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Abstract

In this report we consider a decision–making problem of selecting a strategy from a set of alternatives on
the basis of incomplete information (e.g., a finite number of observations); the system can, however, gather
additional information at some cost, Balancing the cost of acquiring additional information against the
expected utility of the information to be acquired is the central problem we address.

In our approach, the cost and utility of applying a particular strategy to a given problem are represented
as random variables from a parametric distribution, By observing the performance of each strategy on a
randomly selected sample of problems, we can use parameter estimation techniques to infer statistical
models of performance on the general population of problems. These models can then be used to estimate:
(1) the utility and cost of acquiring additional information; and (2) the desirability of selecting a particular
strategy from a set of choices.

The techniques we have developed have been applied to adaptive problem–solving, in which a decision–
making system automatically tunes various control parameters to improve performance. Empirical results
are presented that compare the effectiveness of the hypothesis evaluation techniques applied to speedup
learning for a NASA antenna scheduling application.



1. Introduction

In machine learning and basic decision making in AI, a system must often reason about alternative courses

of action in the absence of perfect information – frequently balancing the cost of acquiring additional infor-

mation against the expected utility of the information to be acquired. When one wishes some sort of statis-

tical guarantees on the (local) optimality of the choice and/or the guarantee of rationality, a statistical deci-

sion theoretic framework is useful. This problem of decision–making with incomplete information and

information costs can be analyzed in two parts:

A 1: How much information is enough? At what point do we have adequate information to se-
lect one of the alternatives?

A2: If one wishes to acquire more information, which information will allow us to make the
best possible decision at hand while minimizing information costs?

Possible solutions to this decision-making quandary depend on the context in which the decision is being

made. This paper focuses upon the decision–making problems involved in adaptive problem–solving.

Adaptive problem–solving occurs when a system has a number of control parameters which affect its per-

formance over a distribution of problems. When the system solves a problem with a given set of control

parameters, it produces a result which has a corresponding utility. The goal of adaptive problem–solving

is: given a problem distribution, find the setting of control parameters which maximizes the expected util-

ity of the result of applying the system to problems in the distribution.

Adaptive problem–solving is an important application for hypothesis evaluation techniques. Frequently,

while a general class of problems may be intractable, effective domain specific (e.g., heuristic) solution

strategies may exist. Unfortunately, determining these solution methods is a time consuming process

which requires significant knowledge about both the the application domain and problem–solver. Hypoth-

esis evaluation techniques offer significant promise in allowing an adaptive problem–solver to automati-

cally search the space of control strategies to find an effective solution strategy for a specific applications,

thus avoiding this bottleneck,

More rigorously, the adaptive problem–solving problem can be describes as follows. Given a flexible

performance element PE with control points CP1 ...CPn. where each control point CPi corresponds to a par-

ticular control decision and for which there is a set of alternative decision methods Mi,l ...Mi.k,’ a control

strategy is a selection of a specific method for every control point (e.g., STRAT = <MI ,@f2,fj,M3,1 ,...>).

A control strategy determines the overall behavior of the problem–solver. It may effect properties like

computational efficiency or the quality of its solutions. Let PE(STRAT) be the problem solver operating

under a particular control strategy. The function U(PE(STRAT), d) is a real valued utility function that

is a measure of the goodness of the behavior of the scheduler over problem d, The goal of learning can

1. Note that a methodmayconsistof smallerelementsso that a methodmaybe a set of controlrulesor a combination
“ of heuristics. Note also that a methodmay also involvereal–valuedparameters. Hence,the numberof methodsfor a con-

trol point may be infinite,and theremaybe an infinitenumberof strategies.



reexpressed as: given aproblenl distribution D, find STRATso astomaximize theexpected utility of

PE. Expected utility is defined formally as:

~ U(PE(STRAT),cf) X prot.mbi[ity(d)

dEl)

For example, in a planning system such as PRODIGY [Minton88], when planning to achieve a goal, con-

trol points would be: how to select an operator to use to achieve the goal; how to select variable bindings

to instantiate the operator; etc. A method for the operator choice control point might be a set of control

rules to determine which operators to use to achieve various goals plus a default operator choice method,

A strategy would be a set of control rules and default methods for every control point (e.g., one for operator

choice, one for binding choice, etc.). Utility might be defined as a function of the time to construct a plan,

cost to execute the plan, or some overall measure of the quality of the plan produced,

This paper describes the application of two hypothesis evaluation methods to adaptive problem–solving:

interval–based selection and expected loss selection. Specifically, our approach draws upon techniques

from statistics in the of area of parametric statistical models to model the uncertainty in utility estimates.

In parametric statistical models, one presumes that data is distributed according to some form of model

(e.g., the normal distribution, the poisson distribution, etc.). This distribution can be described in terms

of a fixed set of parameters (such as mean, variance, etc.). If one can infer the relevant parameters for the

distribution underlying the data (so–called parameter estimation), then because the uncertainty in utility

estimates is explicitly modelled in the statistics, two questions regarding utility can be answered: (1) which

alternative is likely to have the highest expected utility; and (2) how certain are we of this ranking of the

alternatives,

Of course, the accuracy of all of these estimates is dependent upon the goodness of fit of the parametric

model used to model the utility estimates. Generally, we use the normal (gaussian) distribution model as

our parametric model which, as shown by the Central Limit Theorem, is a good approximation to the un-

derlying distribution of many real–world problems.

The first method, called interval–based selection, involves quantifying the uncertainty in competing hy-

potheses by using the statistical confidence that one hypothesis is better than another hypothesis. In this

approach the system allocates examples to show that one hypothesis dominates all the other hypotheses

with the specified confidence. These methods also rely upon an indifference parameter – if two hypotheses

differ in performance by less than this amount, either is acceptable.2

The second method uses the decision theoretic concept of expected loss [Russell & Wefald 89, Russell

& Wefald 91], which measures the probability of making a less preferable decision weighted by the lost

utility with respect to the alternative choice. In the expected loss approach, the system acquires informa-

tion until the expected loss is reduced below some specified threshold. This approach has the added benefit

2. This formalismis analogousto the PAC[Valiant84]framework– “probably”“approximately”“correct”mapsonto
“probably”“closeto” “highestutility”.
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of not attempting to distinguish among two hypotheses with similar means and low variances (e.g., it rec-

ognizes indifference without a separate indifference parameter).

For both the interval-based and expected loss approaches, when selecting a best hypothesis, one must base

this selection upon comparisons of the utility of the “best” hypothesis to the other possible hypotheses,

Because there are multiple comparisons, the estimate for the overall error (or confidence) in a conclusion

of selection of a best hypothesis, is based upon the errors associated with multiple smaller conclusions.

For example, if we wish to show that H3 is the best choice among H 1, H2, H3, H4, and H5, in the dominan-

ce–indifference approach, we might show that H 1 and H3 are indifferent, that H3 dominates H2, H3 domi-

nates H4, and H3 dominates H5. Thus if we wish a confidence level of 9590, with a straight sum error

model and equal allocation of error, each of the individual hypotheses would need a 98.7590 confidence

level (since 4 x 1.25% = 5%).

The exact form of the error relationship between depends upon the particular error model used. However,

taking additional examples can have varying effect on the reduction of error in these smaller conclusions.

Also, there may be widely varying cost in applying additional examples to the various smaller conclusions.

Thus, in many cases, it may be desirable to allocate the error estimates unequally. While we have implem-

ented default strategies of equal allocation of errors, we have also developed a more sophisticated ap-

proach for allocating error levels to these smaller conclusions, In this approach, the system estimates the

marginal benefit and marginal cost of sampling to extract another data point to compare two competing

hypotheses. The marginal benefit is estimated by computing the decrease in the error estimate (or increase

in confidence estimate) due to acquiring another sample presuming that the statistical parameters remain

constant (e.g., in the case of the normal distribution, that the sample mean and variance do not change).

The marginal cost is estimated using estimated parameters on the cost distribution for the relevant hypothe-

ses, The system then allocates additional examples preferring the highest ratio of marginal benefit to mar-

ginal cost. We apply this strategy to both the interval-based and expected loss algorithms. Thus, in all,

there are four new algorithms, interval-based equal error allocation, interval-based unequal error alloca-

tion, expected loss equal allocation, and expected loss unequal allocation.

The rest of this report is organized as follows. Section 2 describes the general hypothesis evaluation prob-

lem and frames the problem as Statistical Parameter Estimation. Section 3 describes the confidence inter-

val approach and includes a discussions of it’s strengths and weaknesses. Section 4 describes the expected

loss approach and includes a discussion of its strengths and weaknesses. Section 5 describes and empirical

evaluation of these techniques using synthetic and real–world scheduling data. Section 7 summarizes the

principal points of this note.

2. The Hypothesis Evaluation Problem

We adopt a parametric statistical approach to the hypothesis evaluation problem. We begin by defining

the adaptive problem–solving version of the hypothesis evaluation problem more concretely. Typically

we have a set of problems D. Any particular problem d is selected from this set with probability PD(d).
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We also have available a set of k potential alternative strategies HI ...Hk. for solving problems. Each hy-

pothesis strategy Hi has associated with it a utility distribution Ui and a cost distribution Ci3 which are in-

duced by the probability distribution over D and the utility (or cost) of applying Hi to any particular prob-

lem.

Presumably the distributions Ui and Ci are unknown, However, the decision–making system can infer

information about these distributions by observing a strategy Hi’s behavior on problems drawn from D.

Thus, the system can choose from among the following actions:

1. acquire more information; this action has cost drawn from Ci and provides another example
from Ui; or

2. adopt a hypothesis strategy Hi.

Indeed the decision between 1 and 2 is exactly question A 1 from Section 1: “How much information is

enough? At what point do we have adequate information to select one of the alternatives?” If the system

decides to acquire more information, then question is exactly A2: “which information will facilitate mak-

ing the best possible decision at hand while minimizing information costs”

Our general approach to this problem consists of two parts: parameter estimation and hypothesis evalua-

tion, In parameter estimation the underlying distributions of utility and cost are assumed to be of a particu-

lar form (e.g., normal, student T, etc.) reducing the problem to one of estimating parameters such as the

mean and variance (for a normal distribution) from behavior on sample problems. In hypothesis evalua-

tion, decision rules (to answer questions Al and A2) are formulated based upon estimated parameters. ‘

As the result of applying these decision rules, the system may decide to gather additional information

(samples), in which case it faces the decision between options 1 and 2 again. This process continues until

option 2 is selected.

