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ABSTRACT

We investigate the radiative shock overstabiit y for finite size objects. We follow the

analysis of Chevalier & Imamura (1982), but we take into account the trqsverse flow of

material out of the postshock region. The mass loss from the postshock region stabilizes

the flow. As a rough estimate, the shock radiative instabilityy takes place when the shock

wave position with no radiative cooling (only mass loss present) is larger than the shock

position with no mass loss (only radiative cooling present).

For typical conditions of planetary nebulae we find that in order for the shock radiative

overstability to occur, the nebular radius should be 1? ~ 101gn:l cm, where na is the total

number density of the ISM (in units of cm-s). We give several examples of interacting

planetary nebuhe in light of this condition.
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1. INTRODUCTION

Langer Chanmugam & Shaviv (1981; 1982) pionered in calculating the radiative shock

wave instability. They discussed the instability in the context of accretion column onto

compact objects. Their initial work was extended to other astrophysical situations and for

different physical parameters (Chevalier & Imamura 1982, hereafter CI; Imamura, Wolff

& Durisen 1984; Langer 1985; Bertschinger 1986; Innes, Giddings & Falle 1987; Gaetz,

Edgar & Chevalier 1988; Gouveia Dal Pino & Benz 1993). Bertschinger (1986) considered

nonradial perturbations to a steady state one dimensional flow; and Gouveia Dal Pino

& Benz (1993) found the radiative shock instabfit y in their three dimensional hydrody-

namical simulations. But most of the works mentioned above considered one dimensional

flows. In this paper we consider another effect which results from multidimensional flow

structure, namely, the transverse flow of material out of the postshock region.

For certain radiative cooling rates radiative. shocks become overstable, i.e. the ampli-

tude of a small perturbation of the shock position increases while it is oscillating around

the shock equilibrium position. The cooling rate is mainly determined by the postshock

temperature, which itself depends on the shock velocity. The cooling rate also depends on

the preshock ionization levels of the different atoms. This can make a difference between

ISM shock of planetary nebulae (PNe) and supernova remnants, since the central stars of

PNe can ionize the preshock ISM.

Based on morphological considerations Zucker & Soker (1993) suggest that the inter-

action of the PN IC 4593 with the ISM possess the radiative shock instability. This PN

clearly shows characteristics of PNe moving through the ISM, creating a bow shock in the

ISM. The bow shock distance from the nebula is expected to be of the order of the nebula

size (Soker, Borkowski & Sarazin 1991). The finite size of the bowshock, therefore, must

be taken into account in calculating the shock instability.
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In this paper we conduct semi-analytical study of the influence of a finite size shock

region, by taking into account the mass which flows transversely out of the postshock

region. Our technique and basic equations ($2.1), beside the mass loss term, are the

same as those of CI. Our purpose is to examine the general influence of the transverse

flow behind the bow shock on the radiative shock instability, rather than to study any

particular object. We therefore describe the mass loss from the postshock region, by a

simple toy model (~2.2). In ~3 we present the results. We look at the variation of the

oscillation frequencies and growth rates of several modes and for several cooling rates, as

the mass loss rate is varied. In $4 we discuss and summerize the implications of the results

for PNe moving through the ISM.

2. THE EQUATIONS WITH SIDE MASS LOSS

Al The Basic Equations

Beside the mass loss term from the postshock region, our equations are the same as

equation (l)-(3) of CI. The flow structure is illustrated in their figure 1, with the following

not ationso The spatial one dimensional coordinate is z = x, at the shock and z = O

at the wall, where the postshock flow stagnates. p is the density, p is the pressure, v is

the velocity along the z direction, and 2’ is the temperature. The cooling rate per unit

volume is LnenP, where ne and nP are the electron and proton density, respectively, and

L(T) w !Z’ais the cooling function.

The flow equations for a 7 = 5/3

~L

and

gas, where 7 is the adiabatic index, are (CI)

8p

i%
%vz=.b.I Paz (2.1)

‘(*+v:)+*=o ‘ ‘292)
%p ap

:N++V*)=-:’2A(9°
~+vG –-– (2.3)
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where A is a constant. The only difference between (2.1)-(2.3) above and equations (l)-(3)

of CI is the mass loss term PS in equation (2.1). Therefore a steady state solution of our

equations is not given in equations (7) and (8) of CI. The boundary conditions, though, are

the same as those in CI. For an incoming preshock material with negligible temperature,

density p. and velocity ~i. in the negative direction, the boundary conditions (i.e. the

strong shock condition and the assumption of stationary wall) are

1 3
Po(xs) = 4pa; Vo(z, ) = –~uin; PO(Z4) = ~PO”?n;

(equations [4]-[6] of CI)

Vo(o) = o. (2.4)

We note that around finite size objects there will be bow shocks. The shock conditions

away from the symmetry axis should be those for oblique shocks. In our one-dimensional

analysis we neglect this effect. In any case, this effect is small in our problem since we look

on the flow near the symmetry axis. The finite size of the object is taken into account by

the introduction of the mass loss term.

