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Abstract

This paper has presented an approach to dealing
with the complexity of explanation-bawd learn-
ing plans in complex domains. This approach
uscs a simplified algorithm to construct plans, and
employs later refinements to repair bugs in con-
structed plans. This algorithm has the theoretical
propert ies of completeness and convergence upon
soundness. This incremental reasoning planning
and learning algorithm has been implemented us-
ing a partial-order constraint posting planner and
empirically compared to a conventional exhaustive
reasoning partial-order constraint-posting planner
and learning algorithm. This comparison showed
that: 1) incremental reasoning significantly re-
duced learning costs compared to exhaustive rea-
soning; 2) Explanation-based Learning (EBL)re-
duced failures from incremental reasoning; and
3) EBL with incremental reasoning required less
search to solve problems than EBL with exhaus-
tive rcaoning.

Introduction

Explanation-based learning and incremental reasoning
offer a powerful combination in dealing with complexity
in planning. Incremental reasoning alows the planner
to reduce the computational expense of plan construc-
tion by using simplifications. Our approach uscs a gen-
cral class of smplifications determined by a smplified
truth criterion. A refinement agorithm based upon this
simplified truth criterion alows simplifications to bere-
tracted in response to failures. The end intended result
is a set of simplified plans which fal infrequently and
arc learned a a reduced cost duc to simplifications. Wc
call our approach incremental reasoning because refine-
ments converge upon the exhaustive reasoning approach
(e.g., retracting all simplifications). Explanation-based
learning (EBL) offers failure reduction in the long term
by allowing learned plans to be used in place of failure-
prone from scratch problem-solving. Additionally, as
when used with exhaustive reasoning, EBL can also lead
to reduced search to solve problems.
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The combination of incremental reasoning and EBL
holds both intuitive and computational appeal. From
the intuitive standpoint, people seem to often make as
sumptions and simplifications to make reasoning more
tractable. With time, increased expertise leads to bet-
ter knowledge about which simplifications will still allow
adequate reasoning. All of these characteristics are con-
sistent with explanation-based learning and incremental
reasoning. From a computational standpoint, incremen-
tal reasoning can be shown to reduce computation under
certain conditions. Explanation-based learning can also
be shown to reduce failures in certain cases.

This paper focusses upon a particular type of incre-
mental reasoning, incremental reasoning about opera-
tor effects (Chien 1990) which is an extension of tech-
niques described in (Chien89). In this approach the
planner constructs initial plans ignoring a type of nega-
tive subgoal interaction, When failures occur, the plan-
ner expands its consideration of subgoa interactions to
construct a viable plan. This process continues until a
plan is found. Because the expansion of consideration of
subgoal interactions converges upon exhaustive reason-
ing our incremental reasoning agorithm converges upon
soundness. Because the simplifications arc over-general,
our incremental reasoning algorithm retains complete-
1ness.

Our incremental reasoning approach is applicable in
cases where:

1. A sound and complete (although intractable) domain
theory exists.

2. A strong diagnostic capability exists to construct ex-
planations for failures.

3. The cost of falures is low.

4. The system is allowed multiple attempts to solve a
problem.

While many systems have been constructed which use
incremental reasoning in planning (Simmons 1988) and
incremental reasoning in combination with explanation-
based learning (Hammond 1989; Collins ct al. 1989),
there has been little effort devoted to empirica analyses
of reduced computation from the usc of simplifications
and reduced failures duc to learning. Many empirical
studies of exhaustive reasoning systems combined with
EBL have examined reduced search to solve problems
duc to learning (e.g., (Minton 1988)).

In order to empirically evaluate the computational
properties of incremental reasoning in combination




with explanation-based learning wc used two planning
and learning systems. The first, the control system,
was a pattial-order constraint-posting exhaustive plan-
ner which used conventional explanation-based learn-
ing. The second, the experiment system, was also
a partial-order constraint-posting planner which used
explanation-based learning, but constructed plans us-
ing simplifications. In order to 'to remove effects of
search heuristics, both systems searched plans breadth-
first in the number of operators in the plan, thus plans
scarched statistics report upon the size of the scarch
spaces scarched by the respective systems.

