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Abstract

This paper describes recent results in applying robust control techniques to

achieve vibration suppression of an active precision truss structure. The active

structure incorporates piezoelectric members which serve as both structural and ac-

tuation elements, The problem considered is multiple-input, multiple-output with

non-collocated actuators and sensors. Several characterizations of uncertainty are

studied and the resulting controllers are compared experimentally. One character-

ization uses a novel approach involving eigenvalue perturbation descriptions.
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I. INTRODUCT1ON

The Control Structure Interaction (CSI) program at the Jet Propulsion Laboratory is

investigating the technology required to achieve submicron level dimensional stability on

● Dept. of Electrical & Computer Engineering,Universityof California, Santa Barbara, CA 93106
tGuidance and control section, Jet Propulsion Laboratory, California Institute of Technology,z18CI()

Oak Grove Dr., Pasadena, CA 91109
$Applied Mechanim ‘Technologiessection, Jet propulsion Laboratory, California Institute of Tech-

nology, 4800 Oak Grove Dr., Pasadena,CA 91109

1



large complex optical class spacecraft. The focus mission for this work is an orbiting

interferometer telescope [1]. A series of evolutionary testbed structures are being con-

structed for the purpose of developing and demonstrating the technology required for

such a mission. The JPL CSI Phase O testbed structure, described in Section II, is one in

a series of experimental facilities used for the development of active structure hardware

and feedback control methodologies [2]. This structure is the experimental testbed for

the robust control designs described here.

Achieving submicron stability of the optical system involves a layering of several tech-

nologies including active vibration isolation, structural vibration suppression, and active

opt ical cent rol. The work considered here applies to the active vibration suppression

problem. A mixture of technologies can be applied to the vibration suppression problem

itself; passive damping, active damping and active structural stabilization. Refer to [3]

for earlier work on the application of all of these technologies to the Phase O experiment.

This paper concentrates only on the active structural stabilization work and includes

more recent approaches and experimental results.

The wider issue of vibration suppression, particularly in flexible space systems, is an

active area of research. Many approaches have been applied at a number of institutions,

and no attempt is made hereto give a complete summary. A

by Balas and Doyle [4],

The robust control approach requires a nominal model

similar approach is described

and a description of the un-

certainty. This uncertainty description often takes the form of norm bounded pertur-

bations occurring at various places within the nominal model. The resulting control

design achieves specified performance and stability characteristics for all system mod-

els described by the set of bounded perturbations. This is a powerful approach as one

not only designs a controller for a specified model, but also for models ‘(close” to that

model. In other words the design is robust with respect to perturbations in the system

model. The underlying hope is that the perturbations in the model describe the various

uncertain behaviors of the physical system.
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A more complicated identification problem arises as a result of the robust control

approach. One must now specify perturbation bounds in addition to the nominal system

model. Model structural choices — the number of perturbations and how each perturba-

tion enters the model — must also be made. Currently there is little theory addressing

these issues. Ad-hoc approaches must be used and one hopes that experience on a par-

ticular problem is representative for similar problems. The issue of uncertainty modeling

is specifically addressed in this paper. Three choices of perturbation structure have been

studied experimentally, and the results are presented here.

The experimental problem is described in detail in Section II. The flexible structure

context of this work has been described elsewhere [1,2,5,6] and only the salient issues

will be mentioned here. Obtaining a nominal model from experimental data is itself a

difficult problem. This is described in detail in [7] and summarized in [3].

The H@/p synthesis methodology was used for all of the designs. Refer to [8] for

algorithmic and general application details of this approach. A brief overview of the

approach is given in Section III, where the flexible structure problem is used to illustrate

the theory.

The perturbation structures studied are outlined in Section IV. Uncertainty in flexible

structures is often characterized as uncertainty in the modal frequencies and damping

ratios. When the standard H@ perturbation models are applied to this problem the

resulting model can be dominated by the perturbation which may lead to a conserva-

tive design. An alternative perturbation modeling approach, based on perturbations

to a state-space representation, can avoid this problem. This approach is also studied

experimentally in this paper.

