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Abstract

Simple Skeleton Particle-in-Cell codes designed for massively parallel computers
are described. These codes are used to develop new algorithms and evaluate new
parallel computers. Benchmark results from a number of MIMD parallel computers are
presented.



I. Introduction

One, two and three dimensional skeleton patrticle-in-cell codes have been
developed for parallel computers to provide a testbed where new algorithms can be
developed and tested and new computer architectures can be evaluated. These
codes have been deliberately kept to a minimum, but they include all the essential
pieces for which algorithms need to be developed. Thus the codes advance the
particles, deposit their charge, and solve for the fields. Only one particle species is
kept and the only diagnostic used is the patrticle and field energies. The codes use the
electrostatic approximation and magnetic fields are neglected. Boundary conditions
are periodic. The lessons learned from the skeleton codes are being incorporated into
a more elaborate gyrokinetic particle code being developed as part of the Numerical
Tokamak Project [1-2], a High Performance Computing and Communications (HPCC)
project sponsored by the U. S. Dept. of Energy (DOE). _

Particle-in-cell codes have been used in the plasma physics community for several
decades and there are a number of excellent textbooks available on the subject [3-4].
The general idea is the particles interact with electromagnetic fields created by
themselves as well as those externally imposed. Thus the code has two distinct parts
and data structures: In one part, particles interact with fields and this interaction is
described by Newton's law:

dv;(t)/dt = (g;/m;)*E(x;(t))

dx;(t)/dt = v;(t)
where the subscript i refers to the ith particle. The algorithm generally used to solve
this set of equations is a time-centered leap frog scheme:

vi(t+dt/2) = vj(t - dv/2) + (q;/m;)*E(x;(t))
xi(t+dt) = Xi(t) + vi(t+dt/2)

where the electric field at the particle’s position E(x;), is found by interpolation from

electric fields previously calculated on a grid. The interpolation is a gather operation
which involves indirect addressing and a substantial part of the computation time is
spent here. Generally, linear interpolation is used, but in the skeleton codes, quadratic
spline functions are used for interpolation because they have an operation count
similar to that needed in the gyrokinetic code.

In the second part of the code, the fields created by the particles must be found. In
the skeleton codes, only Poisson’s equation is used:

VeE = 4np(x)

This equation is solved on a grid, using Fourier transform methods. Typically, the time
for the field solver is not large. The source term p(x) is calculated from the particle
position by an inverse interpolation:

p(x) = £ qiS(x - Xi),

where S is a particle shape function. This is a scatter operation which also involves



indirect addressing and consumes a substantial part of time in the calculation.
Il. Description of Parallel Codes

Since the dominant part of the calculation in a particle code involves interpolation
between patticles and grids, it is important for a parallel computer that these two data
structures reside on the same processor. The algorithm used to achieve this is called
GCPIC and is described in P. C. Liewer and V. K. Decyk [5]. The essential idea is that
different processors are assigned different regions of space and particles are assigned
to processors according to the spatial region they are in. As particles move from one
region to another, they are moved to the processor which is associated with the new
region. During the interpolation particles must also access neighboring regions of
space, so that extra guard cells are kept in each processor which are then combined
or replicated as needed after the particles are processed. The passing of particles
from one processor is performed by a particle manager subroutine. The passing of
field data between guard cells in performed by a field manager subroutine.

The field solver uses Fourier transform methods. Therefore a parallel real-to-
complex FFT was developed. For 2D and 3D data, a transpose method is used. The
2D case is described in R. Ferraro et. al. [6). The field data is first distributed in the y
coordinate and transformed in x (since each processor has all the x data for some y).
Then the data is transposed so that the x coordinate is distributed across processors
and transformed in y. The 3D case is similar, and is described in E. Huang et. al. [7].
In this case the data is first distributed across z, transformed in x and y, then
transposed so that it is distributed across x and transformed in z. The maximum
number of processors which can be used is limited by the maximum number of grid
points in any one coordinate, but this is not a severe constraint at present since the
Numerical Tokamak is designed for systems where this number is about 512. The
transpose of data is performed by a transpose subroutine.

In the 1D code, the FFT is fully distributed, as described in V. K. Decyk, et. al. [8].
Two and three dimensional FFTs can also used this algorithm, but they are always
slower than the transpose method in those cases when the transpose method can be
used. To make the 2D and 3D FFTs more flexible, they have been designed so that if
invoked with more processors than grids, they will only use only as many processors
as grids. This allows the possibility to use more processors in pushing particles (which
is the dominant part of the calculation) and fewer during the field solve.