To test these systems, wc constructed two domain
theories. Idcally, the systems would be tested upon do-
main theories used in other empirical tests (e.g. con-
structed by other researchers), however, almost all do-
main theories are restricted to STRIPS operators be-
cause most planners and learners cannot deal with con-
ditional effects. Our incremental reasoning approach is
designed precisely to dea with the additional complex-
it y of operators with conditional effects. Consequent] v,
we constructed two new domain theories by extending
domain theories used by Minton in his empirical studies
(Minton 1988).

In our empirical tests, wc did indeed observe the
cxpected three characteristics predicted by advocators
of incremental reasoning and explanation-based learn-
ing. The observed characteristics were: reduced overall
learning cost duc to incremental reasoning, EBL pro-
duced a reduced failure rate from incremental reason-
ing, and EBL + incrementl reasoning offered reduced
overal search in problem solving compared to exhaus-
tive reasoning + EBL.

The principal contributions of this paper are:

1. It presents a novel simplification method applicable
for explanation-based learning of plans. This method
is unique in that it uses a simplification of a truth
criterion to guide reasoning.

2. It supports this method with empirical results of
a)reduced learning cost duc to simplification; b) re-
duccd failures duc to EBL; and c¢) reduced search due
to simplifications+ EBL.

3. It presents some of the first work to annly more pow-
erful partial-order and constraint-posting planning
techniques in conjunction with EBL.

The remainder of this paper is organized as fol-
lows. Section 2 describes the incremental reasoning
techniques evaluated in this paper. Section 3 sketches
the proofs for why our incremental reasoning approach
is complete and converges upon soundness. Section 4
describes the domains used in the empirical evaluation
and uscs an example to illustrate our refinement ap-
proach. Section 5 presents the empirical results derived
from our study, Section 6 describes related work and
section 7 summarizes the principal contributions of this
paper.

An Overview of Incremental Reasoning

Our refinement approach presumes a representation
based upon situation calculus in which situations arc
complete and consistent propositional world descrip-
tions. In our representation, an action A can be exe-
cuted in a situation S1 only if the preconditions for A

arc true in S1, The situation resulting from this action
execution is computed by first asserting all of the direct
effects of A, asserting al of the conditiona effects of
A whose conditional preconditions arc met in S1, and
finaly asserting al of those facts in S1 which are not
contradicted by any of the director conditiona effects of
A. Actions arc not alowed to have contradictory effects.
I"bus, a fact can be true in a Situation via a direct effect,
conditional effect, or persistence. Shown below is part
of a sample state description from an extended STRIPS
domain. In this example, the robot moving from room]
to room2 causes box1 to move to roo, 2 but bo,2 does
not move. This is because a conditional effect of the
move-robot operator is that boxes being carried move
with the robot and box] is being carried but box2 is
not. Note also that the assertion of the fact —(location
boxlrooml ) is also conditional on the carrying state
of boxl. Thus, the deletion of the fact (location box1
room] ) is aso conditional on the carrying state of boxl.

Initial State NewState
(location boxl rooml)
—(location boxl room?2)
(location box2rooml)

—{location box1 room1l)
(location boxzlroom?2)
(location boz2 rooml)
-(location box2room?2) allocation boz2room?2)
(location robot room1) -(location robot rooml)

-(location robot room?2) (location robot room?2)
(robotcarrying boxl) (robotcarrying)
-(robotCarrying box2) ~(robot. arrying box2)

An important point is that this representation allows
an Operator to have effects conditional upon the state
in which they arc executed. While this conditionality is
finite, and can berepresented in conventiona STRIPS
operators, it would require a number of STRIPS opera-
tor definitions exponential in the number of conditional
effects (i.e., a non-conditional operator for each possi-
ble combination of occurring conditional effects). This
representation dots not allow direct representation of
inferred effects. However, if there arc a finite number of
inferred effects, these can be represented as conditional
effects by requiring a conditional effect for each unique
derivation for an inferred effect.

Plan construction and generalization occurs accord-
ing to a truth criterion, which states the cases in which
facts arc true in situations in a plan. Our truth criterion
is similar to that stated in (Chapman87), except for two
changes. First, it handles conditiona effects of actions.
Second, it dots not alow white knights (a form of dis-
junctive support). Basically, this truth criterion states
that a fact will be true if it 1s established and then pro-
tected. Establishing a fact means ensuring it is true at
some point before it is needed, and protecting a fact
means ensuring that it will remain true until needed. A
fact F is established at a situation S, iff:

1. Sest is SO (the given initial state) and F el (the
initial state description).

2.8t is the output State of some action A which has
the direct effect F.