Particular choices of perturbation bounds and perturbation structure result in differ-

ent controllers. Three such controllers, K1, K2 and K3, are described in Section IV. The

performance of all three designs is evaluated on the experiment in Section V.

The paper concludes (Section VI) with a discussion of the various perturbation model

choices and speculates on the applicability of robust control to the design of spacecraft
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vibration damping systems.

11, EXPERIMENTAL DESCRIPTION

The Phase O Precision Truss is a six bay structure, approximately 2 meters tall, with

two outriggers at the top. ‘The base is cantilevered off of a massive steel block. The total

mass of the structure is approximately 27 kg and was designed to have very low damping.

The modes of the structure (up to 60 Hz) are divided into two groups, the first group is

near 10 Hz, and the higher group starts at approximately 30 Hz. The 30–40 Hz modes

involve significant local bending of the truss members and are therefore only marginally

controllable from the location of the active members. The structure is extremely lightly

damped with the damping ratios of the first eleven modes ranging from 0.0008 to 0.015.

Accelerometers, mounted on an outrigger, measure the X, Y and Z direction acceler-

ations. Three active members (denoted AM), located in the lower two bays, are used for

control. A disturbance is injected, via a shaker, at the middle bay. The control objective

is the minimization of the experimentally estimated transfer function from the midbay

disturbance to the three accelerometers, for a bandwidth including at least the first three

modes (up to =15 Hz). Figure 1 illustrates the configuration of the structure and the

control problem to be studied.

Piezoelectric actuators, built into the active members, provide the force actuation.

These are capable of delivering a clamped force of 1810 N, for the vertical members, and

430 N for the diagonal member, at input voltages of 1000 Volts and 150 Volts respec-

tively. Commercial amplifiers provide the necessary high bandwidth gain and bias the

actuators to their midpoints. Anderson et al. [9] detail the construction of these actua-

tors. Commercial micro-g accelerometers provide the X, Y and Z direction acceleration

measurements. The accelerometer outputs are amplified and filtered (2nd order Bessel

filter with cut-off frequency of 1 kHz) prior to measurement by the data acquisition and

control systems. Fanson et aL [6] provide greater detail on the structure and control

related instrumentation.
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Fig. 1 Precision truss structure. The control design problem inputs and outputs are

also illustrated

The Hugh 9000, a

for the CSI program

68030 microprocessor,

VME bus based, real-time, control system was developed at JPL

[10,11]. A Heurikon V3E processor card, based on a 25 MHz

and a CSPI Quickcard array processor are used for the controller

computations. The A/D and D/A conversion (16 bit resolution) is performed by Data

Translation boards. For the controllers tested here the sampling rate was 1 kHz and

the computational delay was 1 sample period (1 msec.). The number of controller states
/

varied between 31 and 40.

III. AN OVERVIEW OF IfM/p ROBUST CONTROL
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A. Robust Control Models

The modeling framework to be applied here is presented in more detail by Packard

[12]. Systems aremodeled asnominal linear time-invariant systems with stable, linear-

time invariant, pert urbations. The perturbations, denoted by A(s), or more simply, A,

are assumed to be bounded by llAll~ <1, with

IIAIIM := Stlp i7(A(s)),
s= jw

where 5 denotes the maximum singular value. A simple model might consist of the set

described by P(s) + W(S)A, where P(s) is the nominal model, W(S) is a frequency

dependent weight, and A is the unknown bounded ‘perturbation. This is an additive

perturbation description — the general situation can be described by a linear fractional

transformation (LFT), on a block matrix, M, with inputs w and outputs, e, by,

e =
[ M22 + A4Q1A(I – M11A)-1M12 ] W

=: F. (M, A) w. (1)

By appropriate choice of Mll, etc., the LFT form can be used to describe any inter-

connection of a nominal system with a perturbation. Furthermore, A can be defined as

having a specified block diagonal structure,

A=diag(A1,..., A~), (2)

and then (1) can describe perturbations occurring at different places in a complex inter-

connected system. Figure 2a illustrates the generic LFT of (1) in block diagram form.

