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Abstract

This paper reports on automated inspection technigues
being rescar ched and developed for surface inspection
of remote space platforms. The unique problemns of per-
forming visual telerobot ic inspection in space are iden-
tificd. An image differencing method to deteet chianges
to surfaces over a period of thme s presented together
with a scale-space technique for flaw identification, bx-
amples from images of laboratory mockup of space plat-
form mod wles are presented to illustrate the results,

1 Introduction

The goal is to develop algoritlims and software to en -
able the automated inspection of large space struc-
ture surfaces for damage and deg radation. The ob-
jective is to process sensor data and detect critical
anomalies by identifying areas in the image that have
changed and to then identify the flaw responsible for
the change. The flaws to be inspected include dam
age from micro meteorites and space debris; material
degradation due to exposure 1o mono atomic oxygen,
solar wind, UV radiation, and th erm al cycling, effects;
peometrical mismatches at mechanical interfaces; fluid
(hydrazine) leaks; aud thermal anomalies. Detection is
to performed under harsh and changing orbital ligh t-
ing conditions, with highly specular materials and at a
safe collision- free operational distance. The objective
is to augment a hmian operator’s inspection activities
and not necessarily to replace them. An aulomated
systemn would in effect perforin like a “mine detector>’
that could be scanned across the surface of the object,
with the final detenmination of the flaw being made by
the opcerator.

Thic aim is to facilitate periodic remote inspection
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and monitoring of space structures such as the Space
Stilt ionFreedom (SS17), using minimal crew Fxtra Ve
hicular Activity (1 VA) and inst cad relying on on- hoard
supervised robotic capability. The SSI° is a large space
platform with cornplex mechani cal| eleet rical, thermal,
fluid and gas interfaces, and changing suite of internal
and external scient ific experimental apparatus. Over a
30 year desigulifetime, on-orbitmaintenance of such a
corn plex, changing facility requires periodic as well as
“on demand- inspection capabilities. Althiougl subjec-
t ive “eyes-on” obscrvations during planmed crew-15VA
will gathierchimmportantdiva, telerobotic inspection
offers precise repetition of calibrated scusor placancut
and positioning, enhanced (non-visible light) sensing,
digital scerie recording and mat ching, and greater au -
tomation in flaw detection and categorization. Cost
savings from reduction in EVA t times, relief from bore-
dom and fatig uc are al so cnabled by automated in-
spection and monitoring tools. Although t he ground-
bascd control of robotic devices is not currently part of
the SSE haseline design, the National Acronautics and
Space Adminstratrion (N ASA) is interested in perforn-
ing a feasibility study to determine if future ground-
based telerobotic operations can supplerent on-board
operalions.

1.1 Inspection Problems

Much of the existing data on the eflects of the space
cnvironment has been obtained from the Long Dura-
tion Exphosure Facility (LDEF) floomn by NASA. The
LDEY sp acecraft was a 10 meter lo ng, 6 meter diame-
ter, 14 -faced open-grid structure on which a series of §6
rectangular trays were used to mount experiment hard-
ware. The spacecraft was exposed to the on-orbit sp ace
cuviranment for G years atlow ecarth orbit, Prelimi-
nary data from the LDE 1" spacecraft [1] analyzes more
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than 34,00 () impact features ranging in size from 5.7
millimeter diameter to 0.1 micrometers. This data has
allowed th e detennination of how surface orientation al-
ters the rate of surface imapet, flux rates for man-made
and nautral impacts, rate of increase of spcace debirs,
and themorphological features of the surface flaws as
a function of the impactor and impacted materials.