3. Sesristhe output state of some action A which has the
conditional effect F, whose conditional preconditions
arc true in the input situation for A.

A fact F is protected from Set to Sg., if there is no
action A¢op Such that:

1. Aqob is ordered after S.g; and before Sy, and




2. Aqop has either:

(@) a direct effect D which contradicts F or

(b) a conditional effect C which contradicts F and
whose conditional preconditions arc true in the in-
put situation to Agb.

The truth criterion is interpreted procedurally to con-
struct plans. Thus, the planner might usc a conditiona
eflect of an action aready in the plan to achicve a goal,
or add an action to the plan which had a conditiona ef-
fect which achicves the goal. Correspondingly, the plan-
ner would also have to protect the newly achieved goal
from each action effect aready in the plan and protect
dready achieved goals from action effects being intro-
duced into the plan by addition of operators to the plan.
For each action effect and protection, either: 1) the ac-
tion must occur outside the protection interval, 2) the
effect must not contradict the protected fact; or 3 the
effect is a conditional effect and a conditional precon-
dition of the conditional effect must not be true in the
input state to the action.

Within this framework, planning can be viewed as
search in the plan space (the space of al possible plans).
Search operators are modifications to the plan (e.g., add
an operator, constrain an operator) and may introduce
subgoals. Search begins with a null plan, and terminates
when ecither: 1) a resource bound is exceeded, 2) no
aternatives exist, or 3) a plan which achieves al of the
problem goals is found.

The protection aspect of planning is computationally
expensive because it requires reasoning about the ef-
fects of all potentially interfering operators. Because
operators may have conditional effects, reasoning about
the effects of an operator requires reasoning about the
situation in which that operator is executed, Consider
attempting to achieve a fact P at time T1 using an ac-
tion A. Establishment requires reasoning to ensure that
A is before T1 and requiring that Sin(a) is sufficient to
allow A to assert P. Reasoning about protecting P from
the execution of A until T1 requires: 1) determining all
actions that might occur after A and before T1; 2) de-
termining whether any possible effects of these actions
possibly contradicts P; and 3) determining all of the po-
tential situations in which actions satisfying 1 & 2 might
be executed and determining which of these situations
is sufficient to produce the contradicting effect(s). Un-
fortunately, task 3 involves repeatedly determining the
truth value of a fact in a partially ordered plan with
conditional effects which is a known NP-hard problem
(Chapman87).

An important point is that this problem of expensive
reasoning about protections is representation indepen-
dent. The complexity arises from the expressive power
of conditional effects, not the exact representation of
operators and persistence that we employ. In (Chap-
man87), Chapman shows that for any representation
sufficient to represent conditional effects, determining
the truth value of a fact in a partia-order plan is an
NP-hard problem. For example, using frame axioms to
prove persistence would require many explanations for
multiple orderings. To guarantee soundness any frame
axiom persistence proof would need to check the same
potentially relevant facts as our approach of checking
against operator effects.

Not only is it computationally expensive to perform
exhaustive protection from conditional effects, condi-
tional effect interference is more likely to be preventable
(i.e., via refinement) than would a direct effect. interfer-
ence. This is because for a direct effect, the interference
can be removed only by ordering or by ensuring codes-
ignations do not alow interference. For a conditional
effect, there arc these two options plus the additional
option of planning to invalidate a conditional precondi-
tion of the conditional effect.

The motivation for this inference limitation is not
that this is the exact bound which should necessarily
be placed upon inference, but rather that inference typ-
icaly is limited by computational resources and an in-
telligent planning system must have the capability to
reason about these limitations and extend its inference
as directed by world feedback. The focus of this research
is upon developing methods for making and retracting
simplifications, not deciding when to make simplifica-
tions.

Thus, with regard to the truth criterion described
above, the difference between the exhaustive and incre-
ment a approaches can be summarized as follows. The
exhaustive approach ensures that all conditional effects
of operators do not invalidate protections in the plan,
The incremental approach checks only those conditional
effects which arc used for establishment purposes in the
plan. This simplification corresponds to not considering
general class of negative goa interactions.

