Microwave-Optical double resonance spectroscopy measurements of the ground state $^{2}S_{1/2}(F=0,m_{F}=0)$ to $^{2}S_{1/2}(F=1,m_{F}=\mp 1/2)\pm 0$ hyperfine transition of 199Hg ions [1] are used to control a local oscillator providing the most stable atomic frequency standard for averaging times longer than 20,000 seconds. Mercury ions are confined in a linear ion trap (1.1T) [2] and collisions with a helium buffer gas cool the ions to near room temperature [3]. Atomic state selection is accomplished by optical pumping using 194nm light from a 201Hg lamp and the 201Hg atomic transition is interrogated using Ramsey successive oscillatory fields[4]. With interrogation times of 16 seconds a stability of $7 \times 10^{-14}/\sqrt{T}$ is achieved (Fig.1)[5].

Figure 1: (a) Linear Ion Trap. (b) Ten day stability comparison of 1.1T S-2 and the H-maser SAO-26. The dashed line represents a performance of $7 \times 10^{-14}/\sqrt{T}$. Also shown for reference is the stability comparison of two 1.1-masers, SAO-26 and DSN-2 over the same time interval.

Because of the large atomic mass and ground state hyperfine splitting, mercury ions are less susceptible to magnetic and thermal effects than hydrogen or cesium. For good S/N, approximately 107 ions are confined in the trap. Remaining sensitivity to second order Doppler shifts due to thermal and driven motion from the rf trapping field is the tradeoff for the inherent simplicity in a lamp based, high S/N (i.e. large ion cloud), room temperature system. With the addition of a 194nm laser, laser cooling and interrogation on only a few ions would reduce sensitivity to second order Doppler shifts [6].

Stability comparisons are currently underway between two JPL lamp based 199Hg$^+$ trapped ion research standards J.JTS-1 and J.JTS-2. In the present configuration, each standard steers a separate VIG-11 hydrogen maser receiver [7] phase locked to a common hydrogen maser oscillator. In a preliminary 10 day measurement, the short term performance of both standards is $<_{5}(\tau)=1 \times 10^{-13}/\sqrt{T}$ [5]. Figure 2 shows the fractional frequency of the JPL standard J.JTS-2 compared against our first research standard J.JTS-1.
The deviation from the $1 \times 10^{-12}/\tau^{1/2}$ slope between 30,000 and 60,000 is due to limited stability of the control electronics in 1 ITS-1. The long term differential drift between the two 119Ig$^+$ standards is measured to be less than $5 \times 10^{-16}/\text{day}$. Also shown is a 30 day stability comparison of 1 ITS-2 against the J]-maser SAO-26 [7]. Beyond 20,000 seconds the measurement is limited by the $4 \times 10^{-15}/\text{day}$ drift of the hydrogen maser.

The $^{1}{^1}{^1}$S-2/1 ITS-1 comparison is expected to reach 10^{-16} in 5×10s seconds when electronic upgrading is completed. In the present ion trap standards, the stability floor is most sensitive to ion number and temperature fluctuations through the second order Doppler shift [5]. A new extended linear ion trap configuration (1IT1H) which separates the ion loading and state selection ion region from the microwave interrogation region is currently under development [8]. This configuration should eliminate most of the remaining sensitivity to ion number fluctuations.

![Graph showing frequency stability comparison](image)

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.