A common and reasonable assumption is to presume that the distribution of utility values and costs across

different problems are normally distributed (also called a gaussian distribution). From this we can con-

clude that the average of values drawn from these distribution, the sample mean, is normally distributed

about the true mean and confidence intervals regarding the true mean can be computed from the sample

mean, sample variance, and number of samples. More concretely, one can show that the difference be-

tween the observed sample mean and true mean is normally distributed with Omean and with one nth the

variance of the initial distribution, e.g. ~–p - N(O,~).

Given the assumption of normality we can also conclude the dzfierential distribution (the distribution of

the difference in utility between any two strategies) is also normally distributed, This property is important

in that it allows us to compute estimates that one strategy is better than (or roughly equivalent to) another

strategy in expected utility by only maintaining information about the differential distributions. This sim-

plifies the some of the mathematics, For example, for many applications the performance of strategies

3. An interestingspecialcaseto this problemis the speed-uplearningproblemwhereUiandCi are inverselyrelated.
Frequentlyin speed-uplearningUi = –Ci.
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will likely be highly correlated (e.g. when strategies are small modifications to some common ancestor).

Using the differential distributions encodes this correlational information without the need for explicitly

computing covariance estimates.

The hypothesis evaluation problem that we pose is nearly identical to a problem frequently posed in the

statistical literature, the ranking and selection problem [Bechhoffer54]. In the ranking and selection prob-

lem, one samples from various distributions of a known parametrized model (such as normal/gaussian),

and the goal is to select the distribution with the highest mean. Ranking and selection strategies also allow

for indifference zones, which specify how close to the highest the selected strategy must be.

Unfortunately, the methods developed in the statistics literature suffer from two drawbacks. First, because

they have strong guarantees on the correctness of the decisions, they frequently require strong information

on the distributions, such as presuming equal variances. Second, ranking and selection strategies typically

attempt to minimize the overall number of examples. In the adaptive problem–solving special case, differ-

ent examples have very different information costs (in particular consider the speed-up learning problem).

Because statistical ranking and selection methods do not account for variable information cost, they are

unlikely to perform as well when these costs vary greatly.

2.1 Notation

Throughout this paper we use the following notation:

Ui means the utility distribution for the hypothesis strategy Hi

Ci means the cost distribution for the hypothesis strategy Hi

pi is the true mean for the variable Ui

Ui is the sample mean for the variable Ui

Sui is the sample standard deviation for Ui.

~ is the sample mean for the variable Cj

Ui_j is the variable for the distribution Computed by taking the utility of Hi minus the utility of Hj both solv-

ing the same problem. Note that this distribution is Gaussian (normal) if Uj and Uj are jointly gaussian

even if Ui and Uj are not independent. ULjis the sample mean of this distribution and ~Ui_Ujis the true mean

of this distribution.

Sui_Mjis the sample standard deviation for the difference distributions for the utilities of Hi and Hj. Again,

this difference distribution is created by taking values for Hi and Hj solving the same problem. Additional-

ly, this distribution is gaussian (normal) ifUi and Uj arejoint gaussian even if Ui and Uj are not independent.

We also define functions to allow commutation of probabilities of normally distributed variables. The

probability that a random variable y has a value in the interval (a,b) given that the variable is normally

distributed with mean ~ and standard deviation o is:

4. This is a statisticaltechniqueknownasblocking,seep. 299-300 of [Buringer80].
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b

~(–)‘(a’ “p’a) = k ‘-””’(%)’dy
a

We further specialize for the standard normal distribution, with mean p=O and standard deviation 6=1 as

the following:

b

10”‘(a’b) = ‘(a’ b’0’ ‘) = 7% ‘+’’”dy
a

3. The Interval-based Approach

The confidence interval–based approach depends on confidence parameter ‘yand an indifference parame-

ter 8. The confidence interval approach attempts to show that with confidence ythere is a hypothesis strate-

gy Hi for which every other hypothesis strategy Hj either: a) E(Ui_j) > O; or b) lE(Ui-j)l <s Intuitively,

if such an Hi can be found it should be adopted because for every other hypothesis strategy Hj, with confi-

dence y, either Hi is either better than Hj (dominance) or Hi and Hj are close enough so that we do not

care (indifference). This intuitive description will be further elaborated in the following paragraphs.

Consider two of the hypothesis strategies being evaluated Hi and Hj. Under the assumption that Ui and

Uj are jointly normally distributed, the difference Ui-j is normally distributed. Hence, analyzing the dif-

ference Ui -j and computing the confidence that Ui-j >0 gives the confidence that Hi dominates Hj. To

represent the confidence in this pair-wise comparison of Ui and Uj we use the variable V.

To compute the confidence that Ui-j >0 we adapt a method for computing confidence intervals for the

mean of a normal distribution with unknown variance from [Kreysig70]. However, our application differs

from the standard confidence interval calculation as follows. In the standard problem, one is given a confi-

dence level ~ , and the task is to compute an interval such that the true mean lies in the interval with confi-

dence y. In our case, we are given the interval, and we wish to compute the confidence that the mean

lies within the interval. We also use the normal distribution, rather than the t–distribution to model the

distribution of the sample mean minus true mean. Further details of our approach and on computing confi-

dence intervals are described in Appendix A. These assumptions result in the following formula (shown

graphically in Figure 1):

~=o(oma-+(dominance equation 1)

6
= *(-c, CCI) where c = i7i-j_ ,

S“i_”j



Figure 1: Probability distribution of ~ui.uj.0the difference between the utility means (expected
utilities) Ui and Uj. Q is the probability that ~Ui-uj>0 (i.e. that ~i > ~j which is the confidence
that Si dominates Sj).

To handle the case of indifference pruning, the confidence that the true mean of the difference utility distri-

bution for the strategies is in the interval {–+,&} can be computed similarly to the method described above,

which results in the following (shown graphically in Figure 2):

LJ-j -
Figure 2: Probability distribution of ~Ui-.j.“the difference between the utility means (expected
utilities) Ui and Uj. I is the probability that &< ~Ui-Uj< e (i.e. the confidence that Si and Sj are
indifferent).

(indifference equation 1)

= @(a, ~) where a =
(q_,+& and ~ _ (~.j + *&

Sui_”j Sui.uj

This can be interpreted using the confidence interval stopping criterion as follows. In the first case y indi-

cates our confidence in the hypothesis that the mean of the distribution Ui is greater than the mean of the

distribution Uj, thus we prefer Hi over Hj (dominance). In the second case the difference between the
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means of Ui and Uj is less than Ewith confidence ~, thus Hi and Hj are not worth distinguishing (indiffer-

ence). If Ui.j<0, then Hj appears to be superior to Hi and we should be focussing on Hj and not Hi.

One complication is that the confidence term yof the overall decision depends upon the number of hypoth-

eses being considered. Suppose the system makes k conclusions, each with confidence ~. If we presume

a pessimistic accumulation of error, we might project that the errors would add. In this case, to ensure that

the total error is no more than 1 – y, we require that the sum of all of the k errors be less than 1 – y. This

translates to the requirement that k – Z’y’s<1 – y. The most straightforward way to achieve this is to force

each of the errors to be less than (1 – ‘y)/k,however, this does not take advantage of the fact that reducing

the error in some of the terms maybe easier than in others, Pertaining to this issue we first outline an algo-

rithm called STOP 1 which distributes the error evenly, then show a variation on this basic algorithm

STOP2 which accounts for the varying difficulty in reducing the error in each of the terms and takes into

account the varying cost of sampling from each of the distributions.

3.1 The STOP1 Algorithm

The STOP1 algorithm can be described as follows. Let T be the set of hypothesis strategies HI .,.Hk. Sam-

ple from each of the utility distributions U1...Uk some default number of samples no. Let Hi be the strategy

in T which has the highest sample mean for Ui so far (hereafter called thefocus strategy). For each strate-

gy Hj ~ T, if ~.i is in the interval {–E, s}, attempt to show indifference. If not, attempt to show that

Hi dominates Hj. Because the overall confidence must be y, and we are drawing k –1 conclusions, evenly

distributing the error indicates that the individual confidences must be:

y= 1-3 (confidence equation 1)

Unfortunately, in the worst case, fork strategies, the choice of the final selection may depend upon more

than k–1 pair-wise comparisons. Consider the case where the focus strategy changes frequently while at-

tempting to find a best strategy. Indeed, in the worst case, the final selection would depend upon all of

the pair-wise combinations of selections of two of the k strategies (due to shifting of the focus hypothesis

strategy). This is simply the sum of the integers from 1 to k–1, or k(k–1 )/2. Thus, in the worst case, for

the equal distribution of errors premise. the individual confidences must be:

~= ~ w-)’)
k(k–1)

(confidence equation 2)

However, if no is made large enough such that the focus strategy Hhighchanges rarelY, the overall confi-

dence will more closely resemble the linear relationship described in confidence equation 1. Indeed, if

the errors tend to cancel each other, even this linear summation of errors will be an overestimate of the

actual error.

Indifference is shown as follows. Compute the confidence that the true mean ~.k.i of Uj-i lies within the

interval {–q 8}. If this confidence is greater than ‘p then indifference has been shown. Else, sample from
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Ui and Uj as necessary until either: (1) the confidence that PUj_Uiis within the interval {–E, &}is greater

than v or (2) UEi goes above&or below –E. If ~,i goes above E, Uj now has a higher sample mean

than Ui by a significant amount so that we should make Hj the target hypothesis and proceed. If U>i

goes below –E, Hj looks significantly worse than Hi so that we should attempt to show that Hi dominates

Hj .

Dominance is shown similarly. Compute the confidence that the true mean P.i-uj of Ui-j is greater than

O. If this confidence is greater than P we have shown dominance; otherwise sample from Ui and Uj

as necessary until the either the confidence becomes greater than v or U&i goes below e. In this case,

we might attempt to show indifference among Hi and Hj.

