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ABSTRACT

An analytic approach is used for evaluation of the microwave power absorption profilesin a
lossy dielectric cylinder coaxially aligned in acylindrical cavity. This approach, based on a
cylindrical shell model, also determines the norma mode frequencies and fields. Absorption
profiles inside the sample will be presented for resonant modes that are intrinsically angular
Independent. In addition, results will be presented for specia modes that are not intrinsically
angular independent, but produce angular independent absorption for time average values. This
new development broadens the class of modes that can be used in heating materials when isotropy
about an axis is needed. We demonstrate how this model can extend the application of cavity
perturbation theory for determining dielectric constants to cylinders of larger diameter.
Implications of these results for microwave processing of materials are aso discussed.

INTRODUCTION

Thedistribution of power absorption in asampleis amajor factor that influences how materials
undergo processing In a microwave cavity. This is mainly due to the effects of the power
distribution on the temperature profile within a sample. Theoretical modeling can aid in matching
absorption and temperature profiles to a Process to attain optimum results in a variety of
applications, including chemical vapor intiltration, sintering, fiber processing, combustion
synthesis, joining, and annealing. Avoidance of catastrophic events such as thermal runaway or

cracking due to thermal stresses in a sample during processing can aso be aided by calculations
and interpretation of the results.

We have previously apaPIied a combination of analytic and numerical methods to calculate
electromagnetic and thermal properties in spherical samples during microwave heating [1 - 4]. In
the present work, we present a new approach to calculate the power absorption of elossy dielectric
cylindrical sample located on the axis of a resonant cylindrical cavity. This is a desirable geometry
in many practical applications in processing materials. Furthermore, a system having this

configuration can be treated theoretically with a high degree of accuracy within the framework of a
cylindrical shell model that we have devel oped.

In this paper, we will focus on electromagnetic aspects of the problem and examine some
power absorption profiles, Then we will discussimplications of calculated results for materials
processing. In addition, we will illustrate how the model can be used in combination with
experimental measurements of the resonant frequency and (?ual ity factor to determine the complex
dielectric constant of a sample under some conditions. Data for dielectric constants as a function of
temperature and frequency are not presently available for many materials of experimental interest.
In these cases, the application of our model, in reverse, can determine the complex dielectric
constant and provide input for calculations bearing more directly on materials processing. We are
now combining results on power absorption distributions with a set of thermal equationsto derive

formulas for temJJerature profiles within cylindrical rods. We plan to conduct numerical studies of
these profiles and report on them in the future.

The remainder of this paper is organized as follows. First, the theory of a cylindrical shell

model is described. Next, calculated results are presented and discussed. Our conclusions are
contained in the final section.




THEORY

The geometry of the model that we have '
used is shown in Fig. 1. The origin O of a .
cylindrical coordinate system (p, 8,3 is located S S N Y
at the center of the bottom plate of the cavity.
The interior of the sample is treated as if it were
partitioned into zones consisting of a central rod
and many concentric tubes. The complex
dielectric constant is taken to be uniform
throughout each zone, but may vary from one
zone to another. The temperature variation of
the complex dielectric constant and the
possibility that different materials may occupy
different zones can be treated accurately with
this model whenever normal mode fields in the S
loaded cavity have no z - dependence. The
model can also yield accurate results for a
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~Normal modes of this cylindrically loaded cavity are found by first writing down formulas for
fields that are expressed as a superposition of basis functions that are known solutions of
Maxwell’s equations in each zone. Next, the gPpernate_ boundary conditions are applied at the
interior zone boundaries and at the cavity walls, includi ng the end plates. After the boundary
conditions are applied, the superposition still contains coefficients that must be determined. The
problem of fixing those coefficients is solved using a4 X 4 matrix representation with the aid of a
technique that has been described by Sphicopoulos, Bernier, and Gardiol [5]. The norma mode
frequencies and quality factors for the system are roots of a determinant of this 4 X 4 matrix. Both
the determinant itself and its roots are complex-vaued in general. We have developed an algorithm
and a computer program for locating those roots to any specified degree of accuracy.

The complex-valued norma mode frequencies for the system are
w=w'—iw"=w'—i% . (1)

We have taken the time dependence of electromagnetic fields as e-ire’. In this case, the complex
dielectric constant ¢; for zone j may be written as

2 A7
£ &F, =& (& +igl), (2a)
where
g.
v 9 (2b)
1w g,

In EQ. (2), &, isthe permittivity of vacuum and 0; is the electrical conductivity in ZOne J: In
the present version of the theory, we have taken the cavity walls to be perfectly conducting, so they
absorb no power. Therefore, the quality factor Q that appearsin Eq. e%} is due to power absorbed
by the sample only. Once a normal mode frequency has been located, coefficients in the linear
combination of basis functions that represent the normal mode fields can be found by simple matrix




agebra. Having evaluated these coefficients for all of the zones, we have completely determined
formulas for the normal mode fields throughout the cavity, including the interior of the sample.