Although at the preseut time, detailed SSF inspee-
tion requiremnents have not been specified (except for
SSIutility tray cables), NASA has anphasized the
need for inspectionin various docutnents and forums.
For exar nple, the SSEF External Maintenance Task
Tewmn Final Report [2), Appendix B, specifies high-level
requircments for the inspection of the station and states
thaticlerob otics should be utilized to accomplish sonie
of themspectiontasks. A mumber of candidate tasks
have heen identified based on our interactions with en-
gincers at the Johnson Space Center and various scien-
tists working with data from the Long Duration Fxp o
sure Facility (1L DY), These includes inspection of: (1)
truss strut damaged by micro meteroids (2) cracks in
structures (3) shicld area dar naged by micro meteroids
(4) thermal blankets, radiators, or solar pancls dar n
aged by micro meteroids and atomic oxygen (5) ther-
mal/inechianical interfaces at Orbital Replacement Unit
(ORU) installation sites (G) deployable mechanisins for
correctly posttioned latches, connectors, and other
nmiechanical deviees (7) the SSE shuttle docking port
before cach dockiug (8) damaged fluid and power lines
i utility trays (9) effects of finid leaks on opties (10)
magnetic field, plasiia fields, and contaminant levels,
especially hydrazine concentration. For telerobotic su -
face inspection of flaws, detection of impact featuresin
the range of 0.2 to 6.0 imnappearstobeadequate for
safety monitoring the SSP.

At the Jet Propulsion Laboratory (JP1) N ASA has
establi shed a Remote Surface Tnspection Laboratory
to develop atid demonstrate teclimology for telerobotic
inspection. The labor atory integrates manipulation,
sensing, and operator interface technology in a single
mspection system and provides a simulated spacecraft
and orh ital lighting ynockup for the perforimance of in-
spection experinents, both antomated and human el c-
operated. A necarreal-time systen for flaw detection
using a | image diflerencing approach is currently op-
erational a( JP 1. and allows the monitoring of changes
to ORU modules. The inspection syst ein allows the
operator supervised scanuing of an ORU surface, the
detection of various flaws, and au archival/cataloging
system Lo track and monitor flaw progression. Various

techmologics in T-dof arm control, base/robot mobil-
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ity coordination, collision detection and avoid ance, arc
part of this effort and are described in [3, 4]. How-
cver, the eimphasis in this paper is on the automated
inspection comnponents of the systemn. The techmology
and hardware/software developed at JPL is then to be
transferredio the NASA Johuson Space Center (3 SC)
for subsequent integration into the JSC Space Station
robotics facilities. 'I'wo other inspection prograins are
currently underway at h’ ASA at the Kennedy Space
Center. These are the Shutlle Radiator Asscmbly In-
spection and Shuttle Tile Inspeetion tasks. These in-
spection efforts arc however terrestrial applications and
donot have to contend with some of theunique feature.s
of perforiming inspection operations i space.

2 1 nspection Technical Issues

Automated visnal inspection is widely used in indus
trial manufacturing for productinspection for fune-
tional and cosmetic effects [b, 6. A number of tech -
nical and operational issues provide unique technical
chiallenges Lo telerabotic inspection of space platforms.
We briefly deseribe these issues and describe how they
impact the imaging, hardware and experimental scetup.

1. Solar illuinination at near earth orbit is approxi-
mately 13 1,000 lux. The abscnee of atinospheric
dispersion resulls i shadowed regions that tend
to he very dark. In the laboratory, simulated so
lar ilumination at approxitately 10 percent, of the
true solar intensity is usedinthe interests of mini-
mizing the safety risks assoicated with high power
lights. As a couscguence, the controlled illumina-
tion that 1s utilized in the laboratory st al so
be similarly scal ed d own.  The ambient light is
provided using a 1200W, H600:1 400K | adjustable
focus Luxare 1200 Taanp and produces high con
trast between shadowed and lit surfaces.

2. Solar illmmination at low carth orbit varies as the
spacecraft traverses its orbitonce every 60 90 min-
utes, In the laboratory, this variation in orbital
lightin g is simulated by mounting the orbital light
source on a moving platform with computer con-
trolled translation, pan, tilt and intensity controls.
As thetranslating light source is onastraight tract
and not a curved track, the focus/intensity con-
trols allows for the compensation of the diflerent
distances between the lamp and the object being
inspected.



3. Power budgets being limited on spacecralt, on-
orbit controlled Numination is of lhnited power
and herice the option of using bright controlled
lighting to overpower the solar illumination is pre-
cluded.  Effectively, the light levels provided by
the controlled illuminators at the surface of inter-
cst will be at or helow the level of the ainbient sol ar
illumination. Thelinpact of this is especially great
on any schemne designed to comnpensate for the vari-
ability in the ambient light as will be disciaissed in
Sectionxx. In the laboratory, two controlled lights
arc miounted on the end-point of the manipnlator
armito provide the close-ul) illumination and to
hght enclosed or shadowed regions. A strobe il
luminator with the same total light energy from
xxXX €orp, is also avall able at the end of the mia-
nipulator arm. Lighting angle can be adjusted for
difluse or specular illumination with typical con -
figurations at a comypromise illumination angle.

