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We have developed a technique for image analysis, representation, and decomposition.

This technique was motivated by Stephanc  Mallat’s matching-pursuit algorithm. We’ve

altered and simplified the mechanics of his algorithm to enable an extremely fast

implementation via optical processing. Initial computer simulations show that our algorithm

is capable of decomposing and representing a 2-D image as a linear combination of basis

images with both high speed and high fidelity.
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I. introduction

The matching-pursuit algorithm developed by Stephane Mall at [1] expresses any signal as a

linear sum of waveforms from a highly redundant dictionary of functions. Because this

dictionary is highly redundant, expansions in terms of this basis aren’t unique. The

waveforms in the dictionary are chosen tc} best match the signal structures. Because, the

matching pursuit is a greedy algorithm, basis elements with very large correlations to the

data have the largest effect on the expansions. This tends to spread out noise (and other

signal elements differing from the dictionary elements) among several basis elements,

diluting its impact on the representation.

Mallat demonstrates this favorable effect on noise with a matching pursuit representation

(using a dictionary made with the Gabor  family of wavelets) of a sound signal to which

Gaussian white noise has been added with a signal to noise ratio of 1 db. The white noise

is spread throughout the time-frequency display of the representation and this display

retains most of the features of the representation of the noiseless signal.

As a final example, Mallat builds a wavepacket dictionary with the Daubechies  6 quadrature

mirror filters. He compares a matching pursuit with the best basis algorithm of Coifman

and Wikerhauser  that selects an “optimal” orthonormal  basis within the wavepacket

dictionary. Coifman  and Wikerhauser’s  algorithm finds an orthonormal  basis

.{gY,: n = 1... N} within the dictionary that minimizes the entropy

minimizing over all signal components in the dictionary.

Both algorithms are applied to a sound signal composed of chirps and a variety of

waveforms of different time-frequency Idealizations. The time-frequency display of the

representation found by the matching pursuit displays clear similarities to that of the

original sound signal. The time-frequency display of the representation found by Coifman

and Wikerhauser’s  algorithm shows little resemblance to that of the original signal. The

global optimization of the Coifman and Wikerhauser  algorithm is not well adapted to the

wide range of local structures appearing in the signal. For such signals, a matching pursuit

is superior to global optimization of basis.
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Before an overview of Mallat’s  matching pursuit algorithm, we give some basic notation:

The space Z2(R2) is the Hilbcrt space of ccmplex valued functions such that

llfll’ = 
f’:” j:-lf(x,Y)pW <-

The inner product of ~and  g in L2(R2 ) is defined by

(1)

(2)

where ~ is the complex conjugate of g.

Basically, a matching pursuit works like this: Dictionary elements with unit norm are

chosen, To approximate a function f in 2? (R2 ), the dictionary element gl with the greatest

amplitude inner product with f is found. The orthogonal projection of this dictionary

element onto f is subtracted from f to give a residue RI(f), where

The algorithm continues by decomposing the. residue, RI(f) to get

%(f) = f – (f ?gl )a – (f A’2)g2

and, in general,

Rn(f)  = f - :(f ,gi)gi
i=]

(3)

(4)

(5)
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As the residues’ norm approaches O, the sum of the orthogonal projections comes closer

and closer to representing the input function exactly.

In reality, there area number of complications. First, the dictionary will, in practice, be so

large that computing the inner product of f with every dictionary element is infeasible or

impossible. Instead, a subdictionary is selected and inner products with each element in the

subdictionary  are computed. Newton’s method is used to get, from this data, an

approximation to the dictionary element with the largest inner product with f.

Second, after we find the dictionary element having the largest inner product with f

Mallat’s  algorithm uses what he calls a “backprojection”  to refine the coefficients in the

linear sum thus far. This makes the matching pursuit converge faster.

II. A matching pursuit algorithm for image representation

In the interests of speedy optical computation, neither of these complications used by Mallat

were utilized. Our problem differs from those Mallat attacks in several ways. We wish to

study images, not waveforms. Thus, our targets will not, in general, be well localized in

frequency. We wish to recognize certain target shapes in our images, not frequencies.

Moreover, our images will be positive functions representing light intensity, not zero-mean

waveforms. This makes a wavelet basis or Fourier basis not as well suited to representing

our images as are functions more like the targets we wish to recognize. We wish to choose

dictionary elements similar to our targets, and dissimilar to our decoys, if any. Here, by

similar and dissimilar we mean having, respectively, large and small inner products with

our dictionary elements.

