a constant,

M and N are the number of stored vectors and the number of neurons respectively. Based

on the property of the unipolar representation of a binary system, this Equation can be
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rewritten as:
M

zi(t+1) = ) a™(O[(14 6" (O] — g(wi(t))6™ (1)), (2)

m=1

Instead of implementing the substraction in Eq. (2) optically, an adaptive threshold

function is introduced following the modification of Eq. (2) as follows:

M

wit+1) = Y a1 6™ (0)v}" + g(ai(1))6™ (1)) (3)

m=1

We refer to the model of Eq. (4) as the UIT.

In Eq. (3), a logistic function, as illustrated in Fig. 1, with an adaptive threshold,
6(t), is used to perform the nonlinear transform such that the output becomes quasi-binary
states. The adaptive threshold will be determined according to whether the stored states

arc orthogonal to one anothier or not. The system is crosstalk-free if all the stored states

arc orthogonal.

When there is no crosstalk, then the threshold 6(t) is sct as

(1) = o™ (O] + 6™ (1), (4)

where o™ (t) is the inner product between a(t) and the m'th stored vector, V™' and

o™ (t) =0  for all m # m'.

In order to cause the states to converge to the stored states, a threshold can be sct
based on Eq. (4) for maximum noise immunity as shown in Fig. 2. The threshold is sct
between the lower value of the desired output state 1 and the higher value of the desired

output state 0.



A more practical situation 1s where the stored states are not orthogonal to one another.
In this situation, crosstalk often occurs between similar stored vectors. For this case, 6(t)

1s set to be:

A 1
o) = > a" (Ol + 8" (1) (5)

m=1

In order to reduce/eliminate the crosstalk problem, a new model called CRIT is pro-

posed as follows:

M

zi(t+1) = Y a™ (06" (O[(1+ 8" ()i + g(xi(t))8™ (1)) (6)

m=1

It can be scen from Eq.(G) that the crosstalk between the nonorthogonal stored vectors
is exponentially weighted and reduced by the term 6™ (t). The size of the basin of terminal
attractors is controlled by the value of g in 6™(t). Using the model, the retrieved state
vector 1s first placed in a correct basin, then the corresponding terminal attractor makes
the state vector converge rapidly to the bottom of the basin. This model does not need
time for training and is more suitable for optoelectronic implementation since the stored

vectors can be directly used. The threshold can be set similar to Eq. (5) as:

M

o) = 3 a™ (05" (W] + 6" (1)) (

m=1

-1

)

1II. COMPUTER SIMULATION

In order to test the effectiveness of the models of UIT and CRIT using the adaptive
threshold, a computer simulation code is developed. The XOR logic operation is used to
detect the Hamining distance between the state vector, a(t), and the stored vectors, V'™ .

An input-output relationship of XOR hetween the input and output is shown in Table L.

The Hamming distance between the state vector, z(t), and the stored vectors can be

computed by using XOR as follows. For a unipolar system,

)



[o(ai(t)) = vi"]* =] g(x:(t)) — v]" | (8)

Based on the above Table, the Hamnming distance is found to be

N N
Y lor0) = o' = Y () = ol |

=1

j z

i

11— ga()XORo) ©

1=1

Equation (9) provides a similarity mecasure between g(2(t)) and V'™, and is equivalent

to the inner product of a bipolar system.

Bascd on the above algorithm, a computer simulation program was used to test the
feasibility of the models. For siiplicity of computation, the number of neurons and stored
states selected are small. The number of stored vectors are 2 and 3 for both 3 and 4
neurons in each state. With the small N and M, all possible combinations of vectors have
been stored and the retrieval was tested with all possible input vectors. In other words, an
exhaustive test was done with the siinulation. An IBM PC 386 was used for the simulation.
An associative recall result is considered to be accurate when an input vector converges to
a stored vector with the smallest Hamming distance to the input vector. The accuracy can
be determined in all occasions except in those cases when the input vector has an equal
Hamming distance to all of the stored vectors. In this case one cannot decide which of the
stored state should the input converge to. In reality, it really does not matter because of
equal Hamming distance. The simulation results of the UIT (Eq. (3) and CRIT (Eq. (6),
are presented in Table II. The 95.7% convergence accuracy of M = 3 and N = 4 of the

UIT is due to the cross-talk effect. The inaccuracy is removed by the CRIT as shown.