4. Camera platforins on a telerobotic arm for space
tnspection need to be compact so as to provide a
small convenient package for closcup inspection of
surfaces andaceess to hard to reach spots. In ad-
dition to being of small size the other requirement
for the cameras is (0 have an adequate dynamnic
range o enable the inspection. The cameras used
in our laboratory for the robot arm mounted in -
spection arc Panasonic G2 117,$] ()? model CCD
image sensor with 682(11) x 492(V) pixels. The
car nera head has amass o1 165 and is very corn-
pact.

h. The inspection targels often incorporate specular
materials and the image is usually contaminated
by highlights and shadows.

6. Frosion of surfaces due to at omic oxygen and ultra-
violet exposure can chiarige the reflectivity of the
surface thereby increasing the likelihood of fal se
tirgpers.

7. The ohjects themnselves have comn-
plex 3-dimensional shapes and do not present a
flat target for casy imaging, thereby requiring the
developinent of compensation methods to remove

distortions.

8. A variety of ohject and flaw types must be accon-
modated.

9. Slight positioning errors inthe robot arin carrying
the imaging platform results in iimprecise position-
ing of the camcras with respect to the target.

3

10. Repeatedly starting and stopping a robol arm to
t ake iimages could result inunnecessary power cm-
sumption, excessive operational time due to the
setthng time of the arm, and inercased distur-
bances induced onto the spacecraft structure. It
therefore becomes desirable to performing the in-
SPCC tion from a continually moving sensor plat-
form, with the attendant problems of motion blur
and increased imprecision in platform positioning,

3 1 mage ifferencing For
Change 1 detection

T'he baseline systein utilizes an lnage comparison
method that checks for differences hetween an earlier
reference image of the unflawed objeet with a later in-
spection image of the object to detect and localize pos
sible flaw regions. Computer controlled illuminators
arcused 1o campensate for variability in ainbient light-
ing which would otherwise give rise to diflerent shad-
ing, highlighting and shadowing patterns in the refer-
e¢nce and mspection nnages. Thetechnique Lakes two
nmages cach for the reference and inspection himages,
the first illominated only with the ambicnt light and
the second illuminated with the ambient Jight as well
asthe controlled Muminators. The information in the
first image is subtracted from that in the sccond giving
rise (o acompensated image that appears as if il were
taken with the controlled lights alone in the presence
of no ambient illumination, with however a halvit g of
the S/N ratio.

In order for the subtraction results to be valid, the
sensor response to the illumination must be lincar. The
CCD response is cahibrated and a compensation tal)le
i s used to convert the normal square-root shaped re-
sponse to a lincar one. If strobe illumination is uti-
lized, then the 2
allows one to perform intra-frame subtraction to ob-
tain an ambicnt compensated (but with Jower vertical
resolution) hnage. This is preferable whicn the cam-
era platforin is inmotion siuce it avoids mariy of the
misregist ration problemns between  the ambient lit and
ambient plus controlled lit images.

Thie comparison of these compensated images s
muely easier thaty that of the uncompensated images
and can be implemented in the form of a simple sub-
traction. However, slight differences in camcera plat -
form locations used during thetaking of thereference
and inspection hnages result inmisregistration of the

1 interleaved fields of the camera

nnages and com plicates the inage comparison process



i.e. simplesubtraction will give rise toanumber of
“false ¢d ges” in the images. A variety of ways have been
I estipated for correcting this MIsTeg istration.  The
first. involves ideutify features in the 1¢ference nnage,
estinating their displacement in the fuspection nuage,
and computing a least square image Warhing transfori
to defori the tuspection nnage prior to performing the
subtraction. The sccond technique utilize the fourier
transforin of the row/colmnn sumn of the fimage pixel
data to estimate x-y misregistration and uses a shift op-
cration to displace the inspection image. Finally, mor-
phological erosion operations are used to remove “false
cdges” introduced due to any residual misregis tration.
This approach is however only useful if the flaw heing
sought does not get chiminated hy the morphological
operations,

The overall results of the differencing operations are
illustrated in a simple examiple shown in Iigure 1 where
a missing, screw on a radiator asse1bly is located by
comparing a reference and mspeelion ninages, The dif-
ferencing icthods runs on a real-time Datacube himage
processing hardware systemn.