This representation is powerful because interconnections of LFTs are simply larger LFTs.

B, Analysis of Stability and Performance

The robustness analysis discussed here was introduced by Doyle et aL [13,14]. For

the following analysis procedure each component of M is assumed to be stable. The

following problem

perturbations, A,

is known as the

IIAIIM < 1? In

robust stability

the case where

6
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Fig.2 a) Generic LFTsystem model, b) Interconnection for the

theanswer is as follows. FU(A4, A) isrobustly stable if and only

design problem

if lIM1l(s)llm < 1. In

the case where we are dealing with several perturbations (e.g. m perturbations modeled

by A as in (2), the structured singular value, denoted by p, provides the answer. The

interconnection, FU(M, A) is robustly stable if and only if Ilp(ikfll (s)) II~ < 1. Note that

p is a function of the prescribed block diagonal structure given in (2). For the typical

engineering problems that arise here p can usually be quickly calculated to within 570.

A similar result holds for robust performance if performance is appropriately defined.

The following framework will be used throughout for the study of performance. In

Fig. 2a the inputs, w, are assumed to be unknown but bounded. They would typically

represent noise, disturbances or tracking commands. The outputs, e, represent signals

which are required to be small in a particular norm. These might typically be error signals

and actuator outputs. In the problem considered here, w will consist of the unknown

midbay acceleration input and noise on the accelerometer measurements. The X, Y and

Z accelerations, and the controller outputs are modeled as the signal e.

Any frequency dependent weighting on the signals is factored into M so that spec-

ified nominal performance is equivalent to IIM22(s) 11~ < 1 and robust performance is

IIFU(lkf, A) IIM <1 for all A, of the appropriate structure, satisfying llAll~ S 1. The

system satisfies the robust performance specification if and only if

satisfies robust performance it necessarily satisfies robust stability.

7
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The above result is typically applied when Ll represents a closed loop system. The

associated design problem is illustrated in Fig. 2b. Given a weighted perturbation model,

G, design K to stabilize G and satisfy the robust performance test. The signals y are the

controller measurements and u are the actuator signals. In the nominal, unperturbed,

case (A = O) this problem is solved by the Hm design procedure [15]. In the more general

A perturbation case an iterative procedure (known as D-K iteration) gives controllers

that approximate the solution [8]. This procedure is discussed in greater detail in Section

111.C.

The choice of the oo-norm as a measure of performance leads to the computation-

ally tractable robust synthesis problem above. This may not be an ideal choice from

an engineering point of view. If w is bounded in energy (or power) then this method

minimizes the energy (or power) of e. Bounded energy signals may be poor representa-

tions of noise or command references. Similarly one may be interested in other choices

of output error specification. This paper will illustrate, by example, that on physically

motivated problems, the HM/p synthesis controllers can also perform well by other mea-

sures. In this specific example, w will include the shaker input disturbance and e will

include the weighted accelerations. Minimizing’ the oo-norm will reduce the peak of this

transfer function. In our application the damping ratios of the lower frequency modes

are significantly increased.

In order to apply this approach, one must obtain a nominal model and perturbation

description for the system. Several choices of perturbation descriptions are studied in

Section IV.

C. Controller Synthesis with D-K Iteration

The D-K iteration procedure is illustrated schematically in Fig. 3. An Hm design is

performed (Fig. 3a) to get an initial controller, KO(S). This minimizes llld(s)ll~, where

M(s) is the closed loop system with controller Ko(s). This is an upper bound on the

desired objective, IIP(J4(S))IIW (Fig. 3b).