We follow CI and allow the shock wave to be perturbed by

dz,
Zr

= v,lewt, (2.5)

so that the shock position is at

x, = Xao+ x,lewt, (2.6)

where x ~1= Vel/w, and a null subscript describes a steady state value while a subscript 1

describes a first-order term. w = u~ + iwr is a complex number, whereas V,l is real. We

define the dimensionless variable (CI eq. [16])

(X=—=
;(l-%ewt)$

(2.7)
x’

where in the second equality we kept only first order terms. To the same order, CI find

:=&k%ewt)’:=-X’’X’W’ (2.8)
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The perturbed physiczd variables take the form

P(t}O = Po(O + pl(OeWt, (2.9)

and similar expressions for the pressure and velocity. The boundary conditions at the

shock wave (2.4) become (CI eqs. [21]-[23])

3 3
PI = o; q = ~u,l; pl = p’wbl. (2.10)

To obtain the first-order equations we substitute the

(2.9) into the fluid equations (2.1)-(2.3). Following CI

by the following variables transformation

physical variables from expressions

we simplify the first order equations

c
Z,o(d pl PI V1

= —.* 7r= (2.11)
pa ui~v,l ; 9 =— “

v,~ pa ‘
)V,l

using w = V./ ~i. as the independent variable, and by introducing 6 = s,ow/ Uin. The

steady state flow with a mass loss term cannot be expressed in a compact form (unlike

equations [7] and [8] of CI) and our first-order equations are somewhat more complicated

(compare with [27]-[29] of CI). We take the mass loss term ~, in equation (2.1) from

equation (2.1 6) which we derive in the next section. Our first- order equations read

(2.12)

and

(2.13)



where ~. = po/pa ad jO = po/(~a~~n).

When these three equations are separated into their real and imaginary parts we have

six equations. These are supplementedwith the boundary conditions at the shock wave

w= –1/4, given by equation (2.10): (~ = (~ = O, mR = 3/2, ml = 0, qR = 3/4, and

ql = O, and the boundary conditions ~R = VI = O at the stationary wall w = 0. The eight

boundary conditions for the six quations determine the eigenvalues 6R and $1. Positive

value of 6R means an unstable solution. Subscripts R and I stand for real and imaginary

parts, respectively. There are two parameters in the problem, the power of the temperature

in the cooling function a, and

defined in the next subsection.

the mass loss rate, which we parametrize by ~, which is

We take the post shock region to be a cylinder, with its axis along the z axis, and its

radius R equals to the radius of the solid body that supports the shock wave. We assume

that the physical variables describhg the post-shock gas are function of z only, which is

compatible with the one dimensional flow equations (2.1 )-(2.3). We assume that the gas

at the cylinder envelope streams transversely out of the postshock region at a fraction e of

the adiabatic sound speed v.(z) = ~~-. The mass loss rate from a slice of width

AZ is given by

M(z) = 27rRAzp(z)io,(z). (2.15)

Since the volume of the slice is V = XR2Az, the density variation due to this mass loss is

(2.16)

This expression was used in deriving equation (2.12) from equation (2.1). This expression

of sideway mass loss introduces a new scale length to the problem R/c. The cooling term,

the r.h.s. of equation (2.3), introduces the scale length I = u~n-2a/(paA). We define the

parameter @ s cl/R, which will appear in the equations below.
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To better understand thenature of themass loss term, let uswrite the steady state

solution with mass loss but without cooling, A = Oin equation (2.3). The energy equation

(2.3) becomes

P. = Kp:’s , (2.17)

where K is a constant in the postshoclc region. The steady state version of the mass

conservation equation (2.1 ) is

(2.18)

where in the second equality we have substitute for # from equation (2.16), and in the

third we used the energy equation (2.17). We substitute P. from equation (2.17) in the

steady state version of the momentum equation (2.2), which after some rearrangements

reads
1 dv~ 5K dp:’s.—
2dx= ‘7=”