It is worth noting that sometimes when U}i is in the interval {+, e}, there is more confidence in the claim

that Hi dominates Hj than in the claim that Hi and Hj are indifferent. It is unclear whether a closed form

exists that can be used to determine whether dominance or indifference has higher confidence. Thus, we

avoid this problem by computing both the dominance and indifference and using the higher of the two con-

fidences.

STOP1 ALGORITHM

let T = {H1.,.Hk}

let y =y/(k-1)

solve no problems with each strategy in T

let Hhi~hbe the strategy in T with the highest sample mean for uhj~h

compute utility comparison statistics

loopl

let Hhj~hbe the strategy in T with the highest Sample mean for Uhigh

if for evev Hj E T one of the following conditions holds

uhigh dominates Uj with confidence ~

Uhighand Uj are ambivalent with confidence ~

THEN RETURN Hhigh

ELSE

select a strategy Hj such that neither of the following conditions holds

Uhighdominates Uj with confidence ~

Uhigh and Uj are ambivalent with confidence V

generate data for the distribution Uhigh-j

recompute utility comparison statistics

continue with loop 1

Note that the algorithm has been simplified for purposes of clarity, A realistic implementation would tem-

porarily classify the strategies into indifference and dominance classes when confidence has been shown.
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When shi~hchanges, these strategies must be returned to the unknown pool because they must bc compared

to the new shigh.

3.2 The STOP2 Algorithm

The STOP2 algorithm differs from the STOP1 algorithm in that it accounts for two factors ignored in the

STOP1 approach. First, depending upon the sample variances and sample means of the individual Uj_i

distributions, examples allocated to the distributions will have different effects on improving the confi-

dence in a pair-wise dominance or indifference relation, Second, the cost of acquiring information (exam-

ples) varies from distribution to distribution. Because of these varying benefits and costs sometimes sig-

nificant benefits can be derived from not bounding the statistical error equally across each of the pair-wise

comparisons. The STOP1 algorithm, which does not account for these varying benefits and costs, uses

equal bounds across the pair-wise comparisons. The STOP2 algorithm estimates the likely cost and benefit

for each new example and allocates examples to the comparison with the highest estimated benefit divided

by cost, This can result in a situation where each comparison is estimated to a different level of statistical

error, although the sum of these errors still must remain below the overall bound of l–y. As the individual

pair-wise confidences may vary, we introduce the new notation ~ij to signify the confidence that strategy

Si dominates or is indifferent with Strategy Sj as appropriate.

For example, as shown in Figure 3, if the uncertainty in determining the dominance of H3 over H5 has al-

.H3 V. H5

Incremental Utility Estimates

Figure 3: Varying Effects of Another Example

ready been reduced significantly, and the uncertainty in showing the dominance of Hs over Hz has not,

additional examples to H3 v. Hz are likel y to have greater effect on reducing the overall error than examples

from H3 v. H5. More concretely, an additional sample from U32 will likely reduce ~32 by more than the

amount that another sample from U35 is likely to reduce ‘y+35.Thus one can estimate the marginal benefit

of allocating additional samples, the reduction in statistical error resulting from an additional example,

by assuming that the mean and variance of Uj-i will change little and computing the increase in certainty.

The second factor considered by STOP2 and not by STOP1 is the varying cost of acquiring a sample. If

acquiring an additional sample has an extremely high cost, it may not be worth the effort, even if the ex-

pected information gain is large. Likewise, a low information cost may make a lesser information gain
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look more attractive. To decide how best to allocate learning resources, STOP2 estimates marginal cost.

This is the cost of acquiring another sample for a given pair-wise comparison and it consists of the cost

of determining a utility value for each member of the pair. As each comparison shares the same hypothesis

Hhi@, at least part of this cost may already have been incurred. Thus estimating the marginal cost involves

two parts. First, determine which utility values must be determined (Ui, Uj, or both). Second, use the

estimated means for Ci and Cj to estimate the cost of acquiring another sample Uj and Ui as appropriate.

We then use the common greedy approach of selecting the course of action which has the highest ratio of

marginal return to marginal cost. This process continues until a strategy emerges which can be shown with

overall confidence y to be dominant or indifferent with all other strategies.

Thus to estimate the marginal increase in dominance confidence from acquiring an additional example

of Uj.i we use the following computation:

m-l and .2= ~._,.@-= @(-cl, -C2) where c1 = Ui_j_
Si.j ‘‘ Si_j

Of course, since the system computed the confidence for n samples when the nth sample was taken, there

is no need to evaluate the second part of the integral. Thus the operational formula to compute the marginal

increase in confidence is:

Ayji for Uj_i = @(–cl, ~ )–PreviousY*J (marginal confidence dominance equation)

where c 1 is as defined above.

Similarly, we estimate the marginal increase in indifference confidence from acquiring an additional ex-

ample of Uj+ as follows:

A~i for Uj-i = O(C2I,bl)-@(a2, b2)

~2 _ (U”-,-+Land -
S./-”j

and ~1 = (i7_j+*Gi
S~i..j

and b2= ‘q;+:&
Ul UJ

Again, since the system has already computed the indifference confidence for n samples, there is no need

to evaluate the second integral from a2 to b2. Thus the operational form of this integral is:

A~i for Uj-i = o(~l, blFPr~ViOUS y’j’ (marginal confidence indifference equation)

where a 1 and b 1 are as defined above.

The expected marginal cost of sampling from hypothesis strategy Hi which provides added information

on Ui and Ci is simply the sample mean of Ci so far: Ci . This relates to the marginal cost of determining
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another point from Uj_i as follows. Let Sai indicate the number of samples drawn from the strategy Hi so

far. When we draw a problem from the distribution, we store it so that if we wish to sample p times from

the distribution Ui, and p times from distribution Uj, we have the same p problems from the problem distri-

bution. Furthermore, when we compute differences in utility from the distribution Uj-j these are computed

by using the competing strategies on the same problem (as in COMPOSER). Thus if we wish to get the

pth sample from the distribution Uj.i, (assuming p-l samples have already been computed), Sai and Saj

must each be at least p–1. The cost can be expressed as follows:

If both Sai and Saj are p or greater: the cost of computing the pth sample is O.

If Sai = p–1 and Saj 2 p then the expected cost is c (the sample mean of Cj) .

If Saj = p–1 and Sai 2 p then the expected cost is ~ .

If Saj = p-1 and Sai = p–1 then the expected cost is C+ ~ .

Note that in general the system will be attempting to show that a specific strategy Hi dominates or is ambiv-

alent with all the others. This means that Sai will be consistently ~ to all other Saj. Anytime is Sai increm-

ented to find out more information regarding Hi, this immediately reduces the cost of acquiring informa-

tion for other Hj’s, as they no longer need to pay the cost of sampling Hi. This will tend tO mitigate the

effects of different means and variances for Uj-i distributions. However) in cases where the fOCUSstrategY

Hi changes, other more complex phenomena will occur.

STOP2 ALGORITHM

let T = {H1...Hk}

solve no problems with each strategy in T

let Hhi@ be the strategy in T with the highest Sample mean for Uhigh

compute utility comparison statistics

loopl

let Hhi@ be the strategy in T with the highest sample mean for Uhigh

if for every Hj e T one of the following conditions holds

uhj~h dominates Uj with confidence fij@j*

Uhi@ and Uj are ambivalent with confidence ‘)’highj*

k

such that ~ ~highj ~ ?’ where ynn= o
j=1

THEN RETURN Hhi@

ELSE

for each strategy Hi e T

Compute the marginal benefit MBi and marginal cost MCi

of acquiring another Sample from Uhigh–i

for the Hi with the highest MBi / MCi

12



generate data for the distribution uhigh-i

recompute utility comparison statistics, reselecting Hhi~hif necessary

continue with loop 1

Again, the algorithm has been simplified to ease understanding. In fact, the marginal cost and utility of

acquiring another sample need only be updated when relevant samples are taken. Additionally, acquiring

a Sample fOr Hhi@ tO aCqUire a Sample fOr Uhi@.i may allOWanother Uhigh-j tO be computed at zero COSt

(due to changes in Hhi~h) and hence should be included in the relevant marginal benefit calculation.

4. The Expected Loss Approach

A commonly used measure in valuing information in game theory applications is the concept of expected

loss. Put simply, expected loss is the chance that one makes the wrong decision, weighted by how wrong

the decision turns out to be. The expected loss measure can be computed for any pair of alternatives. These

computed values can then be used to answer both the question of “is the current information enough” and

if additional information is needed “which information at which cost should we get”. The former question

can be answered by putting abound on the expected loss that one is willing to tolerate, and making a deci-

sion when an alternative is found to have an expected loss of less than the bound. In our case of hypothesis

evaluation, one can select a hypothesis strategy Hi when:
k

I Expected Utility Loss of selecting i over j s L
j=]

for all j, the sum for the expected loss of all of the expected losses fore The latter question can be answered

by acquiring the information which is expected to reduce the above sum by the greatest amount relative

to the cost of acquiring the information.

More rigorously, we define the expected loss of utility from adopting Hi rather than Hj to be the integral

of the joint utility of Hi and Hj over the regions where Hi has lower utility weighted by the difference in

utility: E(UHit Hi)) = \ \ Pui.uj(uitUj)(uj–ui)duiduj

U,’aj

However, because Ui and Uj are Jointly gaussian, and a linear combination of two jointly gaussian random

variables is gaussian, we can use the differential distribution Ui-j to compute the expected loss directly.

Thus we simply estimate the mean and variance for our best guess at the true mean of the differential distri-

bution Ui-j.s We compute the integral over the region where Ui-j >0 of the term Prob(ui-j=u)u. TO do

this, we first compute the sample mean and variance for the differential distribution, and then apply a for-

mula almost identical to that used in the dominance confidence interval calculation. The sole difference

is that the the integral includes a multiplication times the difference of the values (utilities), This formula

is shown below and it’s derivation is shown in Appendix C.

5. An alternativeapproachwouldbe to estimatethe parametersfor eachof the individualutilitydistributions,thenuse
theseparametersto computethe meanand variancesfor the estimatesof the differentialdistributions. This wouldresult in
the sameparametersas our approachof computingthe parametersof the differentialdistributionsdirectlyfrom the data.