4



Let’s assume wc are trying to discriminate or recognize targets where we know, to a good

approximation, their shapes (for example, printed letters of the alphabet, or airplane

silloulettes, or, as in our example, geometrical shapes). We form a dictionary, D, of the

targets we might find. Let g(x, y) be one such target. (In our example, it is an isosceles

triangle.) We expand our dictionary by including in it, all translations, rotations, and scales

of our target set. More precisely, For each scale s, angular orientation O, and translation

(%,Y,), we denote 7’= (S,~,Xo,Yo). we expand our dictionary, D, so that, if it includes

g(x,y)  then it includes all it’s scale, orientation, and translation variations:

;l?( xcos  O-ysin O-xO ycos  O-t-x sin6-y0
g+,y)  = — — . . - .9

)
(6)

s s

This dictionary is extremely redundant. We wish to represent any image f as a linear sum

Selecting only a finite number of indices in our

f = ~ar,gri. Denote the residue after n iterations as
i

(7)

sum gives an approximation

R,(f) = f- ~arigri . We wish
i=]

to

to

select our indices to approximate f efficiently. As with the matching pursuit, we do so by

selecting the gr, one at a time, choosing, at the (n+ 1)’ rh iteration, that gY most closely

representing some part of the residue R.(f) (i.e. this is a greedy algorithm). The details

appear below.

Even if we reduce the size of our dictionary to include only a few scales s and angular

orientations O, the expansions we form will still be meaningful. They will give

information on the location of target-like pieces in the image, f, and, if our dictionary isn’t

too small, still do a fairly good job of approximating f. Since our goal is target recogniticm
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and image analysis rather than approximating itnages,  wc accordingly reduce our dictionary

size in the interests of enabling fast, optical, computation of our results. Optically, we will

be able to do the calculations we need in parallel, using negligible amounts of time. MaUat

uses what he calls a backprojection to refine his approximations at every step (essentially,

approximating the residue as a linear sum of the dictionary elements in use so far, and

incorporating this sum into his approximation of ~). The time to do this is prohibitive

compared to the rest of the computation (all done optically). Since the backprojection  gains

us only a slight increase in accuracy for all this computation, we omit this calculation.

For our test of the method, we used a dictionary composed of only one target type (an

isosceles triangle with fixed apex angle) at 36 angular orientations (10 degree increments),

and arbitrary position. Our test image contains similar triangles (slightly different in size

than our dictionary elements), and, a circle.

Since our dictionary elements are positive functions, choosing the dictionary element with

largest inner product with f (as in the matching pursuit) merely selects the largest brightest

object in our image as the position, (xO, yO ), of the chosen dictionary element. We’d like to

chose the position and angular orientation of the dictiona~  elements we use in our sum

based upon the resemblance of the dictionary elements to parts of our image. For this

purpose, we chose the dictionary elements in our expansions in the following way.

For each scale, angular orientation, and target type in our dictionary, chose the

gY(~ty) G ~, with cen~oid  at the origin. Denote these by g, n = 1,2, . . . . Our test example

has 36 gfi. Now create the functions

(8)
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“1’hen

J:tiJ:.GX(XtY)~X~Y=O (9)

If gn is a binary function, then the inner product of a binary image against Gn will have

maximum value if the image matches g. exactly. Any scaling or rotation of the target image

will reduce this inner product.

To chose the next gr in our expansion of the image, we correlate the residue against all the

G, formed as above. These correlations can be done instantly and in parallel using optics.’

If Cm gives us the largest (in absolute value) correlation peak, then the corresponding g~

translated to the position of the peak gives us the next g~ in the expansion. The amplitude

of the peak is the coefficient, ar of gy in the expansion.

At some point, the L2-norrn  of the residue will increase after an iteration (unless c)ur

dictiontuy is large enough to represent f exactly). We halt the expansion when the norm

of the residue becomes small or when norm of the residue increases (else we might have

the norm oscillate. forever without convergin~  to O).

Our results show an amazingly close representation of our original image, especially

considering how far from complete is our dictionary and how little the dictionary elements

(triangles) resemble one of the objects (a circle). Pieces of our image that resemble our

dictionary elements are easily found by the large coefficients in the expansion obtained,

illustrating the usefulness of this technique for automatic target recognition.