(2.19)

Integration of the last equation, with the boundary conditions v(z~o ) = –uin/4 and

p(xml)) = 4p., gives

po = (5k)-3/2(uf – Vi)yn (2.20)

where z~o is the steady state shock position when there is no cooling. Substituting p. from

the last equation in the mass conservation equation (2.18) gives, after some manipulation,

(2.21)

We now define w s vo/~in) and integrate equation (2.21) from w(0) = O to w, and from

z = Oto z. The solution for z is

311ZR
z—

[ 1= 26 (1 –3:’)1/2 – 4arcsinw “
(2.22)

To obtain the solution for the steady state”shock position z~o we substitute w(z~o ) = –1/4

31PR
Zmo =

[ 1— –~15~1,2-i-4arcsin(l/4) = 0.204R/c.2e
(2.23)
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To better illustrate the steady state solution we plot in figures 1-3 the density, the isother-

mal sound speed squared, and the velocity of the flow, respectively, versus ~ = Z/Z,, for

a = –1/2 and three values of ~.

To estimate the value of P = eu~m-2a/(paAR) above which mass loss is significant,

we evaluate the steady state energy equation (2.3) for the case without mass loss. We

not e, as CI point out, that for specific values of ~ there are analytical solutions. We

would like, though, to obt tin an approximate expression for any value of a. We assume a

constant presure which equals pa u~nand use equations (7) and (8) of CI. This assumption

is equivalent to taklng only the lowest order terms in U. of equation (9) of CI. The steady

stat e energy equation reads now

g-a ~!-advo = —2Paui~ddx.5(-VO) ,n (2.24)

Integrating from V. = O to vo = –1/4 and horn z = Oto z = Z,O, and using the definition

of /3 gives
5 4a-3 _~ z~oe-— P—23–a= R 9

(2.25)

where Zco is the shock position without the mass loss process. Substituting ZCO= ~mo and

z~o = 0.2R/c fkom equation (2.23), gives the value of ~ above which mass loss significantly

alters the eigenvalue t.

PC= 0.08(3 - a)4s-a. ‘(2.26)

For a = –2, –0.5, O, and 0.5, for example, we find ~. = 410, 36, 15, and 6.4, respec-

tively.

3. SOLUTION OF THE EQUATIONS

As discussed in the end of section 2.1, separating equations (2,12)-(2.14) to real and

imaginary parts results in 6 equations with 8 boundary conditions. These 6 equations are

coupled to the steady state equations (2,1)-(2,3) with the 4 boundary conditions (2.4).
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There are in total 9 equations for the 9 variables PO, PO, vo, (R,CZ,~R,TI,WZ and qz. The

12 boundary conditions determine the 3 additional unknowns Z,O and the eigen frequencies

6R and $1.

This is a 2 point boundary value problem that we solved with the shooting method.

Starting with no mass loss /3 = O, we recovered the solution of CI. We then increased the

the mass loss by increasing ~. The results are depicted in figures 4 – 10. The figures show

the real (Jr) and imaginary (Ji) eigenvalues (frequencies) as a function of@ for different

cooling laws a and different oscillatory modes.

From the graphs we see that the mass loss term has a stabilizing effect for d cases.

As indicated by equation (2.26) the stabfizing effect is weaker for low values of a (Figs. 4

and 5). The values of ~ at which the fundamental modes become stable are

p = 950, 100, 28, 5, and 3, for a = –2, –1, –0.5, O, and 0.5, respectively.

These results are in good agreement with the analytical formula (2.26).

For all the fundamental modes the real part of 6 decreases more rapidly than the

imaginary part. Since the imaginary part is not influenced a lot by the mass loss rate, the

growth rate per oscillation is damped at the same rate as 6R decreases. For the overtones

(figs. 8 and 9) the imaginary part decreases more rapidly than $R which means that per

oscillation period, the rate of damping by the mass loss of the instability is lower than the

absolute decrease in $~.