13
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(–)ui_j 2
‘0”5”SU[-.j

Sui_uje
E(L(Hi,Hj))= q.j -

Liz ‘z \ e-05z2dz (expected loss equation)

Ui_jfi
.—
S~i_”j

One can compute theexpected_utility_loss of the alternative choice (e.g., of choosing Hj over Hi)by taking

the difference of the utilities in the opposite direction and integrating over the complementary region (i.e.

where u <0 of the term –uProb(Ui-j=u)).

4.1 The ELI Algorithm

Given this definition of expected loss, we can define two algorithms EL1 and EL2. As with STOP1 and

STOP2, EL1 and EL2 differ in that EL2 accounts for differences in marginal return from an additional

sample for different distributions. EL2 also estimates the different costs for sampling from the different

distributions. As with STOP2, EL2 samples from distribution of Ui-j so as to maximize the marginal bene-

fit divided by the marginal cost.

ELI ALGORITHM

let T = {Hl ...Hk } and L be the expected loss threshold.

let L* be L/k

solve no problems with each strategy in T

let Hhi~hbe the strategy in T with the highest sample mean for uhi~h

compute the expected_utility_loss statistic of selecting Hhighover each other strategY Hi

loopl

select a strategy Hi whose pair-wise such that the expected utility loss from selecting

Hhi@ over Hi k greater than L*

If there is no such strategy,

then return Hhi@

else generate sample from Hi and Hhi@

recompute expected utility losses

continue loop 1

4.2 The EL2 Algorithm

The EL2 algorithm extends the EL1 algorithm to account for differing gains from acquiring another sam-

ple for Hhi~h, and Hi’s based upon varying variances, relative means, and number of examPles acquired

so far. EL2 also accounts for the varying costs of acquiring these additional examples. Thus, the EL2 algo-

rithm extends EL1 in exactly the same way that STOP2 extends STOP1.

The marginal decrease in expected_utility_loSS (MDEUL) is computed by recompu@=? the intefwl for

expected_loss, assuming that the variances and means will remain the same but incrementing n by 1 and

subtracting the current expected_utility_loss, The resulting formula is shown below

14
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-0”5(”+1) sui_”j

S“j_u,~
A13(~(Hi,Ifj))=

~..j -

J= !+ E ~,_,fin+,)
e+s”dz – current E(I,(H,,Hj))

j]- hui_uj

(MDEUL equation)

The expected_marginal_cost_of_sampling is computed by using the mean of the expected cost distribu-

tion exactly as in STOP2. The EL2 algorithm is shown below.

EL2 ALGORITHM

let T = {HI .,.Hk } and L be the expected loss threshold,

solve no problems with each strategy in T

let H~i~~be the strategy in T with the highest sample mean fOr Uhi@

compute expected_utility_loss statistic of selecting Hhighover each other strategY Hi

and let this be L*i (enforce that the expected utility loss of selecting Hi over Hi is O)

loopl

k

if ~L*i SL
i=1

then return Hhigh

else compute the marginal decrease in expected loss by sampling from each of the

Hi’s (including Hhi@)

compute the marginal cost of sampling each strategy using the C distributions

sample from the distribution with the highest

MDEUL
expected_marginal_cost_o f_sampling

recompute L*i’s as necessary

continue loop 1

5. EMPIRICAL PERFORMANCE EVALUATION

We now turn to an empirical evaluation of the hypothesis selection techniques. This evaluation lends sup-

port to the techniques by addressing three key issues. First it demonstrates that the techniques perform

as predicted. Second, the evaluation demonstrates the benefits of rational example allocation (as per-

formed by STOP2 and EL2). Finally, it illustrates the applicability of the approach to a real-world hypothe-

sis selection problem. Where possible, we contrast performance with that of other relevant approaches

in the statistical literature.

5.1 Other Relevant Approaches

There exists a body of standard approaches for the interval-based formulation of the hypothesis evaluation

problem. To demonstrate the power of our interval-based approaches we contrast them with two existing
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approaches. The first is a statistical approach proposed by Turnbull and Weiss [Turnbul187]. The second

is a machine learning technique proposed by Gratch and DeJong [Gratch92].

The Turnbull and Weiss approach comes closest among statistical ranking and selection procedures to the

generality of the STOP1 and STOP2 approaches. Most standard statistical approaches make strong as-

sumptions about the form of the hypothesis evaluation problem; for instance that the variances associated

with hypotheses are known or equal. As in our interval-based approaches, the Turnbull and Weiss treat

hypotheses as normal variables with unknown mean, and unknown and unequal variance, however they

make the additional assumption that hypotheses are independent. It can still be reasonable to use this ap-

proach when the hypotheses are not independent, but this can lead to excessive statistical error or unneces-

sarily large training set sizes under certain circumstances. The Turnbull technique is described in Appen-

dix E.

The COMPOSER technique was proposed to solve hypothesis evaluation problems as they arise in the

context of adaptive problem solving. COMPOSER treats hypotheses as dependent normal variables with

unknown mean, and unknown and unequal variance. COMPOSER, however, does not implement the no-

tion of an indifference interval. Rather it is trying to adopt the first hypothesis that can be demonstrated

to be significantly better than a default hypothesis. When the best hypotheses are all close to each other

in utility, COMPOSER will take an excessive number of training examples. COMPOSER is described

in Appendix F.

5.2 Methodology

First we discuss some methodological issues. The interval-based and expected loss approaches embody

different criteria for selecting hypotheses in that they use parameters which it is difficult to compare. Thus

we first test the interval–based and expected loss approaches separately. Interval–based approaches have

been investigated extensively in the statistical ranking and selection literature (see [Haseeb85J for a review

of the recent literature). This affords us the opportunity to compare STOP 1 and STOP2 against a standard

statistical approach.

Techniques are evaluated on synthetic and real-world data sets. Synthetic data allows a systematic test

of the formal properties of each technique while real data sets test the appropriateness of statistical assump-

tions – such as the normal approximation – and assess the practicality of each approaches on real-world

problems.

Finally, in a comprehensive real–world test on scheduling data, we compare the interval based and ex-

pected loss approaches, using a wide range of parameter settings. This test reports on the bottom–line ef-

fectiveness of the competing techniques in a pragmatic problem–solving setting.

5.2.1 Synthetic Data

Synthetic data is used to show that: (1) the techniques perform as expected when the underlying assump-

tions are valid and (2) the use of rational example allocation exhibits substantial improvement when there
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is unequal cost or variance among the distributions. For interval-based approaches we show that the tech-

nique will choose the best hypotheses, or one c-close to the best, with the requested probability. When

all hypotheses are within &of each other, the indifference-based technique should quickly terminate, re-

turning any hypotheses. For the expected loss approaches the claim is that the technique will exhibit no

more that the requested level of expected loss. One set of evaluations is devised to test this claim.

The second claim is that the techniques that use rational example allocation will exhibit substantial per-

formance improvement when there is unequal cost or variance among the hypotheses. A second set of

evaluations is devised to test this claim

For the synthetic data problems, hypotheses are modeled as random variables with parameterized proper-

ties. A specific hypothesis evaluation problem is constructed by fixing the values of each of these parame-

ters. In the course of solving a specific problem, values for the utility and cost of each hypothesis on each

example are assigned randomly according to the parameterized distribution functions. For a given prob-

lem let k define the number of hypotheses. For all synthetic evaluations the hypothesis utilities and costs

are treated as independent normal random variables with some parameterized mean and variance. Each

hypothesis is described by four parameters – its expected utility, the utility variance, its expected cost, and

its cost variance. Thus a hypothesis evaluation problem is specified by 4k parameters.

The hypothesis evaluation techniques have additional parameters that govern how they attack the problem.

To distinguish these we refer to problem parameters and control parameters. The interval–based tech-

niques have three control parameters: an initial sample size ~, a confidence setting ~ and an indifference

setting e The expected loss techniques have two control parameters: an initial sample size w and a loss

threshold H*.

An experimental trial consists of solving a hypothesis evaluation problem with a given technique, where

all problem and control parameters have been fixed, The performance on any single trial provides little

information given the random nature of the task. To assess the average characteristics of the technique

a trial is repeated multiple times and the results are averaged across trials. All experimental trials are re-

peated 5000 times.

An interval-based technique processes examples until it has identified a hypothesis that with probability

~ is within &of optimal. STOP1 attempts to ensure this property with the minimum number of training

examples possible. STOP2 attempts to ensure this property with the minimum cost p6ssible. To assess

the competence of these techniques we track three quantities: the number of examples required to choose

a hypothesis, the cost of the examples required to choose a hypothesis, and the observed probability that

the expected utility of the chosen hypothesis is in fact within &of the utility of the optimal hypothesis.

For the expected loss techniques we track the analogous three quantities: the number of examples to choose

a hypothesis, the cost of the examples, and the average loss (the average loss in utility when the technique

chooses the non-optimal hypothesis weighted by the probability of choosing the non-optimal hypothesis).
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Unless otherwise stated, each training example on any hypothesis is given equal cost. This means that the

overall cost of a technique is directly proportional to the expected number of examples required to select

a hypothesis. Thus, when each training example is given equal cost only the number of examples will be

reported. One set of synthetic evaluations highlights the benefits of rational example allocation. In these

evaluations we create a significant discrepancy in the cost of evaluating alternative hypotheses,

5.2.2 Scheduling Data

The test of real-world applicabilityy is based on data drawn from an actual NASA scheduling application,

This data provides a strong test of the applicability of the techniques, All of the statistical techniques make

some form of normality assumption, However the data in this application is highly non-normal -in fact

most of the distributions are hi-modal. This characteristic provides a rather severe test of the robustness

of the approaches.

In this application a heuristic system was developed to schedule communication events between earth-or-

biting satellites and ground-based radio antennas. In the course of development, extensive evaluations

were performed with various scheduling heuristics. The goal of these evaluations was to choose a heuristic

that solved scheduling problems quickly on average. This is easily seen as a hypothesis evaluation prob-

lem. Each of the heuristics corresponds to a hypothesis. The cost of evaluating a hypothesis over a training

example is the cost of solving the scheduling problem with the given heuristic. The utility of the training

example is simply the negation of its cost, In that way, choosing a hypothesis with maximal expected util-

ity corresponds to choosing a scheduling heuristic with minimal average cost.