4 Scale Space

I the design of telerobotic vision systeins two princi
pal factors demand careful consideration: Pirst there is
always a human-in-the-loop of operations. Second, the
human operated local site aud the remote inspection
site, where the robot operates, are physically separ ated
by large distances. The first factor calls for arobot vi

sion syst e design that incorporates the preprocessing
of hnages, for display to the remote human operator,
in such a manner as to highlight nmage features at “rel-
cvanl Scales>". T'hisrequirement sterns from the fa ot
that for a given ms)ection task only a lmited range
of imagescales arc relevaut 7] to human obscrvers,
For exarnple, if the task is to inspect a surface for “de-
fects” about one centimeter in diameter, presenting an
image of the seene witha field-of-view (FoV)that is
eit her too large (of the order of et ers) or t oo small
(of theorder of micrometers) will not provide any rel-
cvant immforimation to the human operator. The secord
factor calls for the eflicient representation of nages for
transmission over large distances.

With a view, to address hoththese factors andto
overcomie some of the iinage registration difliculties de-
scribed in the previous sections, a scale-sl)acc ['g ap
proach incorporating a pyramidal representation [4)
of images has been adopted in our work. The princi-

ples of the scale-sl)zice and pyramidal approaches will
be outlined next, followed by a detatled description of
our approach, including exainples Of our results.

Scale-s])ace is easily cxplainedintwo dimensions:
Onue dimension i this space is a spatial dimension, such
as the spatial distance between two edge-points. Thie
scconid (orthogona 1) dimension is scale - whichcan take
one of t wo scalar forins - tnner-scale or ouler-scale. Vi-
sual inforiation is constrained by the cholce of these
two scalar quantities. The inner-scale is determined by
theresolutionlimit of thesensor (Il1all-eye, camera)
andthc outer-scale is deterimined by theFoV of the sen -
sor. Human eyes, for exainple have about a 1 minute of
arc visual angle resolution and a 120 degree visual a -
gle horizontal ¥oV. Changing either one of these scales
by using a lens can drastically alter the visual inforima-
tion recorded and herice can alter the outcome of any
detectionand classification process. As thescale pa-
ramcter is incrcased the spatialdistance betweeni edges
decreases (since the edges blur) until finally at a par-
ticular scale the edges blur into one another. The locus
of the two edge points formed by varying the scale pa-
rameter is known (in recent machine vision rescarch)
to create a useful and robust feature signature.

The “pyramidal” approach [9] consists of systen iat-
ically generating decrcasing resolution represent at ions
of anoriginalitnage. Pyramids cati be generated by ei-
ther convolving Gaussian kernels, with increasing vari-
ances and support, withi the original hnage or by con -
volving a fixed Gaussian kernel with the original i
age first, and then with the resulting convolved
ages ‘The latter approach is adoptedin our work, with
a fixed separable b x b kernel being used. The Gau-
sian kernel adopted has binomial coeflicients along  a
separable direction given by L [1’41’5'14"]]. At the base
of such Gaussian pyramids is the orig mal image (de-
noted by Gy)audat its apex is a single-pixel image
((7,,)) which represents the “mean” brightness assoc -
ated with the entire original image. Every intermedi -
ate level in a Gaussian pyramd going from the base
upwards to the apex, contains mean-valu es of larger
and larger sub-regions of the original nnage. Typically
cach level in a Gaussian pyramid is decimated (by dis-
carding cvery othier row and colurin of the corvolved
image) and henee reduced 4 times in pixel-count he-
fore being stored. The rcason for this deciination is
that cach convolution introduces a reduction in high
spatial frequer tey content of the image and thus allows
image sub-sampling (or decimation) without much loss
of information.