4. DISCUSSION

We now apply our results to the interaction of PNe with the ISM. Since the central

stars of PNe are likely to ionize the preshock ISM under some circumstances, we assume

a fully ionized preshock gas. We write the constant A which appear in equation (2.3) in



11

term of the cooling function L( ergs cms S-l ) used by of Gaetz et al. (1988)

()

P
-a

A=L~ – (4.1)
P2 P ‘

where n= and nP are the electron and proton density, respectively. Using the expressions

for the pressure and density behind a strong shock for a gas of adiabatic index 7, we find

P. 2(7 – 1) z

Z = (~+ ~)z ‘in*
(4.2)

Substituting equation (4.2) into (4.1) and taking fully ionized solar abundance gas with

7 = 5/3 yields the expression for A in c.g.s. units

( L
A = 2 X 1025(16/3)a U~2a

)
(4.3)

10-22 ergs cms s-l “

We now substitute this expression of A in the definition of/3 = c u~~-2a/(p.AR). Scaling

with physical parameters typical of PNe we find

(~ = 163(3/16)aa# ~o_2z er: cm~ s-1)-l (lo:cm)-’(150::s@)’$ (44)

where na is the total ISM number density in cm-s and R the nebular radius. For typical

parameters of PNe, we find from Geatz et al. (1988) that –0.5 ~ cx ~ O. From figures

6 and 7 we find that the criteria for instability for a = –0.5 and a = O are @ <28 and

~ <5, respectively. From figures 2 and 3 of Gaetz et al. (1988) we see that a = –0.5 for

uin = 200 km S-l, and ~ = O for uin s 150 km S-l. Using these with the typical physical

parameters of equation (4.4), the criterion for radiative shock instability to occur is

R 32c
2—1018cm na ‘

(4.5)

where the ISM density n= is in cm-s. From figure 2 of Soker et al. 1991 we see that

matter leaves the postshock region at N 3070 of the sound speed, so that c N 0.3. Using

this in equation (4.5), we obtain the condition for radiative shock overstability

()
R ~ 101g ~ ‘1 cm. (4.6)cm-S

— .——.
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We remind that R is the PN radius and n= the total number density of the undisturbed

EM. In general, equation (4.6) implies that only large PNe, with radius of ~ 1 pc, which

resides near the galactic plane , where the density of the warm medium is na N 1 cm-s,

will possess the radiative shock overstabiity. We point out that equation (4.6) was derived

by using a toy model, and can be off by up to an order of magnitude. A two-dimensional

numerical simulation is needed to obtain a more accurate expression.

Let us examine few nebulae in light of the results expressed by equation (4.6). One

of the best example of interacting PN is A35 (Jacoby 1981). The radius of A35 is 0.8 pc

(Jacoby 1981), the relative velocity is N 125kms-1, and the ISM density is N 0.1 cm-s

(Borkowski, Sarazin & Soker 1990). Using these values in equation (4.6), we do not expect

the interaction of A35 with the ISM to possess the radiative shock overstability.

Next we examine IC 4593, which Zucker & Soker (1993) suggest possesses the radiative

shock overst ability. However, this PN resides 1.6 kpc above the galactic plane, where the

density is very low, and has a radius of 0.25 pc = 7.5 x 1017cm, which according to equation

(4.6) mean that IC 4593 should not possess the instability. There are three ways out of

the discrepancy with Zucker & Soker conjecture. First, it is possible that the suggestion of

Zucker & Soker, which is based on morphological features, is wrong. Second, it is possible

that the main nebula of IC 4593 is running into a much denser medium, which was formed

by IC 4593 itself in an earlier mass loss episode. Third, at late stage of the interaction

the front edge of the nebula become distorted. This can cause the stream along, and near,

the line that goes through the center of the nebula to continue flowing in the preshock

direction, instead of leaving the postshock region. This can be seen in figure 2 of Soker

et al. (1991). To test the last two processes a twe-dimensional time dependent numerical

code which includes radiative cooling is required.

Table 1 of Borkowski et aL (1990) contains nine PNe with large proper motion.

—



Of these, NGC

close enough to
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7293 (the Helix nebula), S216, and NGC 6853 are large enough and

the galactic plane to have the conditions for the radiative shock over-

stability. However, these three PNe do not have high enough velocities. It is possible,

though, that their total velocity, including the line of sight velocity, relative to the ISM

is above 140 km S-l, which is the condition for overstabilit y (Gaetz et aL 1988). Table

2 of Borkowski et al. contains a list of large PNe, for most whom proper motion do not

exist. It is likely that some of them obey the overstabilit y condition (4.6) and have large

enough relative velocity. Future study of these PNe should look for the radiative shock

overst ability.