At each frequency, a scaling matrix, D, can be found such that 6( DMD-* ) is a
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close upper bound to p(ikf) (Fig. 3c). The D scale is block diagonal and the block

corresponding to the e and w signals can be chosen to be the identity. The part of

D corresponding to the z signal commutes with A and cancels out the part of D-l

corresponding to the v signal. Therefore p(DA4D-1 ) = p(kf) and the robust performance

analysis is unaffected.

However the H~ design problem is strongly affected by scaling. The synthesis ap-

proach involves applying the D scaling to the original HM design problem. The D scale

is a complex valued matrix at each frequency and an approximate realization (denoted

by ~ in Fig. 3d) must be obtained before it can be applied to the state-space HW design

(Fig. 3d). The resulting controller, K, gives a new closed loop system, M, with p(~)

smaller than that given by the controller Ko. The procedure can be iterated upon (Figs.

3b through 3d): p analysis of the new closed loop system gives a different D scale and

this can be applied to the H@ design problem.

Several aspects of this procedure are worth noting. For the p analysis and D scale

calculation, a frequency grid must be chosen. The range and resolution of this grid is a

matter of engineering judgement. The p analysis can require a fine grid in the vicinity

of the lightly damped modes. The order of the initial controller, K., is the same as the

interconnection structure, G. The order of K is equal to the sum of the orders of G, ~

and fi-l. This leads to a trade-off between the accuracy of the fit between D and<~ and

the order of the resulting controller K.

The robust performance difference between the ~~ controller, Ko, and K, can be

dramatic even after a single D-K iteration. The Hm problem is sensitive to the relative

scalings bet ween v and w (and z and e). The D scale effectively provides the optimal

choice of relative scalings for closed loop robust performance.

IV. SYSTEM MODELS AND PERTURBATION STRUCTURES

A nominal model, denoted by P..m, has been identified by a multivariable approach

based on estimated transfer functions and an iterative least squares optimization. This
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is described in detail in [7] and summarized in [3].

Three perturbation models are studied here, giving designs K1, KZ and Ks. The

choice of perturbation structure and associated weighting functions drives the controller

design. The first two are based on relatively standard perturbation modeling approaches.

The modeling approach use to obtain KS will be discussed in greater detail later in this

section. The full design problem is covered to provide the necessary background to the

perturbation description discussion.

A. Outline of the Design Problem

Figure 4 shows the weighted interconnection structure, denoted by G, used for the D-

K iteration. This corresponds to the block G in Figs. 2b and 3a. The three perturbation

models (F. (P, A)) were embedded in a generalized interconnection structure for each of

the designs. The unknown inputs, w, are the shaker and weighted noise signals applied to

each of the acceleration measurements. Weighted X, Y and Z accelerations, along with

the weighted controller outputs, are considered as the error signals e. The controller

calculation delay was modeled by a Pad6 approximation.

The weighting functions, WP,N, Watt, WaSt and ~noise act w the w@eriw d-kn

variables and were adjusted to investigate the achievable performance with each of the

perturbation models. The most significant feature of the weighted problem is that W~St

is essentially bandlimited, having the effect of disregarding performance (vibration sup-

pression) for frequencies above 15 Hz. High frequency actuator effort was also penalized.

Refer to [3] for an example of representative weighting functions for an earlier version of

this problem.

The Hm/p synthesis procedure produces controllers of order at least as high as that of

the weighted interconnection used for the design. In this case this resulted in controllers of

approximately 60th order. Although it is rapidly becoming less of a computational issue,

most engineers are reluctant to implement what is essentially a “black box” controller

of that order. One view is that such controllers give some estimate of the achievable

performance and can be used as a benchmark with which to compare the results of
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Fig. 4 Interconnection structure for the controller design

more classical approaches. In this case the objective is to obtain some estimate of the

achievable performance with robust control. Controller order reduction was performed

via a combination of balanced truncation [16] and Hankel norm model reduction [17] as

the real-time controller was limited to 40 states at 1000 Hz.