W "hile Gaussian pyramids give noise reduced csti-



ates of theincanvalue associated with itmage sub-
regions, in formation pertaining to another important
the pixel infensity variance across an
image sub-region - is not directly given at any level of
the pyramid. Pixel intensity variance is iimportant be-

causeit is direct.fy relatedto the presence of edges,and
edges form the basis of spatial feature classification. In

ina pe statistic .

theory, one should directly use an edge detector (such
as a Laplacian or a Canny edge detector) at cach Ievel
ot the Gaussian pyramid to detect edges, instead o f
having to estimate edges fromintensity variances. But
edge detectors arcusually unstableinthe presence of
noise (I aplacian) or are optimal only with specific noise
statistics (Canny is optimalinthe presenceof Gaussian
noise). In addition edge detection is an added compu-
t ationaloverhead.

There is a close computat ional equivalent of the
Laplacian edge detector, which one can use in practice
to extract edges from Gaussian pyramids. This equiv-
alent to t he Laplacian oper ator is t he difference-of-
Gaussian (Do(3) opera tor. DoG operations are cflort -
lessly carried out using Gaussian pyramids by subtract -
ing successive levels of the Gaussianpyramid (prior to
decimation). Such pyramids are referred to as “Loapla
cian” pyramids and their ith level 1i s obtained nsing
the relationship: Li = [Gio y - Gil, where the tilde i s
uscd to indicate an undechimated nnage.

H 1 ’rocedure and Results

To perform the automated inspection task involving
image differencing for defect detectionand scale-space
pyramidal analsis for defect feature extraction, the fol-
lowing multiphase procedure is suggested: Pirst cre-
ate arcfercncc image database that can be queried us
ing, t he posit ional mformation of the robot cmmeras,
the sce ne lighting conditions and the date of image-
captute,  These reference tmages are obtained using
both the ambient and controlled ihuminators. Next
record images at the desired inspection sites and per-
formimage- differencing to detect changes inthe hnage-
content. Iinally perforina scale-sl)ace analysis of the
images at the desired regions of-in terest, and extract
features to beusedin defect classification. 'Fhe proce-
dure atinspection time is thus summnarized as follows:
(1) Capture tuspection iinages using ambient and con-
trolled illuiination. (2) Obtain the “diflerence image”
as follows: (2a)Firstereate acompensated reforv nee
image (Jt = J. - It,) and a compensated inspecltion
image (I =1, - 1,), where “R” denotes the refarcuce

images and “1” denotes inspection images. The sub-
seripts ‘(@ and “c.” denote lighting conditions ambient
arid ambicnt - controlled lighting, respectively. The
“hat” onRand 1 denotes compensation.  (2b) Next
subtract J¢ fromn ] to obtain the differcuce inage 1 )
of the desired inspection site.  (3) Yorm a Gaussian
pyramid [9] to represent a given image at a range of
resolutions (“irlller-scale”). (4) Giventhe physical size
of the defects heing searched for, select the most rele-
vant levels (scales) of the Gaussian pyramid. (b) Per-
forinimage differencing at the relevant scales. (6) Se-
lect candidate regions of-interest based 011 highlights
of the “differenceiimage”. (7) Elinmnnate those regions
which arc highlighted for extrancous reasons suclispee-
ularitics in the orig inal image or image misreg istration.
(8) Yor cach *(defect- region” identified, perform edge
detection and feature extraction. (9) Finally, for cachof
the defeets detected and identified, present the Innnan
operator with a probabilistic estiimate, based inforima-
tion forim a historical database, of the potential danger
p osed by the defect.

The application of the above procedure is illustrated
in the composite Figare 2 which utilizes a corsbina
tion of the differencing and scale-sllace approach to
findmicro meteroid damage to a rlwe-kill, of atruss as
sembly mounted orbital replacement units (ORU). ‘The
compensated fuspection image is obtaiued from 1, (2¢)
and 1. (2d), and the compensated reference image i s
obtained from image £, (2a) and ¢, (2b). The diffe r-
ence tmage 1) (Fig. 27) contains the new information in
the compensated tuspection image with respect to the
compensated referen ce image. Unlike the nnages in 1
we have dcliberately used an incorrectly linearized CCI
sensor, and have notl corrected for wmisregistralion n
order to demonstrate the robustness of the scale space
flaw recognition approach. The new information in im
age 1) thus comes fromnot only diwnage on the surface
but alsa from image mis-registr ations and poorly com
pensated specu lar highlights.