Using the data from the heuristic evaluations we derived four data sets, Each data set corresponds to a

comparison of some set of scheduling heuristics, and contains data on the heuristics’ performance over

about one thousand scheduling problems, An experimental trial consists of executing a technique over

one of these data sets. Each time a training example is to be processed, some problem is drawn randomly

from the data set with replacement, The actual utility and cost values associated with this scheduling prob-

lem is then used. As in the synthetic data, each experimental trial is repeated 5000 times and all reported

results are the average of these trials.

5.3 The Interval-Based Approach

The interval-based approaches, STOP1 and STOP2, are evaluated on both synthetic and scheduling data

sets. Synthetic problems were constructed to answer the following three questions: 1) do the techniques

select e-close hypotheses with the specified probability, 2) do the techniques terminate quickly when all

hypotheses are E-close, and 3) does STOP2 outperform STOP1 when there is significant cost or variance

differences between hypotheses. We also contrast the performance of our techniques with COMPOSER

and the technique of Turnbull and Weiss.

5.3.1 Confidence Test

The statistical ranking and selection literature uses a standard methodology for evaluating the statistical

error of hypothesis evaluation techniques. We adopt this methodology here. Robert Bechhofer introduced
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the concept of the leastfawrable configuration of the population means [Bechhofer54]. This is a parame-

ter configuration that is most likely to cause a technique to choose a wrong hypothesis (one that is not c–

close) and thus provides the most severe test of the technique’s abilities. Under this configuration, k – 1

of the hypotheses have identical expected utilities, p, and the remaining hypothesis has expected utility

~+e. The last hypothesis has the highest expected utility and should be chosen by the technique, The costs

and variances of all hypotheses are equal,6

Parameters II II II II 1
—

k

3

3

3

3

3

3

T

5

5

5

5

5

E

10

10

10

10

10
—

STOP1 STOP2 TURNBULL COMPOSER
I’* O/&

0.75 2 38 (0.85) 34 (0.83) 27 (0.75) 61 (0.96)

0.75 3 58 (0.08) 52 (0.78) 50 (0,72) 103 (0.90)

0.90 2 64 (0.92) 65 (0.92) 54 (0.86) 91 (0.98)

0.90 3 121 (0.91) 123 (0.91) 127 (0.87) 170 (0.95)

0.95 2 93 (0.95) 96 (0.97) 81 (0.92) 115 (0,99)

0.95 3 183 (0.94) 193 (0.95) 192 (0.93) 238 (0.97)

0.75 2 98 (0.86) 94 (0.86) 63 (0.71) 139 (0.96)

0.75 3 177 (0.83) 179 (0.81) 141 (0.71) 250 (0.89)

0.90 2 159 (0.93) 170 (0.94) 123 (0.84) 195 (0.97)

0.90 3 310 (0.92) 349 (0.93) 294 (0.88) 389 (0.94)

0.95 2 212 (0.96) 234 (0.97) 175 (0.91) 237 (0.98)

0.95 3 427 (0.95) 483 (0.96) 411 (0.94) 501 (0.97)

0.75 2 298 (0,89) 330 (0.90) 185 (0.66) 353 (0.95)

0.75 3 584 (0.87) 688 (0.87) 438 (0.70) 677 (0.89)

0.90 2 430 (0.95) 508 (0.95) 331 (0.83) 469 (0.97)

0.90 3 892 (0.93) 1,066 (0.95) 783 (0.89) 958 (0.93)

0.95 2 545 (0.97) 661 (0.97) 443 (0.91) 574 (0,98)

0.95 3 1,136 (0.95) 1,435 (0.97) 1,037 (0.94) 1,175 (0.95)

Table 1

Estimated expected total number of observations in the least favorable configuration.

Achieved probability of a correct selection is shown in parenthesis.

We test each technique on the least favorable configuration under a variety of control parameter settings.

The least favorable configuration becomes more difficult (requires more examples) as the confidence ~,

the number of hypotheses k, or common utility variance 62, increases. It becomes easier as the indifference

intervals, increases. In the standard methodology a technique is evaluated varying values fork, ~, and

6. Note that in this evaluation&actsas a problemparameterin additionto its role as a controlparameter.
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de. The last term combines the variance and indifference interval size into a single quantity which as it

increases makes the problem more difficult. For our experiments, nO is set to seven, L is fifty, 62 is

sixty-four, and all other parameters are varied as indicated in the results. The sample size results and ob-

served confidence levels are summarized in Table 1.

The results indicate that all systems are roughly comparable in the number of examples required to choose

a hypotheses. As expected, the number of examples increases with k, ~, and o/&, The technique of Turn-

bull and Weiss tended to be the most efficient, COMPOSER the least. In terms of statistical error, all of

the algorithms except Turnbull and Weiss’ were correct at least as often as requested. The technique of

Turnbull and Weiss often provided less than the requested confidence, However, since their technique

only guarantees that the confidence will approach ~ as &/o tends to zero, these results are consistent with

their claim,

5.3.2 lndiflerence Test

The indifference interval approaches should terminate quickly when all hypotheses are indifferent to each

other. To test this claim we repeated the least favorable configuration evaluations except that all hypothe-

ses were assigned the same expected utility p. Results are summarized in Table 2. Error rate results are

not shown since any hypothesis is a correct selection in this configuration.

The key result to notice is that COMPOSER failed to terminate on any of the trials. This highlights the

potential difficulties with COMPOSER that STOP1 and STOP2 were designed to correct. Again, the tech-

nique of Turnbull and Weiss slightly outperforms the other approaches.

5.3.3 Rational Allocation Test

STOP2 is designed to perform well when the cost of processing examples or the utility variance differs

widely across hypotheses. The preceding evaluations did not contrast the two approaches under these con-

ditions as both the cost and variances were equal. Consequently STOP1 and STOP2 was also approximate-

ly equal efficient in these tests. This evaluation contrasts the approaches by providing problem configura-

tions with highly unequal costs.

Problem configurations are defined as follows. One hypothesis (the correct selection) is assigned a high

mean ~be~t. A second hypothesis is assigned a mean slightly below E of the best, ~b@_l. All remaining

hypotheses are assigned a low mean, p~o,st. The second hypothesis is given a high cost c~ig~and all other

hypotheses are given low cost CIOW.All hypotheses are assigned a common variance of fifty, ~b~~tis seven-

ty–four, Pb~~t_lis seventy–two, ~WOr~tis five, &is one, and nOis seven. The rationale behind this configura-

tion is given in Appendix D. Various confidence settings were evaluated. The results are summarized in

Table 3.

The results illustrate the clear dominance of STOP2 under this configuration – up to seven times more effi-

cient on one of the trials. An interesting question is whether there is a limit to how much better STOP2
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3

3

3

3

3

Y

5

5

5

5

5

F

10

10
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‘+1 Sro’1 II STOP2 II TURNBULL

0.75 2 48 44 27

0.75 3 75 68 50

0.90 2 96 100 54

0,90 3 181 194 127

0.95 2 142 151 81

0.95 3 291 312 192

0.75 2 134 143 63

0.75 3 249 276 141

0.90 2 235 267 123

0.90 3 474 568 294

0.95 2 325 360 174

0.95 3 672 768 411

0.75 2 421 525 185

0.75 3 833 1104 438

0.90 2 649 772 331

0.90 3 1348 1667 782

0.95 2 835 975 444

0.95 3 1776 2100 1037

I
COMPOSER I

==--l

---=--i

~

***

***

-=-l
-=-i

-==-i

-=--l
--=--i

a******
Table 2

Estimated expected total number of observations in the indifference configuration.

Note that COMPOSER failed to terminate on any of the trials.

can be. In fact there is an upper bound on this difference that is proven in Appendix Z, This upper bound

increases as the number of hypotheses increases or as the confidence level decreases.

5.3.4 Scheduling Test

We ran all four algorithms over the four scheduling data sets. In each case the confidence level was set

at 9590, w set to fifteen, and e set to 4.0. Table 4 summarizes the results along with the number of hypothe-

ses and the relative difficulty (o/&) of each data set.

The principle result is that STOP1 and STOP2 substantially exceeded the performance of the other algo-

rithms except on one case. The one exception is an artifact of COMPOSER solving a slightly different

task. Rather than choosing the hypothesis that is E-close to optimal, COMPOSER chooses the first hy-

pothesis to dominate a default hypothesis (the first hypothesis was arbitrarily defined to be the default in
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k

3

3

3

3

5

5

5

5

10

10

10

10

Est

rameters

I’*

0.75

0.80

0.85

0.90

0.75

0.80

0.85

0,90

0.75

0.80

0.85

0.90

II II STOP1
STOP1 STOP2 STOP2

12,034 II 524’ II 23

22,081 II 5,216 II 4.2

36,768 II 5$154 II 71
42,202 II 6,753 II 6.3

47,167 10,086 4.7

56,183 15,004 3.8

Table 3

ated expected total cost for rational allocation configuration.

Parameters
STOP1 STOP2 TURNBULL

k
COMPOSER

Y* de

D1 3 0.95 34 908 (1.00) 648 (1.00) 26,691 (1.00) 78 (1.00)

D2 2 0.95 34 74 (1.00) 76 (1.00) 13,066 (1.00) 346 (1.00)

D3 7 0.95 14 2,371 (0.94) 2,153 (0.93) 94,308 (1.00) 2,456 (0.97)

D4 7 0.95 11 . 7,972 (0.96) 7,621 (0.94) 87,357 (1.00) 21,312 (0.89)

Table 4

Estimated expected total number of observations for scheduling data.

Achieved probability of a correct selection is shown in parenthesis.

these trials). In data set D1 the default is significantly worse than the other two hypotheses, which in turn

are indifferent to each other. STOP 1 and STOP2 take longer because they must verify this indifference.