Based on the results of the exhaustive computer simulation, it can be seen that even
M = N, perfectly accurate convergence can be accomplished. The details of the simula-
tion of a particular case will be provided in an example below, while the optoelectronic

implementation of the models is discussed.



The output images following the XOR operations are focused to become two spots on
the CCD camera. The intensity ratio of the two spots should be 9 : 4. The experimental
result showing the calculated intensity ratio is displayed by an oscilloscope and shown in
Fig. 4. The computer can dynamically use a logistic function to perform the computation
as guided by Eqgs. (3) or (6).

The result obtained for UIT before taking the threshold is

7.7486 6.3743
5.4779 7.7486

and the threshold 6 of the logistic function is 3.874309 (when one scts g = 1.0). After

taking the threshold, the result is

N

which shows an accurate retrieval. The thresholded output will remain in the same state

by the iterative process.

On the other hand the result obtained for CRITA before thresholding is

2.2596 1.8169
1.9523 2.2596

After taking the threshold with 8 = 1.1298(8 = 1.0), the result is the same as that of
the UIT.

The dynamical systein converges to the correct state and remains in the same thresh-

olded output state forever..

The above example offers a feasibility demonstration of using a computer to perform
nonlinear thresholding and feedback. An example of an optical thresholding and feedback

is illustrated in reference No. 6, but the fact that a suitable threshold device is not available
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limits pure optical implementaiton capability. Examples of states thresholding to zcros are

also available but not shown due to space limitations.

V. CONCLUSION

In this Letter, two unipolar terminal-attractor based associative memory models UIT
and CRIT, are presented with adaptive logistic functions. Computer simulations on the
associative retrieval of these models with a small number of neurons and a small number
of stored states demonstrate perfect recall and convergence. Corresponding experiment
using XOR operation of LCTV SLMs demonstrated the feasibility of optoclectronic imple-

mentation of the models.

The perfect convergence for the case of N = M, even though both M and N are small,
indicates that the terminal attractors arc unique and effective in making tremendous im-
provements on the otherwise limited Hopfield model. In a pattern recognition/classification
problem, the number of pixels of the input iamge is usually on the order of hundreds. In
order to solve the problem, it is conceived that the large dimensions of neurons may be
divided into small “cells”. The data may therefore be reduced by cascading the processors

following the rules of UIT and CRIT. At each stage, the accuracy of convergence is perfect.

The potentials of these models such as scaling, ccllular approach, and pyramedial multi-

resolution image classification based on UIT and CRIT are under investigation.
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FIGURE CAPTIONS
Figure 1. A dynamic logistic function with a sharp transition at z = @ (threshold).

Figure 2. The adaptive threshold, 8, is sct to achieve the maximum noise immunity.

Figure 3. An experimental sctup for the optical IOR operations.

Figure 4. Two focused spots of optical image intensitics following XOR operations.

The intensity ratio between the two is approximately 9 : 4.
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NAMES OF TABLES

Table I Exclusive OR (XOR) Relationship

Table II. Computer Simulation Results of UIT and CRIT
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Table I. Exclusive OR (XOR) Relationship

Input 1 Input 2 Output
T
0 1 0]
1 0] 0



Table II. Computer Simulation Results of UIT and CRIT

Model N M Convergence
Accuracy
UIlT 3 2 100%
uiT 3 3 100%
uIlT 4 2 100%
UIT 4 3 95.7%
CRIT 3 2 100%
CRIT 3 3 100%
CRIT 4 2 100%

CRIT 4 3 100%
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