_ Thetime average power absorbed per unit volume in the sample at point 7 in zonej, call it
P; (7), can then be evaluated using

P(F) =~ 0E, (). E; 7). (3

The asterisk denotes complex conjugation, and = (7) is the normal mode electric field. The power
absorbed in each zone | can be evaluated analytically by integrating P; over the zone. Calculations
based on these formulas for normal mode frequencies, Qs, fields, and power absorption have
been carried out. lllustrative results will be presented in the next section. In these calculations,
only modes with no z - dependence in the fields are treated. For these cases, it turns out that the
normal modes are all TM in character. Parenthetically, we should mention that for modes where
there is z - dependence, the cylindrical sample produces mixed modes that are neither TM nor TE in

character. The usual mode indices }, m, n, are applicable to the z - independent cases we will
consider, wheren = 0.

The ! = O modes are non-degenerate and have no angular dependence in the fields. The = O

modes are doubly degenerate. The formulafor the electric field in zone | at point 7 for one of the
modes can be written as

E,(F)=2¢"[c}J,(A,0)+ /Y /(A )| - (4)

The other mode contains a factor ¢ instead

of ¢". Provided that only one of these modes
is excited, the power absorption distribution in

the sample is independent of 0.

b= 1,COS (et + ¢)
LOOP 2

To excite only the e"® mode, for example,
one can use two loop antennas with the normal
to the plane of each loop in the & - direction.
(see Fig.2). The current in loop 2 is delayed by

a phase factor z/2 with respect to loop 1, and

PHASE [ __
SHIFTER [©=~™2

the amplitude of the currents are equal. The

angular separation between the antennas is  li=1,COS at Voe -iat
given by LOOP 1

g, = (4p2+ llﬁ , (5)  Fig. 2. Excitation of the ™ mode using

two loop antennas

where pisaninteger, O, 1, 2,. For the particular case wherel = 1 andp=0, 6, = /2. This
case is shown in Fig. 1. The ¢* modes open up additional frequencies and power absorption

distribution that can be used in processing materials while maintaining isotropy about an axis.
These modes are discussed in the next Section aong with thel = O modes.

DISCUSSION

~ The absorption model was applied to cylindrical samples aligned along the axis of a cylindrical
microwave cavity. The cavity was chosen to have aradius p,= 4.69 cm and alength L = 6.63
cm. These dimensions correspond to (L/2p¢) = V2 and an empty cavity TM01 0 mode resonant




')frequency fr = 2.45 GHz. For illustration purposes, we used rods of alumina with room

temperature real and imaginary dielectric constants €' = 9.0 and £" = 0.0018, respectively. All rod
calculations were performed USING 100evenly Spaced zones.
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Fig. 3. Cavity resonant frequency Fig. 4. Sample quality factor versusrod
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Figure 3 shows the dependence of the cavity resonant frequency on rod radius. As the rod

radius, a, increases the resonant freguency decreases from the empty cavity value and approaches a
n

limiting value at a/pc = 1 correspo
cavity resonant frequencies, fo10/f 110, ae equ
the behavior of the resortant frequency in the c?artially load

ing to afulg/ loaded cavity. The ratio of the TMp10 to TM110
for the e'eTc]Fty and fully loaded cavity. However,
cavity depends on the internal electric

field distribution within the rod which is mode dependent. The quality factor Qg of the rod sample

d

infinity asther

is the measure loaded cavity quality factor since we have assumed infinitelv conducting walls. The

endence of %s on the rod radius is shown in Fig. 4. The sample quality factor approaches
od radius approaches zero. The T™ 110 mode is significantly less absorbing than