Note that unlike the synthetic data where STOP1 was slightly more efficient than STOP2, in the scheduling

data STOP2 was slightly more efficient. In fact, in the scheduling data there is some disparity between

hypotheses in their utility variance. STOP2 is able to account for these factors when allocating examples,

and thus exhibits greater efficiency.
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5.4 Discussion of Interval-Based Evaluation

Taken together, the evaluation provides clear evidence for the effectiveness of STOP1 and STOP2 and

demonstrates their superiority to alternative techniques. The techniques performed as predicted, guaran-

teeing the requested confidence level under a variety of configurations. In comparison to other ap-

proaches, they did perform the best on every configuration, however when they were outperformed it was

not by much and they often substantially outperformed the alternative techniques, For example, COM-

POSER fails to terminate when multiple hypotheses are close to optimal. The technique of Turnbull and

Weiss performed poorly on the real-world data sets. The scheduling evaluation demonstrates that STOP1

and STOP2’S normal approximation allows effective performance on real-world hypotheses selection

problems, even when the underlying distributions are not normal,

The rational allocation test illustrates that STOP2 can substantially outperform STOP1 when there are

marked differences across heuristics in the cost of processing examples or in the variance of expected util-

ity values. STOP2 should be used if the hypothesis evaluation problem has this characteristic. It appears

that STOP1 is slightly more efficient when the cost and utilities are close to equal. Under these circum-

stances we recommend the use of STOP 1.

5.5 The Expected Loss Approach

The expected loss approaches, EL1 and EL2, are evaluated on both synthetic and scheduling data sets,

Synthetic problems are constructed to answer the following two questions: 1) do the techniques properly

bound the expected loss, and 2) does EL2 outperform EL1 when there is significant cost or variance differ-

ences bet ween hypotheses.

5.5.1 Expected Loss Test

The techniques are tested on a least favorable configuration with some number of hypotheses, k. The

means of k–1 hypotheses are assigned the value p and the remaining hypothesis is assigned mean p+&.

Each technique is then tested on various loss thresholds, H*, over this problem, For this evaluation, ~ is

fifty, all hypotheses share a common utility variance of sixty–four, and&is two. All other parameters are

varied as indicated in the results. The sample size results and observed 10SSvalues are summarized in Table

5.

The results illustrate that the techniques perform as predicted. As the loss threshold is lowered the tech-

niques take more training examples to ensure the expected loss remains below the threshold.

5.5.2 Rational Allocation Test

EL1 and EL2 greatly exceed the performance of Turnbull and Weiss’ technique on all data sets. The poor

performance of the latter algorithm is due to two factors. First, the technique is unable to quickly discard

hypotheses which are clearly dominated by other hypotheses. Second, the technique’s independence as-

sumption appears to have degraded performance on these data sets where hypotheses are positively corre-

lated. A technique that views two hypotheses as independent will tend to overestimate (underestimate)
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Parameters ELI EL2

k & H* Observations Loss Observations Loss

3 2 1.0 33 0.5 26 0.8

3 2 0.75 38 0.4 29 0.7

3 2 0.5 46 0.2 35 0.5

3 2 0.25 58 0.1 48 0.3

5 2 1.0 73 0.4 54 0.9

5 2 0.75 83 0.3 62 0.7

5 2 0.5 98 0.2 78 0.5

5 2 0.25 127 0.1 114 0.2

10 2 1.0 201 0.2 157 0.8

10 2 0.75 221 0.2 182 0.6

10 2 0.5 255 0.1 220 0.4

10 2 0.25 312 0.0 269 0.2

Table 6

Estimated expected total number of observations and expected loss of an incorrect selection

for the least favorable configuration.

their joint variance when the hypotheses are positively (negatively) correlated. Overestimating the vari-

ance, in turn, leads to higher sample sizes.

EL2 is designed to perform well when the cost of processing examples or the utility variance differs widely

across hypotheses. The preceding evaluations did not contrast the two techniques as the cost and variances

were equal across hypotheses. This evaluation contrasts the approaches using unequal costs across the

hypotheses. The configuration used is identical to the one described in Section 5.3.3. The difference in

expected costs between solving problems with ELI and EL2 is summarized in Table 7.

The results indicate that EL2 substantially outperformed ELI – in one trial solving the configuration four

times more efficiently. EL2 achieves greater efficiency as the number of hypotheses increases. As with

STOP2 we suspect that the potential for greater efficiency is not unbounded, but we have not as yet ob-

tained an upper bound on the relative efficiency of EL2.

5.5.3 Scheduling Test

We ran the two techniques over the four scheduling data sets. In each case the loss threshold was set at

three and nOwas fifteen. Table 8 summarizes the results.

The main result is that the algorithms correctly bounded the expected loss with one exception – EL2 gave

greater than expected loss on data set D3. It appears that this exception arose from a significant departure

from normality in the distributions comprising the data set. Additional trials demonstrated this discrepancy

goes away if the initial sample size is increased, thereby improving the normal approximation.
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Parameters STOP1

k
STOP1 STOP2H* STOP2

3 1.00 5,757 3,733 1.5

3 0.75 6,980 3,992 1.8

3 0.50 8,899 4,636 1.9

3 0.25 14,102 6,847 2.1

5 1.00 8,070 3,737 2.2

5 0.75 9,688 3,985 2.5

5 0.50 12,807 4,664 2,8

5 0.25 19,525 6,873 2.9

10 1.00 12,745 3,740 3.2

10 0.75 15,035 4,037 3.7

10 0.50 19,144 4,718 4.1

10 0.25 26,901 6,861 3.9

Table 7

Estimated expected total cost for rational allocation configuration.

Parameters ELI EL2

k H* Observations Loss Observations Loss

D1 3 3.0 78 0.1 49 1.0

D2 2 3.0 30 1.8 30 1.8

D3 7 3.0 335 3.0 177 3.9

D4 7 3.0 735 1.7 283 2.2

Table 8

Estimated expected total number of observations and expected
for the scheduling data.

.5.6 Discussion of Expected Loss Evaluation

loss of an incorrect selection

The three evaluations of ELI and EL2 give clear support for the effectiveness of these algorithms. The

techniques performed as predicted, properly bounding the expected loss under a variety of parameter con-

figurations, We did observe that under some of the configurations EL2 gave slightly larger than requested

loss, More generally, it appears that the expected loss approach will be more susceptible to departures from

normality in the utility distributions, when compared with interval-based approach. Both approaches use

a normal distribution to approximate the distribution of a sample mean. However the interval-based ap-

proach is only sensitive to the area underparts of the normal curve. The expected loss computation makes
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use of both the area and the shape of certain parts of the normal curve, Thus the expected loss approach

demands more fidelity from its approximation, and this fidelity is degraded when the underlying distribu-

tion is not normal. This effect can be compensated by using greater initial sizes for the expected loss tech-

nique.

5.7 Comparing Interval-based to Expected Loss

One cannot state that interval-base techniques are better or worse than expected loss approaches – each

is solving a slightly different problem. Interval-based approaches are attempting to identify a nearly opti-

mal hypothesis with high confidence while expected loss approaches are attempting to minimize the cost

of a mistaken selection. If the goal of the task is to identify the best hypothesis then clearly an inter-

val-based approach should be use. If the goal is to simply improve expected utility as much as possible,

either could be used and it is unclear which is to be preferred.

Our original motivation in developing these approaches was to develop effective techniques for adaptive

problem solving. In this section we attempts to assess how the various approaches perform on this task.

In particular we consider how the approaches perform in the problem of learning a set of problem solving

heuristics for the NASA scheduling domain, In this test the algorithms were given the task of optimizing

four control parameters of the adaptive scheduler, with the goal of speeding up the schedule generation

process. The solution to this consists of identifying a good heuristic for each of the four control parameters,

where the best choice for a particular parameter depends on the heuristics chosen for the other control pa-

rameters. We implement a hill-climbing strategy for finding a good combination of heuristics. For more

details on this application domain see [Gratch et al. 93].

We run each algorithm under a variety of parameter settings and compare the best performance of each

algorithm (i.e., the lowest cost setting that resulted in a high expected utility on average). In this test the

interval-based algorithms are run with confidence levels ~=0.75,0.90,0.95 and indifference levels 8= 1.0,

4.0, 7.0. The expected loss algorithms are run with loss bound L=5, 1, 0.5. For each setting 1000 runs

are conducted, we then determined the best settings as the lowest cost solution within 1.0 utility of the aver-

age best solution found per algorithm (effectively enforcing a minimum utility of 16.5). These best set-

tings found and their averaged results (from 1000 runs each) are shown below in Table 4.
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COM-
POSER

cost
100s of
CPU
seconds
6128 -1-

Examples Utility

4075 17.3

(0.90)
STOP1 4199 2785 17.1

z(0.75,1,0)
STOP2 3140
(0.75,1.0)
EL1(1.0) 2347
EL2(0.5) 2211

Table 4: Direct Comparison of all four algorithms

These results show that the algorithms produce roughly comparable utilities, the difference in utilities is

smaller than the smallest indifference interval specified to the interval-based algorithms.

From this comparison we must conclude that, at least in the case of this NASA scheduling application,

there is little difference between the interval-based and expected loss approaches, both in terms of ex-

pected improvement and in terms of sample complexity. As expected, the unequal allocation approaches

performed better in terms of learning cost. Finally, all of the improved algorithms outperformed the bench-

mark COMPOSER algorithm in terms of learning cost.

6. Discussion and Conclusions

There are many relevant issues pertaining to the topic of hypothesis evaluation which have not been cov-

ered in this technical report, This section briefly discusses a number of these issues,

One issue is modelling the computational cost of inferring (parameter estimation) and applying the statis-

tical models. In some applications, one might imagine that these costs would play a significant role in

determining the usefulness of our hypothesis evaluation mode. However, in our target application of

learning for scheduling, the cost of gathering further information heavily outweighs the cost of inferring

and applying the statistical models. However, for other domains we concede that this may not be the case.

A second related issue is to estimate and tradeoff this cost of applying the statistics and decision theory

relative to the cost of additional examples.

Another issue is to better understand the qualitative conditions under which the cost sensitive measures

(STOP2 and EL2) will outperform the equal error distribution models (STOP1 and ELI). Generally speak-

ing, if the means and variances vary significantly, the cost sensitive measures should perform better. Addi-

tionally, if the marginal computations are reasonable projections, the cost sensitive measures should also

outperform the other measures.

An important issue is the use of the O(k) error function, Further empirical evaluation needs to be per-

formed to better understand the relationship between no and the number of shi~h switches during hypothe-
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sis evaluation, and exactly how this relates to the error models (e.g., vs. the O(k2) error model and to the

required confidence parameter y. As a further subtlety, one might consider removing strategies which be-

come dominated at any point in the evaluation (in contrast with the current approach which requires all

strategies to be compared against the final Shigh).