The solution of the H@ design equations can be numerically poorly conditioned for

high order interconnection structures with lightly damped modes. The 60th order struc-

ture described above requires an ordered Schur decomposition of a 120x 120 Hamiltonian

matrix. This was possible with the currently available software. Because of the dimension

and number of perturbations, each state used in fitting a transfer function to a D scale

results in an addition 12 states in the scaled interconnection structure. These additional

states lead to a numerically unstable design problem, and to avoid this constant D scales

were used. Even constant D scales resulted in a significant performance improvement

over the standard Hm design.

Be K1 Perturbation Structure

The KI perturbation structure is shown in Fig. 5. The perturbations are additive,
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Al weighted by W.dcI, and multiplicative, Az weighted by ~~.lt. Both of the weights are

diagonal.

Wmdt

accel ~: AM

wake’
Fig. 5 Perturbation model for design K1

The dynamic perturbation weights for each control design are given in Fig. 6. For

comparison purposes, the AM to X acceleration estimated transfer function is also shown.

The diagonal components of all of these weights are individually scaled to account for

differences in the relative sizes of the transfer functions.

The additive weight, Wadd, increases sharply (3rd order roll-up) beyond the lower

frequency (8-12 Hz) modes reflecting the fact that less is known about the system at

higher frequencies. It will subsequently be seen that this weight is insufficient to describe

the lack of information about the modes in the 30–40 Hz region. In the K1 design the

weight W~tit is a small constant (0.05) intended to capture the possible mode-shape

errors in the lower frequency modes.

C. K2 Perturbation Structure

The perturbation structure used for design, K2 is illustrated in Fig. 7. This structure

reflects most possible combinations of additive and multiplicative perturbations. This is

arguably excessively complicated — however it does allow one to investigate the effects

of various perturbation locations. There can be a computational penalty in choosing

too many perturbations. This is particularly true if a H@ design is performed, rather

13
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than a D-K iteration (p-synthesis), as the p-synthesis procedure can remove some of the

conservatism introduced by an inappropriate choice of perturbation scalings.

In the K2 model case both W~~t and Wo.~ increase with frequency (refer Fig. 6). ~~dd

is a constant used as a relative scaling of the uncertainty with respect to the system inputs.

Because of the different perturbation structures, a direct comparison of the weights is

difficult. However, for the Kz case, the increase in uncertainty with frequency is reflected

by the product of W~.1~ and Wo~t causing J~z to roll off significantly faster than K1”

The Kz design also includes a small input multiplicative perturbation (Win = 0.001 for

each active member input). This was found to make the controller model reduction easier.

One possible explanation is that this reduces the tendency of the design methodology to

generate a controller that inverts the plant from the input.

D. K3 Perturbation Structure

The approach taken here is to model the uncertainty in the lower frequency modes

14
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Fig. 8 Perturbation structure for design Ka

by an eigenvalue perturbation to the state-space representation. The higher frequency

uncertainty is again described by an additive weight that increases with frequency. Figure

8 illustrates the perturbation structure. The additive perturbation, Al, again represents

the high frequency uncertainty and the weighting function, W.dci$ is shown in Fig. 6.

This structure is significantly different in that the lower frequency uncertainty is

represented by an LFT on the perturbation Az. The motivation for this approach is new

and will now be discussed in more detail.

A particular LFT perturbation

have a state-space representation,

structure is chosen. Consider the nominal system to

Pnom = C(SI – A)-lB + D.
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The LFT is chosen as,

}1 , = Wz(sl – A)-lW1

~12 = W2(SI – A)-lB

& = C(SI – A)”lW1

P22 = C(SI – A)-lB + D,

which yields the perturbed system,

~. (~, A2) = C(S1 – A – WIAJVZ)-lB + D.

Note that this simply has the effect of replacing ~ by A + WIAZW’Z. A particular

choice for A, motivated by the following result, is useful for modeling flexible structure

perturbations.