III. Feasibility demonstration via computer simulation
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To evaluate the performance of the matching pursuit image representation algorithm, we

have perform~  a computer simulation. Successful decomposition of an input image into a

linear combination of elements from a limited dictionary has been completed. The results

are shown in Figure 1. Figure 1 a shows an input image that consists many triangles with

varied orientations and positions and a circle. The progress results in decomposing, this

input into a sum of selected dictionary elements are shown in Figures 1 b through lj. The

dictionary elements are triangles that are very close in size and shape to those appearing in

the input  image. Figures 1 b and 1 c show one of these dictionary elements and the

corresponding wavelet-like counterpart, respectively. There are a total of 36 such triangles

contained in the dictionary, each one is of the same size with 10 degree increments of

orientation. After each iteration of our algorithm, our linear sum (of triangles) contains one

more term and the residue left after subtraction of this sum from our input image has

smaller norm. Figures Id through 1 i show the residue after the first, second, seventh,

tenth, fourteenth, and the twenty-second iterations. A table of data, as shown in Table I,

represents the progress of our algorithm in decomposing our example image as a linear sum

of dictionary elements which take the fom~ of isosceles triangles (as shown in figures 1 b

and lc). It gives the orientation, spatial address, and coefficient in the linear sutn for the

dictionary elements used to represent the example image. The original image’s amplitude is

255 and its size is 512 x 512 pixels. Location is in pixels (across, down) from the upper

left corner. Norm is the L-squared norm of the error in the approximation. We stop at the

22nd iteration because the 23rd increases t}m norm. Note that the coefficients associated

with the first nine dictionary elements chosen are very large, close to the brightness of the

input image (i.e. 255). These are the coefficients for the terms representing the triangle in

the example image. The rest of the iterations of the algorithm are used to approximate the

circle or to refine the approximations to the triangles in the input (since the dictionary

triangles are slightly smaller than the input image triangles). One can see that the

coefficients associated with these dictionary elements are much smaller than those
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associated with the first nine, illustrating the way signal elements not resembling the

dictionary elements have their infom~ation  diluted among several dictiona~  elements. The

last image (Figure lj) shows the linear sum of dictionary elements representing our input

image. Though close to the input, the representation could be further improved by utilizing

a larger set of redundant (or even a complete) dictionary.

111. Optical Implementation

The matching pursuit algorithm for image representation described in Section 2 requires

iterative use of several basic operations: 1) 2-D adaptive wavelet transforms; 2) peak

detection for those transforms; and 3) intensity modulations of the dictionary element

images and their subsequent subtractions from the input. Optical processing systems can

perform all three operations, greatly reducing processing time over computer

implementations.

We have developed an innovative optical processing architecture, as shown in Figure 2,

that is capable of performing multichannel parallel wavelet transfom~s  and peak detections,

This system consists of an spatial light modulator, e-beam replication optics, a Fourier

transform lens, a holographic wavelet filter array, an inverse Fourier transform Ienslet

array, and an array of interconnected 2-D peak-detection optoelectronic photodetector

chips. In order to identify the dictionary element wavelet that would produce the maximum

wavelet  transfoml  peak against the input image, an exhaustive search has to be conducted.

First, all wavelet elements in the dictionary are arranged in a 2-D Fourier hologram array of

filters. Second, the input image is replicated by e-beam optics and each copy is then Fourier

transformed to form a 2-D Fourier spectrum array which is passed through the array of

wavelet  filters. A lenslet array performs inverse Fourier transforms of the outputs from

each of the wavelet filters, producing the corresponding wavelet  transforms. These wavelet
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transforms are spatially separated each other and input to an array of 2-D peak-detection

chips, one chip for each transform. A common thresholding signal is sent to each of these

chips though interconnecting bus circuitry. Each peak detector outputs the locations of all

pixels in its input image with intensities above the threshold level, The outputs of all of the

peak detector chips is simultaneously monitored. The threshold level increases until the

brightest of the peaks found by the photodetectors is identified. This peak’s value,

location, and corresponding wavelet are recorded for use in the subsequent operations.

The dictionary element image, associated with the identified wavelet,  is then multiplied by

the wavelet  transform peak value (i.e. intensity modulation), recentered at the address

identified by the peak detection chip, and subtracted from the input image . Ile remaining

residue image is then fed back into the parallel optical wavelet processor for the next

iteration. The iterations continue until a zero output (i.e. residue image) is obtained or until

an iteration of the process increases the energy of the residue image (this increase in energy

represents a decrease in the accuracy of the representation).

Intensity modulation and image subtmction  can be implemented through optical processing.

However implementing these operations with optical processing instead of digital

processing gains a much lower increase in speed than that gained through optical

implementations of the computationally  expensive wavelet  transforms and peak detections.