A better understanding of how the estimates of the means and variances vary with more examples would

also be useful, Confidence estimates on next hypotheses to evaluate might be useful. Analytical estimates

of how many examples are required as a function of the size of the hypothesis set would clarify this matter.

Additionally, determining the exact impact of the dual example phenomenon (where two examples are

needed to compute each data point for the differential distribution) would be desirable.

Finally, how will the cost of sampling vary, and how will the incremental increase in confidence (or de-

crease in expected loss) vary? Preliminary evidence in the scheduling CPU case indicates that the cost

varies considerably, and that quickly pruning bad hypotheses is of significant importance. Additionally,

if we had a method of estimating a utility difference with unequal numbers of examples that would be very

helpful, but since the utilities are covarying it seems unlikely that such a technique will be found,

Another interesting problem is that of hybrid utility functions where the value of a solution is inversely

related to the amount of time needed to create it. In the speed-up case the exact relationship between the

“’ cost of sampling and utility is known, however, one might imagine time–sensitive applications where the

time to a solution drastically impacts its utility. In general, there is a continuum of utility functions, involv-

ing time and final schedule quality. This strongly relates to the concept of “anytime algorithms” which

can be interrupted at anytime, returning increasingly good solutions.

This report has described techniques for choosing among a set of alternatives in the presence of incomplete

information and varying costs of acquiring information. In our approach, the cost and utility of various

alternatives are represented using parameterized statistical models. Using techniques from an area of sta-

tistics called parameter estimation, models can be inferred from performance on sample problems. These

statistical models can then be used to estimate the utility and cost of acquiring additional information and

the utility of selecting specific alternatives from the possible choices at hand. These techniques have been

applied to adaptive problem–solving, a technique in which a system automatically tunes various control

parameters on a performance element to improve performance in a given domain. Empirical results were

presented comparing the effect~veness of these techniques on artificially generated data and speed-up

learning from a real–world NASA scheduling domain.
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Appendix A: Confidence Calculation

TO compute the confidence that Ui-j > Owe adapt a method for computing confidence intervals for the

mean of a normal distribution with unknown variance from [Kreysig70]. Computing the confidence inter-

val for a specific confidence v can be done as follows:

Assume that we have n samples.

Find c such that F(c)=O.5 * (1 + ~) where F(c) is the t–distribution with n–1 degrees of freedom.

Compute the sample mean ~.j and variance ~~ui_Ujfor the sample.

Compute k = 5’Ui.Uj~

The confidence interval is: u-,-k s pi-j<= 77-j+ k with confidence W.

We now adapt this to work from i7_j,n, andSUi_uj,using the normal distribution rather than the t distribution..

We also modify the integral account for the fact that we are interested in the confidence that o s Pi_js =1,

rather than ~i.,–k < ~i.j s Ui..j+ k .

G
Substituting ?7_jin fork, ~.j = ~ui..j~ , thus c = Uui.uj= .

UI u]

As with the default settings for the COMPOSER approach, we use the standard normal distribution model

rather than the student t distribution. This results in the following:

m

!~+yz‘q& dy

-c

6
where again c = Ui.j—.

S“i_.j

To handle the case of indifference pruning, the confidence that the true mean is in the interval {–E, e} can

be computed similarly to the method described above. We want to compute the confidence that ~i.j (the

true mean of Ui_j) is in the interval {–8, E}. This results in the following derivation.

Therefore we can compute the confidence that the true mean ~i.j is in the interval {–8, C} as:
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Appendix B: The Applicability of Dominance

One interesting question is “in what cases will it be easier to prove dominance than to compare against

a default strategy?”. In this appendix, we examine precisely this question, and derive interesting qualita-

tive information as to when these cases occur. Consider the case where Si looks like a good strategy, better

than So with medium confidence, and Sj is worse than So with medium confidence. This results in the fol-

lowing confidences:

Ci(l

.
6

V(A’M<O) =*1 e-”’y’dy where Cj{)= Ufl—.Sjo
-Cj( )

m

G
‘P (P@ui<0 ) =+ j ‘+’’yzdy‘here cl= ~i~ o

)1

–Cji

Given this context, we ask the question: under what conditions are both Y (~ui-woc O) and Y (w+UO<0 )

less than w (~Uj.wi<0 ) . This can be reduced to the inequalities: -Cji< -Cjo and -Cji< Cio. These inequalities

can be reduced further as follows.

-D.b<qgi
“ Sji Sjo

h .J1
-~iF < –uioF (since ~ must be positive)

Jl I

i7i(j
~ > –F (multiply both sides by –1, flip inequality)

Jl 1

and because for covarying normal distributions S,_Y= ~= this can be reduced to:

—— ——
i&_Vj q–i70 U,–U, U~–Uj

(1)
JS~ + Sf–2Su > J%+ Lf–2Sjo J s;+S;-2SV> /m

Note that in the case that where i, j, and O are independent, the covariances are zero, resulting in:

Sx.y= J s; + s;

Looking at the equations marked ( 1), we can make the following observations. First, since we chose an

example where pj < p. < pi, clearly the numerators are satisfied in the inequalities in (1) (i.e., necessarily,

is is always the case that ~J–Pi > pJ+() and wJ–Pi > %+i. Thus as the sample means converge on the true

means and the differences between the means of Ui and Uj relative to U. grow we are more likely to reach

confidence quicker. What remains to be shown is that the denominators have the right relative magnitudes.

Consider the cases that:
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This tells us that when the variances of Ui and uj: S? and $ are 1=s than the whrme of UO1& the domi-

nance will be easier to show. This also tells us that covariance helps, when i and j covary more than j and

O and i and O, we are more likely to gain an advantage.

As a concrete example, consider 7Z= 5,~ = -5, G = O,S?= $ = % = 10. This results in the following.

10 5

&>& m’m
Which can be easily shown to be true.
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Appendix C: The Expected Loss Calculation

We begin by noting that we want to integrate over the difference between the two utilities, over the region

in which the unselected hypothesis strategyhasahigher Utility. Consider the expected loss for the selection

of hypothesis strategy Hj over Hi. In Order to comPute this>we need to examine the differential distribution

Ui_j, and integrate from zero to infinity.

2
m (Uui-”,-06

-0.5 —-S“j_~j
loE(L(H,>Hj)) = ~ ._l@ e ldl

U!u] o

‘U-’-l)k which results in the following implied substitutionswe then make the substitution of z =
Sui-”j

s.i-.jZ + ~i_j , & = h
— di and dl = ~dz1=X
S“,-~j F1

i7_j6
‘hen1=0‘henz=- Suj.”j

and when 1 = co

furthermore, to compute the limits of integration, we note that

(~ ‘T7.j) L =
then z = co this resulting in the formula

Sui_uj

!I@ 4,5z2 Zsui-uj

expected 10SS = —+ 17Lj)S”i.u#Z
Sui-”jd% ~,_,G e ‘L

,,-
S“i_uj

-
Sui_”j

[

m .

J&-c~e_o,5Z2z ui–uj

expected loss = — (%)4+
J

e-o,szz—

1

(Ui.j)dz

Vj.jfi Wi_jh
~ ~

expected 10SS .2[&ezd]+2[&ed]

we now note that the first integral hts an analytic solution, namely that

1

Ie4,5/xdx = eas~ , solution of this intgral leaves us with the following:

()Ui_j 2
-0.5n—S.i-uj

Sui.uje + ~ me&2dz
expected 10SS = & G\

ui_j&
‘ui–uj

(expected loss formula 1)
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Appendix D: An Analysis of Possible Performance Differences between
Cost-sensitive and non Cost-sensitive Approaches

The PAC requirement constrains but does not completely determine the behavior of a hypothesis selection

algorithm. We would like an algorithm to satisfy the requirement with the minimum cost possible. Several

of the factors that contribute to the cost are unknown before learning begins. For this reason standard

(non-rational) hypothesis selection algorithms ignore these factors when making their selection, This sec-

tion discusses the relevant factors and shows that they can be folded into a single value, the disparity index.

We show that in theory an algorithm can achieve large performance improvements by exploiting this infor-

mation, if only it were available. In fact, comparable performance improvements can be achieved in prac-

tice using sequential techniques, as we show in the next section.

First, in our analysis we use a simplified dominance indifference criterion. In this criterion, the PAC re-

quirement is that

fices to show:7

H~.l must be within some constant E of the best hypothesis with probability 1–8. It suf-

(:pr’Hi>H$el+’])(l.)

That is, there is some probability that one or more hypotheses are E-greater than the selected hypothesis.

The hypothesis selection algorithm must insure that the probability that one or more of these events occurs

is less than & With this equation we see that the problem of bounding the probability of error reduces to

bounding the probability of error of each of the k–l comparisons of H~elto Hi.

With the normality assumption the probability that Hi is greater than H~.l is a function of the estimates,

the number of examples, n, used for each estimate, the closeness parameter e, and an unknown variance

term, 62. Variance measures how much each observation can differ from its expected value, which can

be estimated from the data.8 To simplify the presentation we ignore the&parameter in the discussion that

follows. For a given pair-wise comparison the (simplified) probability of incorrect selection is:

J-1
‘(Hs’rHi)a ) (2.)

7. This is a worst case bound. If the hypotheses are independent then Equation 1 is overly conservative. However often
there will be some dependency between hypotheses.

8. We assume that the learning system can evaluate multiple hypotheses over any given example (i.e. it can determine
the utility of any and all hypotheses on that example). The estimates for the difference in expected utility, H$el – Hij can
then be constructed by averaging the difference in utility between the two hypotheses on each observed example. Variance
is also based on these differences. This “sharing” of examples means that utility estimates will be correlated with each
other. This can be a disadvantage but in the current context it is an advantage as the hypotheses are likely to be positively
correlated (e.g., when each hypothesis is a slight variant on a basic search control strategy). When the hypotheses are pos-
itively correlated the variance in the estimates will be less when sharing examples than if each hypothesis had to be eva-
luated on a separate example (the standard way to avoid correlations). It is trivial to modify the algorithm to work for the
case where it is not possible to share examples.
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Given this pairwise comparison information, Equation 3. illuminates the factors that effect the cost of se-

lecting a hypothesis.