During the transpose, each processor sends one piece of data to every other
processor. There are a number of ways to accomplish this, but the safest way is to
always send one message, receive one message, and so on. Flooding the computer
with many messages then receiving them tends to overflow system resources and is
not always reliable.

The skeleton codes always use uniform one dimensional partitions. Although
algorithms for non-uniform[6) and multi-dimensional partitions[9] have been developed .
and will probably be necessary for the Numerical Tokamak, they have not been
included in keeping to the spirit of simplicity of the skeleton codes.

The structure of the main loop of the skeleton code is illustrated in Figure 1 and is
summarized as follows:

1. Particles coordinates are updated by an acceleration subroutine
2. Particles are moved to neighboring processors by a particle manager subroutine.



3. Particle charge is deposited on the grid, by the deposit subroutine.

4. Guard celis are combined by a field manager subroutine.

5. Real-to-complex FFT of charge density is performed by FFT subroutine.
6. Electric fields are found in Fourier space by a Poisson solver subroutine.
7. Complex-to-real FFT of electric field is performed by FFT subroutine.

8. Electric field is distributed to guard cells by a field manager subroutine.

This structure has the beneficial feature that the physics modules, items 1, 3, and 6
contain no communication calls (except for a single call to sum energies across
processors). Thus they can easily be modified by physicists who do not have special
knowledge of parallel computing or message passing. The modules which do
communication, items 2, 3, and 8 do not perform any calculation, just management of
data, and can be used by physicists as black boxes, where only the input and output
must be understood. The FFT, items 5 and 7, are the usual sequential FFTs, with the
addition. of a single transpose subroutine embedded, which can also be used as a
blac(l; box. One could actually incorporate the field manager into the FFT, but this was
not done.

Since most message passing libraries are quite similar, it is a relatively simple
 matter to move from one distributed memory computer to another, by replacing the
message passing calls in the communications modules with new ones. This primarily
involves changing subroutine names and the order of the arguments. In a production
environment this would be done by a preprocessor, if a message passing standard
has not become widespread by them. The main exception to this simplicity is pvm,
which is a more primitive environment than the message passing environments
provided by all the other vendors. Specifically, pvm has no global operations, such as
global sums, no simple synchronization mechanisms, and nodes are addressed by
task identifiers (essentially network addresses). So a lot of missing pieces and
translations must be supplied by the user himself.

lil. Benchmark Results

The skeleton codes have been ported to a number of parallel MIMD computers and
-their performance tested. The process of porting the code to multiple platforms has
been useful in uncovering bugs and weaknesses in the code. The simplicity of the
skeleton codes has made this process less onerous.

All of the benchmarks were run in 64 bit precision and on the MIMD computers the
subroutines have been optimized for scaler processors. The default safe level of
optimization was used (usually -O). The total time reported excludes the initialization
time. This is because the initialization was not parallelized in order that all the
particles always have the same initial variables regardless of the number of
processors and therefore the answer (energy values) calculated was always the same.
This has proved useful in uncovering subtle bugs and compiler errors. Push time
reported includes particle acceleration, passing particles between processors, and
depositing the charge (items 1, 2, and 3 in the list above), for one particle for one time
step. The field time includes the remaining items (4-8) in the list above. Normally, the
field time is a small percent of the total time, but the transpose in the FFTs involves
substantial communication, so that if communication on the parallel system is slow,
this time would start to become significant.

In addition to the parallel benchmarks, a number of serial benchmarks were



performed for comparison. The code used on these machines was a simpler non-
parallel version. On the vector processors (Cray, NEC, and IBM ES/3000 computers),
all the important subroutines were vectorized, which meant primarily that special
versions of the charge deposition subroutine were used.

The physical problem being run is a beam-plasma instability, where 10% of the
electrons are streaming with a velocity five times the thermal velocity of the remaining
electrons. The problem is partitioned in a worst case scenario, that is, so that
streaming particles are moving normal to the pattition surfaces. This was done in
order to stress the computers. The particles bunch up during the peak of the instability,
so that some processors have more particles than others and the maximum load '
imbalance observed was about 10%.