Tweedy & Kwitter (1994) study four PNe which interact with the ISM. These PNe,

A 31, A 34, A61 and A 62, are large and close to the galactic plane (Kaler 1983). Another

intersting PN is Sh 2-174,which is at a very advance stage of interaction with the ISM

(Tweedy & Napiwotzki 1994). The radii of these PNe fall short by factors of several from

obeying condition (4.6) for overst ability (unless they are situated in high density environ-

ments). Remembering that condition (4.6) can be of by up to an order of magnitude, and

due due to some uncertainties as with IC 4593 which we mentioned above, it is possible

that these PNe posses the radiative shock overstability. Future studies should determine

the relative velocity with respect to the ISM, and carefully look for signs of radiative shock

overst ability.

The radiative overstability could also be important at the working surfaces of stellar

jets (Herbig-Haro objects), as the recent hydrodynamical simulations (Gouveia Dal Pino

& Benz 1993) indicate. In this case the ambient density ranges from 100 to 1000 cm-9

(Morse et al 1993), the jet cross sections are ~ 1016cm and the velocities are ~ 150 km S-l.

By expression (4.6) we see that the radiative shock overstability is likely to occur in these

systems.



14

The research described in this paper was carried out by the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics and

Space Administration. We would like to thank Amiel Sternberg for the hospitality at Tel-

Aviv University and Alberto Noriega-Crespo for a careful reading of the manuscript and

useful suggestions.

R.D. has been supported by the Swiss National Foundation.

N.S. has been supported by the AlIon Fellowship in Israel.



15

REFERENCES

Bertschlnger, E. 1986, ApJ, 304, 154.

Borkowski, K. J., & Sarazin, C. L., & Soker, N. 1990, ApJ, 360, 173.

Chevalier, R. A., & Imamura, J. N. 1982, ApJ, 261,543 (CI).

Gaetz, T. J., Edgar, R. J., & Chevalier, R. A. 1988, ApJ, 329,927.

Gouveia Dal Pino, E. M., & Benz, W. 1993, ApJ, 410, 686.

Imamura, J. N., Wolff, M. T., & Durisen, R. H. 1984, ApJ, 276,667.

Innes, D. E., Giddings, J. R., & Falle, S. A. E. G. 1987, MNRAS, 226,67.

Jacoby, G. H. 1981, ApJ, 244, 903.

Kaller J. B. 1983, ApJ, 271, 188.

Langer, S. H. 1985, in Cataclysmic Variable8 and Low-Masa X-ray Binaries, ed. D. Q.

Lamb and J. Patterson (Dordrecht: Reidel), p. 257.

Langer, S. H., Chanmugam, G., & Shaviv G. 1981, ApJ Lett., 245, L23.

Langer, S. H., Chanmugam, G., & Shaviv G. 1982, ApJ, 258,289.

Morse, J. A., Hartigan, P., Cecil, G., Heathcole, S. R., & Raymond, J. C. 1993, ApJ, 410,

764.

Soker, N., Borkowski, K. J., & Sarazin, C. L. 1991, AJ, 102, 1381.

Tweedy, R. W., & Kwitter, K. B. 1994, preprint.

Tweedy, R. W., & Napiwotzki, R. 1994, preprint.



—

16

Zucker, D. B. & Soker, N. 1993, ApJ, 408, 579.



17

FIGURE CAPTIONS

Fig. 1: The steady state logarithm of the normalized density for the cooling exponent

o! = –1/2, for different mass loss rates as expressed by the parameter ~. The absissa

is log(~) = log(z/z. ). The solid line represents /? = O, the dotted line /3 = 40 and the

dashed line ~ = 80. The value of/3 needed to stabilize the fundamental mode in this case

is /3 = 28.

Fig. 2: Thesteady state normdzed isothermal sound speed squared Po/po/u~n for

the cooling exponent a = –1/2, for different mass loss rates as expressed by the parameter

~ as in Fig.1. The absissa is f = z/z,.

Fig. 3: The steady state normalized velocity w = ti/uin for the cooling exponent

o! = –1/2, for different mass loss rates asexpressed bytheparameter~ asin Fig.1. The

absissa is ( = x/x8.

Fig. 4: The real (6R) and imaginary (61) eigenvalues for the cooling exponent a = –2

fundamental mode, as a function of the mass loss rate as expressed by ~.

Fig. 5: The same for the case a = –1 fundamental mode.

Fig. 6: The same for the case a = –1/2 fundamental mode.

Fig. 7: The same for the case a = Ofundamental mode.

Fig. 8: The same for the case a = Ofirst overtone.

Fig. 9: The same for the case a = Osecond overtone.

Fig. 10: The same for the case a = 1/2 fundamental mode.
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