the TM(10 mode for aspect ratio’s a/pc < 0.3. For aspect ratio’s a/p,2 0.3 the sample Q's for
both modes are essentially equal Qs = 5000.
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The profile of the power absorption within a rod depends on the excitation mode and the rod radius
to cylindrical radius aspect ratio. To illustrate the distribution of microwave power within rods of
various radii, we have calculated the power absorbed per unit length assumed that a total of one
watt is absorbed by each rod. In this way, we can compare the actual radial profiles between rods
of different radii, since the area under the power density versus radius curve is one watt for every
rod. Figure 5 shows the power density profile for the TMg 10 mode for rod radii corresponding to
a/pc = 0.1, 0.4, and 0.8. It is seen that the power density profile becomes steeper as the rod
radius is reduced. The power density reaches a maximum inside the rod for larger radii, however
the magnitude of the power density is reduced, The introduction of angular dependence into the
mode changes the nature of the absorption near the center of the rod as seen in Fig. 6 for the
TM | 10 mode. Here, there is a upward curvature of the power density near the center. Thisisin
contrast with the downward curvature seen in Fig. 5 for the TMg10 mode. The magnitude of the
power density, in the TM110_mode is aimost doubled for the same size rod excent near the center.
A maximum in the power density iS again obtained for the rods of larger radii. *
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Fig. 7. TM020 mode power profile for Fig. 8. TM220 mode power profile for
rods of various radii. rods of various radii.
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The power density profile for the higher order TMg20 and TM22¢ modes are shown in Figs. 7
and 8. An additional half wavelength radial oscillation isincluded within the cylindrical cavity by
fqoi r(ljg from the TM010 mode to the TM020 mode. This additional oscillation in the cavity electric

leld also leads to oscillations in the power density profile within the rod. The amount of
oscillatory behavior in a rod depends on the rod radius to cylindrical radius aspect ratio. Increasing
the order of the Bessel function b%/ e?Oi ng from the TMq20 mode to the TM220 mode reduces the
radial dependence of the electric Tield near the axis of the cavity. This effect causes the resultant
power density profile within arod to bestreched out along the radial direction.

The cylindrical model developed hereis capable of calculating the change in both the resonant
frequency and quality factor of the cavity upon insertion of a cylindrical rod along the axis. We
have compared the model calculations for the frequency shift and sample quality factor to the
predictions of cavity perturbation theory [6]. For these calculations, we excited the microwave
cavity in the TMg1 g mode and used the complex dielectric constantse' = 10.0 and £" = 0.01 for
the rod material. The calculated frequency shifts from the cylindrical model and cavity

erturbation, shown in Fig. 9, overlap to better than 3 % for rod radii a< 0. 15 cm (a/p.< 0.03).
nthe range 0.15 cm < a< 0.5 cm (0.03 < alp,< 0. 11) the frequency shifts agree to within= 6.8
%. Above a = 0.5 cm, the calculated values diverge with cavity perturbation, predicting a larger
decrease in the frequency shift. The log of the quality factor Qs calculated from the cylindrical
model and cavity perturbation is shownin Fig. 10. For rod radii as 0.15 cm, the Q values agree




-

to Within = 8 %, while in the range O. 1S cm < a < 0.5 cm the maximum disagreement in the Q’sis
19 %. As with the “frequency Shift, the Q values diverge for a > 0.5 cm with cavity perturbation
predicting a lower Q.
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perturbation.

The above analysis indicates that, for a material with these typical dielectric constants, cavity
perturbation will only be valid (to within 3 %) for rod radii a<0.15 cm, i.e., for ka<0.08. At a
= 0.15, the sample quality factor Qs = 33,000. Thisis arather high Q value and would be hard to
accurately measure experimentally. On the other hand, it would be much easier to apply the
cylindrical model to measurements on a larger rod to extract the dielectric constants. For example,
at arod radius of a= 0.7 cm, the cylindrical model predicts a quality factor and frequency shift of
Qs = 1560, and Af/f = -0.294, respectively, which are easy to measure experimentally. To
illustrated the sensitivity of the cylindrical model in determining the dielectric constants, we
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assumed the calculated Qs and Af/f for a= 0.7 cm are actually experimental values and used the
model to calculate the required dielectric constants. Figure 11 shows theg" predictions of the
theory for arange of Qs about the valuese' = 10 and Af/f = 0.294, The sensitivity of the model is
given by the slope at the intersection of the dashed lines, Ae"/AQs = -6.1510-6. A 10%
uncertainty in AQs wil I/?neld a10% uncertainty ing". Figure 12 shows thee' predictions of the

theory for arange of Af/f about the values €' = 0.01 and Qs = 1560. Again the sensitivity of the
mode! is given by the slope at the intersection of the dashed lines, Ae'/A(Af/f)=-441. A 0.2 %
uncertainty in A(Af/f) will yield a0.26 % uncertainty in €'.

CONCLUSIONS

We have developed a microwave absorption model for a cylindrical rod situated along the entire
axis of acylindrical cavity. The model can be applied to modes with angular dependence for
special excitation conditions. The power absorption profiles within various rods were calcul ated
for the lower order TM,, 0 modes and the distribution of the power absorption was found to be
dependent on the electromagnetic properties of the excitation mode, This mode dependence could
have important consequences in efforts to control the thermal runaway process. We demonstrated
that the cylindrical model is sufficiently sensitive to determine the complex dielectric constant from

experimental quality factor and frequency measurements for large rod radii where the cavity
perturbation technique is invalid.
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