(3.)

In order to satisfy the PAC requirement we must, for each non-selected hypothesis, bound the probability

that it is better than the selected hypothesis, The total cost is is the sum of the cost of processing each train-

ing example. Equation 3. shows that the number of examples allocated to the two hypotheses increases

as the variance increases, as the difference in utility between the hypotheses decreases, or as the acceptable

probability of making a mistake decreases.

The first two factors are determined by the environment, but the last, the probability threshold associated

with each comparison, can conceivably vary and thus be placed under the control of the hypothesis selec-

tion algorithm. The algorithm must only ensure that the sum of these probabilities remain less than 6

(Equation 1.).

If one comparison requires a great many examples and another very few, it seems possible that allowing

greater error for the first and less for the second might reduce the total cost, In fact, allowing the algorithm

to judiciously allocate error to each comparison can result in a substantial reduction in overall cost.

Minimizing the cost of selection can be cast as constrained optimization problem. Total cost is the sum

of the number of examples allocated to each comparison multiplied by the average cost to process an exam-

pie. Let c~~l,idenote the average cost per example to compare the selected hypothesis with hypothesis i.

Let @ be the error level allocated to the comparison between the selected hypothesis and hypothesis i.

Then the optimal allocation of error can be determined by solving the following optimization problem: ‘

Resource Optimization Prob-

lem

k-1

Subject to the constraint that ~ ai < d
j=1

Of course in an actual hypothesis selection problem the expected utility of the hypotheses, and perhaps

the variance and cost will be unknown before learning begins. Without considering such information the
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only reasonable policy is to assign an equal error level to each comparison (i.e. oq=S/[k-l ]).9 However,

comparing this equal allocation policy with the optimal solution shows that equal allocation can be highly

sub-optimal. To see this, consider the case with three hypotheses, k=3, which results in two comparisons

with error cxl and &-cxl. The cost is:

c.,,,10;,/,l
(H,,rH,)2

[@-1(a,)]2 + c“’~’’a;””
(H,,rH2)2

[@-’(d+ z,)]’

which is proportionate to:

[@-’(a,)]’ + D X [@(d-a,)]’

To be optimal, al must be chosen so as to minimize this cost. The equal allocation policy assigns ccl equal

to 6/2. The proportionate equation shows that the characteristics of the two comparisons depend on a

single value D called the disparity index, The disparity index is the normalized difference in evaluation

cost, variance, and expected utility of the comparisons. The equal allocation solution is optimal only when

the disparity index is equal to one, an unlikely event. This is illustrated in Figure 3, which shows the cost

equation as a function of al for two different values of the disparity index. The minimum under this curve

is the optimal cost and the value of CX1at this point determines the optimal error allocation. In contrast,

the equal allocation policy yields a cost that may differ significantly from this minimum.

Disparity Index = 1
* 8-
3
u 7-

3 6_
G

5-

4-

3-

i_L_l
0 0.05 0.10 0.15 0.20

Error I.evel (al)

lo- i i
I

0
I

I 1 I 1
0 0.05 0.10 0.15 0.20

Error Level (al)

Figure 3.
allocation

An illustration of the difference between equal and optimal
with and without disparity between the comparisons.

In practice it is unlikely that the disparity index will be close to one for all comparisons. Even if the exam-

ple cost is similar for every hypothesis, the variance and expected utilities of hypotheses will almost cer-

tainly differ. The inefficiency of the equal allocation solution increases as these disparities increases. The

9. This corresponds to the maximum entropy solution [Hunter86].
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inefficiency also increases as the number of hypotheses increases. It can be shown that fork hypotheses

the ratio of equal allocation cost to the optimal cost can be up to [cD-l(b/[k–l ])]2 / [~-1 (6)]2. The ratio can

be quite large as illustrated in Figure 4. Ignoring disparity information can result in costs up to an order

of magnitude greater with as few as ten hypotheses under consideration.

k=

k=

k=

50

10

5

3

o~
0 0.05 0.10 0.15 0.20 0.25

Error Level (5)

Figure 4. This illustrates the potential disparity between the equal allocation
cost and the optimal cost, Results plot the ratio of equal allocation cost to opti-
mal cost for several error levels and number of hypotheses.
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Appendix E: The Turnbull and Weiss Algorithm

Turnbull and Weiss have proposed a sequential interval-based procedure for selecting the member of a

population with largest mean. Members are considered normal variables with unknown mean and un-

known variance. The procedure is as follows. For each hypotheses take an initial sample of nOobserva-

tions, then take observations sequentially. Stop sampling from a hypothesis when:

S~/ni S 1/n*

Where $ is the sample variance and n~is the number of examples taken for hypothesis i. The value n*

will be defined momentarily. When sampling has stopped on all hypotheses, select the hypothesis with

the highest sample mean. The value n* is defined as d2/’&2where d is chosen to satisfy:

m

J[I@ + d)]’-y.y)dy = y *

where F(y) andfi) are the cumulative distribution function and probability density function of the stan-

dard normal distribution, &is the indifference interval, and ~ is the confidence level. Bechhoffer provides

extensive tables to determined [Bechhoffer54].

Turnbull and Weiss provide a proof that their algorithm asymptotical y exhibits the requested confidence

as the average variance of the hypotheses divided by the indifference interval converges to zero.
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Appendix F: The COMPOSER System

The COMPOSER system [Gratch93] uses a statistical approach to select a good strategy from the available

alternatives. Because COMPOSER performs hill-climbing, it is always comparing the current strategy,

to a set of alternative strategies. COMPOSER designates the current strategy the default strategy, and esti-

mates the marginal utility of each of the other strategies with respect to the default choice. If the confidence

interval for one of the marginal utilities moves entirely below O, it is discarded, If one or more marginal

utility confidence intervals moves entirely above O,that alternative strategy with the highest sample mean

is adopted. Thus, COMPOSER performs quickest ascent hill–climbing, i.e. it adopts the first alternative

which is a step uphill, breaking ties by taking the step with the greatest increase,

More specifically, the COMPOSER algorithm can be described as follows 10. Let H denote a strategy.

COMPOSER takes an initial strategy, ~, and identifies a sequence, Ho, 27], ... where each subsequent H

has higher expected utility with probability 1- & Let T = TO,TI,... be a set of candidate transformed strate- ‘

gies. The incremental utility of adopting a strategy Ti over Hi for a single problem is the utility derived

from applying Ti to d minus the utility derived from applying Hi to d, COMPOSER finds a Hi with high

expected utility by identifying transformations with positive expected incremental utility. The expected

incremental utility is estimated by averaging a sample of randomly drawn incremental utility values. Giv-

en a sample of n values, the average of that sample is denoted by ~ti.hi. The likely difference between the

average and the true expected incremental utility depends on the variance of the distribution, estimated

from a sample by the sample variance s~~i.”hi,and the size of the sample, n. COMPOSER provides a statis-

tical technique for determining when sufficient examples have been gathered to decide, with error 6, that

the expected incremental utility of a transformation is positive or negative. The COMPOSER algorithm

is summarized in Figure 1.

Let T= candidate strategies j= O 6“ = N(21TI)

While more examples and T # 0 do

j=j+l

VTi~ T: Get ,UT,.Hi /* Gather statistics and find transformations that have reached significance */
%

{

%,-hi ~ ~
significant = T~ E T: j 2 nc)and _

(UT,.H.J2 a’
}

where O(a) = ~ ( I / ~)exp{-0.5y2)dy = 6“

T = T–{T~ E significant : ~~~.~i < 0) /* Discard transforrnrnationsthat decrease expected utility */

If 3T~ E stopped: ?7T~-Hi>0 Then I* Adopt transformation that most increases expected utility *i

[Hi+, = (T~ E signl~cant : VTl E signl~cant vTh_Hi> uTrHi1
j = O 8*= iY(21Tl)

Return Hi+l
Fjgure 1: The COMPOSER algorithm

10. This paragraph and figure are taken from [Gratch et al. 93a]. For further details on the COMPOSER algorithm, see
[Gratch93].
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There are two difficulties with this approach. First, because each strategy is compared to the default, the

presence of an extremely good hypothesis strategy cannot be used to prune other hypothesis strategies.

This problem, shown graphically in Figure 2, occurs where a good hypothesis strategy (e.g. better than

Ui 1JO Uj Uj – Ui Ui

-e e

Dominance Dominance Test Ambivalence

Figure 2: Problem Cases

the current strategy) can be shown to dominate a poor hypothesis more easily (faster) than the poor hypoth-

esis can be shown to be dominated by the current strategy. This case can be most easily handled by simply

analyzing the distribution of values for the difference in utility between the strategies as shown in Figure

2b. The second difficulty is that of irrelevant distinctions. In some cases, one or more hypotheses will

have approximately the same utility as the current strategy. Thus it may take many samples to determine

which strategy is better, but the overall gain or loss is insignificant. This is a poor expenditure of sampling

resources.

Two portions of the confidence interval approach can be added directly to COMPOSER: dominance prun-

ing and indifference pruning. COMPOSER currently only tracks the utility difference between the default

strategy and each other strategy. In dominance pruning, COMPOSER tracks the incremental utility com-

paring all of the pairs of strategies, and allows pruning of the worst strategy from the hypothesis set if any

other strategy in the hypothesis set dominates it. In the case where there is a Strategy Hi which is worse

than the default Ho with medium confidence (e.g., less than ~), and there is is a strategy Hj which k better

than the default strategy Ho with medium confidence (e.g., less than Y*), the current COMPOSER strategy

would not allow pruning of Hi, but if Hj is better than Hi with high confidence (e.g., greater than ~)

dominance pruning would allow faster pruning of Hi. In particular dominance pruning would result in sig-

nificant performance improvement if Ci has a high mean (and hence expected value) as in the speedup

learning special case. This issue of cases in which using dominance is expected to improve performance

is discussed in more detail in Appendix B.

In indifference pruning, COMPOSER would require an indifference threshold c. In the case where there

is a strategy Hi that can be shown with confidence ~ that Ui.O has true mean ~i~ in the interval {–c, &},

the strategy would be pruned from the candidate set, This would significantly improve performance of

the COMPOSER algorithm if the system was wasting resources investigating candidate strategies with

low expected improvement.
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