However, incomplete reasoning about protections al-
lows the possibility that plans will fail unexpectedly.
Because the incomplete reasoning about protections is
the only source of unsoundness used in constructing the
initial plan, any future plan failures must be due to
unconsidered conditional effects of operators violating
protections in the plan. Consequently, when the system
encounters a failure it uses a full execution trace of the
failure to find a previously overlooked relevant negative
effect-protection interaction, At this point, the incre-
mental systcm performs the same interaction analysis
for this effect protection pair that the exhaustive sys-
tem dots during initial plan construction as described
above,

Incremental Reasoning is Complete and
Converges Upon Soundness

The incremental reasoning approach we have described
has the theoretical properties of convergence upon
soundness and completeness. Because of space con-
straints, wc do not present full proofs of these prop-
ertics, but outline the proofs of these properties. For
further details see (Chien 1990),

Incremental reasoning about protections converges
upon soundness. This means that after a finite num-
ber of falures (and corresponding refinements) an in-
crementally constructed explanation converges upon
soundness. The proof goes as follows. A bug in a plan is
a case where a conditional effect interferes with a protec-
tion. Because there are a finite number of operators in
the plan, and there are a finite number of conditiona ef-
fects per operator, the number of possible bugs is finite.
Because refinement enforces the same protection con-
straints used in exhaustive reasoning, each refinement




removes a bug. Thus, after a finite number of failures
and refinements al possible bugs will be removed and
the refined plan will be sound.

Incremental reasoning about protections is complete:
This is because the incremental reasoning set of condi-
tions is a relaxation of the constraints from the exhaus-
tive reasoning truth criterion. As refinements arc made,
they force the set of protection checks to converge upon
those required by the exhaustive approach, but still arc
a subset (or possibly equal) to those required by the
exhaustive approach. Thus, the incremental approach
will still consider a set of plans a superset (although
possibly equal) of the exhaustive set and thus the incre-
mental approach is complete.

Note that while the incremental approach alows a su-
perset of the plans considered by exhaustive approach,
this dots not mean that the incremental approach is
performing more search. This is because the search is
conducted in the space of constraints upon the plans,
thus the incremental approach is searching a smaller
space by enforcing and checking less constraints (be-
cause enforcing less constraints means considering more
plans).

Domains and Example

We now describe the domain theories used to test the in-
crement al reasoning approach. 1 deall y our incremental
reasoning approach would be tested upon domain the-
orics constructed by other researchers. However, there
are very fcw domain theories used by planning or ma-
chine learning researchers with conditional effects. No-
table exceptions are (Schoppers 1989; Pednault 1991).
However their representations arc very different from
ours, which prevented usc of their domain theories.

Consequently, wc constructed two domain theories
by modifying domain theories used by Minton (Minton
1988) in his learning research. The empirical evalua-
tion compared the performance of the incremental and
exhaustive approaches in two domains - a workshop do-
main and a modified STRIPS domain.

The STRIPS domain consisted of five operators. A
robot could pickup, putdown, align (for pushing), and
unalign blocks that were carriable or pushable (a robot
could carry one block plus push another at any onc
time). Changing rooms caused aligned or carried blocks
to change rooms with the robot. in order to align or
pickup a block, the robot had to be next to the block,
which was defined as being in the same room. This
domain theory could be formulated with the change-
room operator having four conditional effects, and no
other operators having conditiona effects. Problems in
the STRIPS domain were specifications of goal loca-
tions for blocks and robots. The most complex problem
set, problem set C, involved a three room world with
two block location goals and a robot location goal (the
longest solution required would thus be 12 operators).
The STRIPS domain is highly recursive and requires
deep subgoaling. Additionally, there are many protec-
tion choices because there arc many potentially relevant
conditional effects each with several conditional precon-
ditions.

The workshop domain consists of eight operators with
a total of thirteen conditional effects. In this domain the

goa of the system is to join pieces together in certain
orientations and achicve certain attribute goals (such
as length and smoothness). Assuming no interactions,
join goals took roughly 3 operators to achieve and most
attribute goals could be achicved in a single operator.
Some of the workshop domain problems arc unsolvable.
The most difficult workshop domain problems took 10
operators to achicve. In the most difficult problem set,
WKC, problems contained three objects, three attribute
goals, and three join goals. In the workshop domain, the
goa structure is very shallow (e.g., did not require deep
sub.gosling) and the planner attempts to avoid interac-
tions. In this domain the incremental planner makes a
large number of assumptions about attribute values for
objects persisting through conditional effects. An En-
glish description of the cut operator from the workshop
domain is shown below:

Operator: cut object to length
Preconditions: saw is not hot
Effects: object length is length

Conditional Effects: if object is large then saw now hot
if object is metal then saw now hot
if object is large then

surface of the object now rough

Wc now describe a example of incremental refinement
in a workshop domain problem.In this problem, the
system is given the goa of producing an object of a
certain length which also has a smooth surface. The
planner decides to achicve the length goal by using a
cut operator and to achieve the surface smooth goal
by using a sand operator. The system then attempts
this plan, executing the sand operator and then the cut
operator on a large object.