The 2D benchmark problem uses 3,571,712 particles and a 128x256 mesh and
runs for 325 time steps. The raw benchmark results are summarized in Table | and
Figure 2. In Table I, Total Time = 3571712*325*Push Time + Field Time

The 3D benchmark problem uses 7,962,624 particles and a 64x32x128 mesh and
runs for 425 time steps. The raw benchmark results are summarized in Table Il and
Figure 3. In Table Il, Total Time = 7962624*425*Push Time + Field Time

IV. Comments on Specific Computers

- Intel IPSC/860. This machine is a hypercube topology, and has been around for
quite a while. It is very stable. The NX communication library was used. Although the
network speed is slower than on the Paragon, the hypercube topology means each
node has more connections and in some cases, such as the transpose, the IPSC/860
will perform better than the Paragon. This effect can be seen by comparing the field
time for the IPSC/860 and the Paragon in Table I. One observes that as the number of
~ processors increases, the field time for the IPSC/860 continues to improve, in contrast
to the Paragon, until the IPSC/860 is actually faster.

Intel Paragon. This machine has a 2D mesh topology, with a faster processor and
network speed than the IPSC/860. The operating system, OSF/1, is somewhat
unstable, however, and best results are obtained if the user access is controlled. The
NX communication library was used for the benchmarks, although pvm3 was tested
and found to give the same results as NX. In running pvm, only the host/node model is
recommended in order to avoid having compute processes runnlng on the service
pamtlon

Thinking Machine CM-5. This machine supports multiple programming models
but the best results were obtained using fortran 77 and the CMMD message passing
library. This mode of operation means that only the sparc processor was used in the
benchmark, and this processor is quite a bit slower than the RISC processors used by
the other MIMD computers benchmarked. With the 1d code, the other programming
models were also tried. A shared memory version written using global cmfortran [8],
which did not use domain decomposition, gave results that were about 3 times slower
than using fortran 77 with message passing. When cmfortran on a node is used
together with message passing, the vector processors can be used, which should be
more than 25 times faster than using the sparc processor alone. However, when this
was tried it was found that the results were actually slower than using the sparc
processor. Thus these alternate programming models on the CM-5 were abandoned



in favor of fortran 77 with message passing. On the small system tested (32
processors), the machine was very stable. It was not possible for the user to vary the
number of processors used by the code when a partition had been established at the
time the machine was configured.

IBM SP1. This is a relatively new machine which is in essence a collection of
RS/6000 workstations in a cabinet connected by ethernet as well as a high speed
switch. Multiple communication libraries are available. The MPL message passing
library was used in the benchmarks, running with the switch. MPL can also be used
with ethernet. In addition, pvm3 and pvm2.4 are supported. There are also
experimental versions of pvm available. In running pvm, both host/node and node
only programming models are supported. The alternate libraries were tested for
correctness, but not timed. Timings on this machine were obtained running stand
alone and measuring wall clock time. This was necessary because each node can be
running many Unix processes simultaneously by many users. Although only one user
can use the switch at a time, there is no control over how many users can be using
ethernet or running non-parallel jobs. Per processor, this machine gave the best
results for the push time, although not for the overall time. This is due to the relatively
slow performance in the field time, which is much more sensitive to communication
speeds than the push time.

Cray T3D. This machine is very new. It uses a 3D mesh topology and is designed to
support multiple programming models, but a distributed memory message passing
model is the only one currently implemented. A message passing library is available
based on pvm3 but with considerable extensions to make it easier to use. Except in
the initialization these extensions were not used in order to maintain portability.
Another nonportable feature was the use of 64 bit integer words. Per processor, this
machine gave the best total time. Although the push time was not quite as fast as the
IBM SP1, the field time performance was substantially better, indicating the T3D has
much better communication speeds. There was insufficient usable memory on the JPL
T3D to run the 3D benchmark.

V. Conclusions

Of the parallel computers the IBM SP1 and Cray T3D, the newest machines, give
the best performance per processor for PIC simulation. Of course, which gives the
best price performance depends on the price one can negotiate. The performance of
the SP1 begins to degrade more rapidly than the T3D as the number of processors
increases. The biggest disappointment is the poor performance of the cmfortran node
compiler on the CM-5. When used with message passing, this compiler produces
such poor code that the four vector processors actually run slower than a single sparc.
There is potentially great room for improvement here.
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Figure Captions
Figure 1. Structure of the main loop of the skeleton codes.

