Two Software Reliability Tools - a Demonstration

Allen P. Nikora
Jet Propulsion Laboratory,
California Institute of Technology
bnkuke@spal.jpl.nasa.gov

Michael R. Iyu
Bellcore
lyu@bellcore.com

William H. Farr
Naval Surface Warfare Center
wfarr@relay.nswc.navy.mil

Patrick Carnes
AYOTFC/SAS
p.carnes@fotec2.af.mil

Two software reliability modeling tools have recently become available. One of these tools is CASRP (Computer-Aided Software Reliability Estimation). CASRP is designed to address the case of use issues that make some currently available tools difficult for the non-specialist to use. Specifically, the principal outputs of some tools are model parameter estimates, which can be difficult for non-specialists to interpret. In CASRP, the primary way in which modeling results are presented is as high-resolution plots. After one or more models have been executed, the results for each model are drawn in the same graphical display window. Users can manipulate this window's controls to display the results in a variety of ways. Statistical evaluations of the models, such as model hits and trend, may also be graphically displayed. Modeling results can also be shown in a tabular form and saved as an ASCII text file that can be imported into a statistical modeling package for further analysis. CASRP also incorporates our earlier findings that prediction accuracy may be increased by combining the results of several models into a single forecast on by allowing users to define their own combinations and record them as part of the tool's configuration. Once combination models have been defined, the steps required to execute them are no different than executing a simple model.

To simplify the operation of the tool, CASRP's command interface is menu-driven. Selective enabling and disabling of menu options guides users through the selection of a set of failure data and execution of a model. Having the commands appear on pull-down
menus frees users from having to learn a new command language. The menu systems also makes it easy for users to easily navigate through the command hierarchy.

The second tool is version 5 of SMFRF (Statistical Modeling and Estimation of Reliability Functions for Software), developed at the Naval Surface Warfare Center. This version has the following enhancements to the functionality of version 4:

1. Implementation of the Jelinski-Moranda model.
2. Selection of the optimal starting point for the Schneidewind model.
3. Implementation of four statistical methods for determining the applicability of models. These are frequentist likelihood, bias, bias trend, anti noise. Models can be ranked with respect to one or more of these criteria.

CASRF and SMFRF use the same library of statistical modeling routines to estimate software reliability. CASRF provides a wider variety of plots than does SMFRF, but the resolution of CASRF's plots is at the pixel level rather than the character level. However, SMFRF uses more of the capabilities of the modeling libraries than does CASRF. For instance, SMFRF makes use of the calendar-time component for the NASA Basic model, which CASRF does not use. SMFRF also computes the optimal starting point for the Schneidewind model, which the current version CASRF does not do.

Acknowledgements

Part of the work described in this abstract was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a NASA Contract. The implementation and maintenance of CASRF is being supported by the Air Force Operational Test and Evaluation Center under Task (ALTIC) RF-182, Amendment 655, Proposal 80-3417.