This results in an end state where the length goa is
achieved but not the smooth goal. The smooth goa has
been invalidated by a conditional effect of the cut op-
erator, which states that when a large object is cut, it
is no longer smooth. This operator was introduced to
achieve the length goal. This triggers a refinement of the
plan, which involves enforcing the protection relation-
ship between the cut operator and the protection of the
smooth state from the execution of the sand operator to
the end of the plan. Enforcing the protection produces
three options: 1) move the cut operator before the sand
operator or after the goal state; 2) try to sand a differ-
ent object from the object that is cut; or 3) enforce that
the object used not be large. Option 1 means cut before
sand, and will result is a correct plan. Option 2 cannot
be applied because the goa requires that a single object
fulfill the length and smooth goals. Option 3 would aso
result in a correct plan. Note that this enforcement of
the protection constraints and evaluation of protection
options is identical to that which would be performed
by the exhaustive approach. The difference is that the
incremental  approach enforces these constraints only in
response to failures.

Empirical Evaluation

This section describes the empirical evaluation of incre-
mental reasoning and explanation-based learning. First
wc describe the characteristics that wc wished to mea-
sure. Second, wc describe the experimental methodol-
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Figure 1. impact of Simplified Truth Criteria on Learn-
ing Cost as a Function of Problem Complexity

ogy used to measure these characteristics. Third, wc
describe the results of our empirical tests.

The three phenomena wc wished to verify empirically
arc the following:

1. Incremental reasoning reduces the computational ex-
pense pcr example of applying explanation-based
learning.

2. Explanation-based learning reduces the long-term
failure rate for incremental reasoning.

3. Explanation-based learning_reduces the lonz-term
scarch reguirements for incremental reasoning:

In order to measure these three phenomena we used
an exhaustive control system and an incremental ex-
periment system. Both systems were partial-order
constraint-posting planners. Additionally, to ensure the
results were not skewed by use of search heuristics, both
systems used search breadth-first in the number of op-
erators in the plan.

We now present results from the WKB problem set
from the workshop domain. In order to measure the
impact of incremental reasoning on the cost of applying
EBL, wc measured the number of plans searched to con-
struct an explanation (plan) and the CPU time for the
entire learning process (including search to construct an
explanation (plan)). Because the search to find a solu-
tion is the majority of the learning cost, these statistics
arc very similar. In both these cases, the learning cost
was measured over 700 problems and is shown in Figure
1las a function of problem complexity as measured by
the solution length. The cost of learning is exponential
as a function of problem complexity, as is indicated by
the roughly linear shape of the cost on the logarithmic
scale.

As indicated by these graphs, using the simplifica-
tions in learning significantly reduced the cost of learn-
ing. It is worth noting that there was only one prob-
Icm of solution length 8, there were between 8 and 218
problems of the other soution lengths. because Figure
1 shows that the incremental reasoning approach of-
fers greater than constant speedup on an logarithmic
scale in problem solution (explanation construction) for
explanation-based learning, this indicates that an expo-
nential speecdup has occurred. For unsolvable problems
(c.g., those problems for which the planner was able to
show that no solution exists within the depth bound),
system performance is measured as the amount of search
conducted before concluding no solution exists. Inthese
test the incremental approach outperformed the exhaus-
tive approach opn the average in search 138.1 plans
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Figure 3: Impact of Learning on Failure Rate and
Matching Rate

scarched to 360.9 plans searched and in solution time
4.1 CPU seconds to 8.24 CPU seconds.

In order to measure the long-term learning effects on
failure and search rates, a training and validation set
each of 300 problems was generated. After each system
was alowed to train upon a training set problem, the
system was tested upon the ent ire validation set. Vali-
dation set performance was measured in three ways:

1. number of plans searched and computation time to
solve al of the problems in the validation set;

2. number of failures encountered while solving all of the
problems in the validation set; and

3. number of problems solved by matching learned plans
from the plan library.