The “spurious” highlights have e filtered out One
nicthod that was app lied to deal with this p roblems
was to examine the pixel intensity profiles of the var-
ious regrous of the diflerence hnage. Figure 3a shows
profiles of a specular point {Fig. 3h), a surface de-
feet (Pig.3c) and a region of misregist ration (Fig. 3d).
Notice that the profile of the defect has only positive
differences, whereas the profiles of the specular point
and the misregistered region have both positive and
negative differences. Figure 2f snows a smallregion of
2cin greater detail. 'Fhis details shown the nature the
surface defects under serutiny - a spotted collection of



bright spots together with a relatively large fractal like
region in the lower right of the image. This iinage cor-
responds to a phiysical outer- scale (FoV)of about 2
x 2cm. If theinspection task is for lem sized fea-
tures, then it is important to emphasize those spat ial
frequencies in the original difference image that emn-
phazise objects of Tem sire. To accomplish this end,
the difference image 12 (Fig. 2¢) is represented in a
Gaussian pyramid, containing successively low-rasscd
version of 1), This is shown in Figures 2g-1. The im-
age with the inner-scale miost distin ctly displaying Tern
sized features is shown in Figure 2h. On cither sides of
this nmage fire a higher frequency content version (Fig.
2p) and a lower frequencey version (Fig. 21). W Thile
the physical dimmension of the image D is of the or-
der of 250K pixels, the dimensions of the image with
therclevent scale (Mg, 211) is only of the order of 10K.
Clearly showing about a 25 fold deerease in the amount
of processing, required,

Figure 4 shows theresult of performing a Canny edge
detection on images at the three desirable scales cor-
responding, to hmages in Figures 2g-1. For cach of the
edges detected and shown in the form of rectangular
boxes in the zoomed Jinage seen in the sccond col
ulnn, a set of features such as compactness, clongation,
centroidlocation, ratios of perimmenter-to bounding box
size have heen extracted. These feature will form in-
puts to future pattern classifi cation schiemes. 'The his
togramns shiown on the right columns of the Figure 4
show thennmber of pixels required to represent the dis
played boxed images. The top histograms shows that
in picking the defects about 41000 pixels arc processed.
The center histogramshows that about 1400 pixelsare
processed. The hottom histogram shiows that if the
taskwas ¢ o detect 1 ocin sized blob hike feat ures whieh
take the form of “hook” like features, then just about
200 pixcels arc required.
crency of scale-space processing,.

This demonstrates the efl -

6 Future Work

Flaw classifi cation algorithms for specific flaw lypes are
being investigated as well as the implementation of the
scale-space flaw clas sifier on t he real- t iinesystemn. A
more sophisticated statistical approach is being inves
tigated to compare “before” and “after” hmages hased
011 certainideas frominvariant image perception. A &
1Y smoothing algorithin is being developed will be used
to cornpensate for variations inohject shape and ex-
tract a surface texture/feature model which may thers
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be classified. Multispectral dat a in the forim of color
and 1R is also being incorporated.

i’ Summary and conclusions

A comprchensive automated inspection system, involv-
ing telerobotic operations on remote space platforms
has heen deseribed. Special design considerations, tak-
ing into accou nt th e “humian- in-t he-loop” nature of
telerobotic operations, have been used in the develop

ment of thealgorithims for surface inspection. }oxan-
ples of applying the algorihlims to the task of auto

matically inspecting model orbit al-replaccien t-units,
have been provided.  Guidelines for future work has
NCri]suggested. The success of automated inspection
system design for telerobotic operat ions depends on a
quantitative understanding of the joint perforinance of
robotic sub systems and human-operators. Our results
provide some initial insight to such perfortance stud-
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Pigure 3: Flaw Profiles: The top row shows s specu-
fiewiooetcy
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lar highlight, the sccond row shows a relevant defect

{(with positive histograin) and the bottom row shows a
registration induced highlight.
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Figure 1: Flaw Detection by Iinage Differencing: The
finaliimage subtraction after correction for registration
crrors reveals theinissing screw