We have

network

developed a multichannel-correlator-based  neocognitron-type  optical neural

and have demonstrated its applicability to multiclass  target recognition and

tracking [2]. We also have recently shown this architecture to be particularly suitable for

parallel wavelet mansform  processing [3]. During the course of our research, a 32x 32 and

a 64 x 64 thresholding  photodetector chip has been designed, built, and tested at JPL [4].

Figure 3 shows the system block diagram of this chip. Each pixel of this photodetector
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array consists of a phototransistor detector and electronic processing circuitry that enables

direct comparison of the detected light level with a preset threshold level. The dectector

outputs the addresses of all those pixels with intensities exceeding the threshold level. This

JPL photodetector chip has a 500 frame/see speed, more than an order of magnitude faster

than commercially available CCD arrays.

We have also performed experiments to investigate a technique for synthesizing a ternary-

valued wavelet  filter by using a liquid crystal television spatial light modulator

(LCIWSLM).  Our results are shown in Figure 4. A ternary-valued triangular wavelet,

similar to those used in our computer simulation, is shown in figure 4a. The white, black,

and gray areas have -I-1, -1, and O transmission respective] y. The optical Fourier transform

of such a wavelet,  written into a LCTVSLM operated in a ternary-value mode, is shown in

Figure 4b. Computer simulated results are shown in Figure 4C for comparison. The

accuracy of this optical synthesis technique is demonstrated by the close resemblance of the

results in figures 4b and 4c. The opaque center of the Fourier spectrum of this wavelet

demonstrates the wavelet’s zero-mean characteristics.

IV. Summary

We have presented an innovative matching pursuit algorithm, for image decomposition and

representation. This algorithm is motivated by that described by Mallat  [1] with several

major modifications to enable the its extension from 1-D time-frequency representations to

2-D image representations. We have demonstrated the effectiveness of this algorithm with a

computer simulation. We have proposed an optical implementation that will increase

processing speed by several orders of magnitude through massive parallel processing. We

have also presented some preliminary optical experimental results. Full-scale laboratory

investigation is currently underway at JPL. The resulting system, upon completion, could
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prove very useful for real-time image representation as well as for pattern recognition

applications.
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Figure Captions:

Figure 1.

Computer simulation results demonstmting image representation using a matching pursuit

algorithm.

(a) input image; (b) an example trinagular-shaped  dictionary element; (c) the corresponding

wavelet element; (d) residue image after the first iteration; (e) residue image after the second

iteration; (f) residue image after the seventh iteration; (g) residue image after the tenth

iteration; (h) residue image after the fourteenth iteration; (i) residue image after the twenty-

second iteration; and (j) the representattion of the input image as a linear sum of the

triangular dictionary element images after the twenty-two iterations - demonstrating close

resemblance to that of the input shown in 1a).

Figure 2,

A multichannel optical wavelet processor for the computation of image representation using

a matching pursuit algorithm.

Figure 3.

System functional diagram of a JPL developed 32 x 32 photodetector array for peak

detection.

Figure 4.

Experimental results showing optical synthesis of ternary-valued wavelet.

(a) A ternary-valued triangular wavelet: the white, black, and gray areas possess +1, -1,

and O transmissions respectively;

(b) Optical Fourier transform of the input wavelet  synthesized with a LCTVSLM;

(c) Computed Fcmrier  transform of the input wavelet.
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‘I’able I.

data showing progress of the matching pursuit algoritm in image decomposition

Iteation #

:

:
5

;

;
10
11 .
12
13
14
15
16
17
18
19
20
21
2’2
23

Angular
Orientation

30
0

180
1:8

10

32:
2 2 0
190
lgo
180
20

2%
350go
310
230
270
310
350
180

Coefficients

238.4
226.3
217.2.
234.7
235.1
230:7
208.3
198.2
196.3
131.5
127.7
120.9
128.8
113.2
91.8
90.8
72.8
73.0
73,9
68.9
70.9
70.5
57.8

Spatial
Address

(396, 410)
( 69, 276)
(204, 365)
(188, 119)
(344, 309)
(379, 157)
(430, 263)
( 71,403)
(280, 248)
(1 42, 240)
(167, 230)
(1 94, 239)
(161, 261)
(181 , 252)
(191, 232)
(139, 249)
( 166, 270)
( 70, 401)
(280, 251)
(1 57, 250)
(161, 218)
(430, 265)
(206, 368)

Norm

29558
28539
27494
26222
24880
23487
22155
20820
19407
18298
16691
15282
13967
12871
12210
11873
11574
11373
11140
10986
10860
10705
10705
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