Figures 2 shows the number of plans searched and
CPU time used by the incremental and exhaustive
approaches to solve all of the problems in the vali-
dation set, In both cases the incremental approach
performs better before learning and maintains its ad-
vantage throughout learning, For comparison, a non-
learning incremental or exhaustive system performance
would be a horizontal line from the Y intercept. Thus,
the use of simplifications and learning outperforms both
exhaustive without, exhaustive with learning, and sim-
plifications without learning.

The graph at the left of Figure 3 shows the total num-
ber of failures encountered by the incremental approach
in solving al of the problems in the validation set, This
graph shows that the general trend is decreasing, indi-
cating that learning is indeed reducing the number of
failures made by the incremental approach. For com-
parison, performance of a non-learning incremental sys-
tem would be indicated by a horizontal line from the Y
intercept.

The graph at the right of Figure 3 shows the number
of problems in the validation set solved by matching a



plan in the plan library. Note that the exhaustive ap-
proach match rate is nondecreasing because with the
exhaustive approach the plan library nevers decreases
in size. In contrast, with the incremental approach,
faillures in already learned plans causes thcm to bere-
moved from the library so that the incremental match
rate sometimes decreases.

Related Work and Conclusions

While there have been numerous failure-driven plan-
nin? systems (such as (Simmons 1988; Hammond 1989;
Collins et a. 1989; Bennett90; Sussman 1973)) our ap-
proach is unique in that it uses an approximation of au
exhaustive truth criterion to construct plans. Addition-
aly, while there have been numerous empirical evalua-
tions of standard EBL systems (such as (Minton 1988))
there have been relatively fcw evaluations of incremen-
tal reasoning or failure-driven refinement plan learning
systems. However, there have been numerous empirical
evaluations for other abstraction-based learning systems
applied to problem-solving such as (Tadepalli 1989),
and (Unruh & Rosenbloom 1989). Other related work
includes Kambhampati & Kedar 1991) which describes
the usc @ truth criteria to guide explanation-based gen-
eralization of plans but dots not address issues of incre-
mental reasoning or refinement.

The incremental reasoning approach described in this
paper is substantially revised from the approach de-
scribed in (Chien89) and is described in more detail in
(Chien 1990). The primary change in the approach is to
make the simplifications more closcly tied to truth crite-
rion conditions. This general approach highlights how
using the truth criterion as a guide to simplficiations
can be useful in attacking the computational expense of
planning.

An important area for future work would be to eval-
uate the incremental reasoning techniques described in
this paper using generally available partial order plan-
ners such as UCPOP (Pemberthy & Weld 1992). This
work (Chien 1990) was originally done before the exis-
tence of such planners but testing incremental reasoning
on such planners (and the numerous domain associated
domain theories) would be informative.

It is worth noting that in the two domains wc used to
test incremental reasoning The Utility problem (Minton
1988) did not arise. We expect that in genera] there will
be interactions between incremental reasoning and the
utility problem, as learning possibly faulty plans allows
learning of more plans of potentially lower utility.

It is also worth noting that in both the workshop
and modified STRIPS domain it was frequently possible
to deny conditional eflect interactions by planning to
prevent their conditional preconditions. In general, as
performing this type of fix becomes more difficult, the
cffectiveness of incremental reasoning about conditional
effects will decrease. However, the general approach of
simplifications based upon relaxing truth criteria is still
valid, and might indicate other types of simplifications
to apply.

This paper has presented an approach to dealing with
the complexity of explanation-based learning plans in
comp]cx domains. This approach uses a simplified algo-
rithm to construct plans, and employs later refinements

to repair bugs in constructed plans. This algorithm
has the theoretical properties of completeness and con-
vergence upon soundness. This incremental rcasoning
planning and learning algorithm has been implemented
using a partial-order constraint posting planner and em-
pirically compared to a conventional exhaustive rcason-
ing partial-order constraint-posting planner and learn-
ing algorithm. This comparison showed that: 1) in-
cremental reasoning significantly reduced learning costs
compared to exhaustive reasoning; 2) EBL reduced fail-
ures from incremental reasoning; and 3) EBL with incre-
mental reasoning required less search to solve problems
than EBIL with exhaustive rcaoning.
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