Figure 2. Total Time versus Number of Processors on Log-Log scale for various
machines for the 2D benchmark.

Figure 3. Total Time versus Number of Processors on Log-Log scale for various
machines for the 3D benchmark.



Table 1
2D Particle Benchmarks

——————— — ——— ———————_——— — — — o —— —— - o T~ T ————— ——

The following are times for a 2D particle simulation, using
3,571,712 particles and a 128x256 mesh for 325 time steps.
Parallel codes use Domain Decomposition.

Push Time is the time to update one particle’s position and
deposit its charge, for one time step. Total Time is the total
time for running the simulation minus the initialization time.
Field Time is time for solving for the fields, including FFTs.

Computer Push Time  Total Time Field

Time '

Cray C-90, 1 proc: 944 nsec. 1105.6 sec. 9.4 sec.
Cray Y-MP, 1 proc: 1937 nsec. 2264.9 sec. 16.4 sec.
Cray 2, 1 proc: 2650 nsec. 3107.8 sec. 31.2 sec.
IBM ES/9000, M900, 1 proc: 3428 nsec. 4017.4 sec. 38.1 sec.
IBM RS/6000, M580, 1 proc: 6197 nsec. 7255.4 sec. 61.8 sec.
Sun Sparcl000, 1 proc: 21641 nsec. 25299.7 sec. 178.5 sec,
Intel IPSC/860, 64 proc: : 362 nsec. 447.1 sec. 26.8 sec.
Intel IPSC/860, 32 proc: 702 nsec. 851.9 sec. 37.0 sec.
Intel IPSC/860, 16 proc: 1383 nsec. 1650.0 sec. 44.3 sec.
Intel IPSC/860, 8 proc: 2753 nsec. 3261.7 sec. 66.4 sec.
Intel Paragon XP/S, 64 proc: ..274 nsec. 348.2 sec. 29.9 sec.
Intel Paragon XP/S, 32 proc: 541 nsec. 659.2 sec. 31.6 sec.
Intel Paragon XP/S, 16 proc: 1099 nsec. 1304.4 sec. 29.2 sec.
Intel Paragon XP/S, 8 proc: 2235 nsec. 2640.9 sec. 46.0 sec.
IBM SP1, w/MPL, 32 proc: 188 nsec. 270.2 sec. 51.9 sec.
IBM SP1, w/MPL, 16 proc: 349 nsec. 422 .8 sec. 17.4 sec.
Cray T3D, w/PVM, 128 proc: 47 nsec. 73.5 sec. 19.3 sec.
Cray T3D, w/PVM, 64 proc: 98 nsec., 126.8 sec. 13.4 sec.
Cray T3D, w/PVM, 32 proc: 200 nsec. 241.9 sec. 10.1 sec.
Cray T3D, w/PVM, 16 proc: 411 nsec. 487.1 sec. 10.1 sec.
TMC CM-5, £77 w/CMMD, 32 proc: 1242 nsec. 1514.4 sec. 73.2 sec.
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Table 1

3D Particle Benchmarks

The following are times for a 3D particie simulation, using

7,962,624 particles and a 64x32x128 mesh for 425 time steps.

Parallel codes use Domain Decomposition.

Push Time is the time to update one particle’s position and
deposit its charge, for one time step. Total Time is the total

time for running the simulation minus the initialization time.
Field Time is time for solving for the fields,

Computer Push Tim
Time

NEC SX-3, 1 proc: 1966 nsec.
Cray C-90, 1 proc: 2388 nsec.
IBM ES/9000, M900, 1 proc: 20149 nsec.
Intel Paragon XP/S, 64 proc: 1072 nsec.
Intel Paragon XP/S, 32 proc: 1971 nsec.
IBM SP1l, w/MPL, 32 proc: 690 nsec.
IBRM SPl, w/MPL, 16 proc: 1363 nsec.

TMC CM-5, £77 w/CMMD, 32 proc: 5867 nsec.
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Total Time

6784.
8264.
68821.

3842.
6884.

2615,
4892.

20053.

secC.
secC.
secC.

secC.
secC.

secC.
secC.

secC.

131.
184.
633.

216.
211.

294,
280.

198.

including FFTs.
Field

secC.
secC.
secC.

secC.
secC.

secC.
secC.

secC.
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