Consider A to be real-valued and block diagonal, revealing the modal structure. If

A has only n complex conjugate eigenvalue pairs, Ai+ = ~i + j~i, i = 1,..., n, then the

desired form of A is,

A= ‘“‘-o 1’ ‘hereAii=[-%:l

1 ““ J
A weighting matrix, W, is chosen to be diagonal; W 6 7?2nx2n,

WI

WI

w= “. 9 Wi >0.

w~

w~

It is simple to show, via Ger?igorin type arguments, that the eigenvalues of A + WA*,

for all @(Az) s 1, lie within n pairs of disks, of radius wi, centered at the eigenvalues of

A, ~i~. For further details refer to [18,19]. The result trivially extends to systems with

a combination of real and complex eigenvalues.
i
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This approach is now used to model perturbations in the modal frequency and damp-

ing ratios of the lowest three modes. For this problem the weights W’l and W2 were

chosen such that W = W’l W2 and only the lowest three modes have ~i > 0. This gave

significantly lower input-output dimensions for A2.

An additional enhancement can also be made. In the above, the eigenvalues of A, are

replaced by disks. By modifying selected Aii, the centers of selected disks can be moved

further into the left-half plane. This was done for the lowest three modes in this problem.

Figure 9 illustrates the nominal eigenvalues (denoted by *) and the shifted perturbation

disk around each, for these modes. In this case the amount of uncertainty attributed to

each mode was the same.
,.

Uncertainty in a modal frequency and damping ratio corresponds to the eigenvalue

lying within a rectangular region in the complex plane. In this case the shifted disks

were chosen such that they would cover the rectangular regions corresponding to a 170

error in damping ratio and a 0.1 YO error in modal frequency. The centers of the disks

correspond to new nominal eigenvalues and were chosen to be more heavily damped than

the original nominal model. Note that this approach introduces additional plants into the

perturbation model set which are unlikely to occur in practice, However these plants are

more heavily damped and it is therefore hoped that they impose no additional difficulties

on the control design problem.

Several practical benefits arise from this formulation. The nominal system is now more

heavily damped leading to less numerical sensitivity in the control design algorithms. The

associated perturbation (A2 in this case) is weighted only by a constant which reduces

the number of states in the design interconnection structure and therefore reduces the

number of states in the resulting controller.

V. EXPERIMENTAL RESULTS

Figure 10 shows the experimental transfer functions from the acceleration measured at the

shaker input to the Y and Z accelerometer outputs. The X and Y acceleration responses
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are qualitatively similar for each of the controllers. The Z acceleration response is the

worst case for each controller. The performance of controllers K1 and K3 is similar, with

K1 being slightly better than Ks, and significantly better than Kz, particularly in the

first mode.

The above statements must be considered in light of additional experimental experi-

ence. Controller K1 was tested several times over a period of a year. The earlier results

are shown here. In later experiments the controller exhibited strong limit cycle behavior

around 32 Hz, and in the latest series of experiments the closed loop system was unstable.

This suggests slight variations in the structure have occurred over the period of a year.

Although the experimental set-up was nominally identical in each case, the structure is

part of a larger experimental program and the active members had been removed and

reinstalled in the structure several times. This is likely to have caused experiment to

experiment differences.

Some indication of why K1 is so sensitive to such variation can be obtained by exam-

ining the singular values of the system loop gain. The maximum singular values of the

loop gain are shown in Figure 11.

The maximum singular value of the loop gain is greater than one for several of the

30-40 Hz modes, indicating that these modes are not gain stabilized. The fact that the

controller functioned at all indicates that it is possible to roll-off through these modes.

However, the subsequent stability problems suggest that the level of uncertainty associ-

ated with these modes must be well characterized in order to do this in a robust manner.

Controllers K2 and Ks roll off significantly faster beyond 30 Hz, gain stabilizing the

modes greater than 30 Hz. K3 exhibited a small amount of local limit cycle behavior.

This could possibly come from the 32 Hz mode which is not gain stabilized. K2, the least

well performing controller, rolls off quickly and exhibited no stability problems.

Singular value analysis is also useful for examining the performance in the lower

frequency modes. Figure 12 shows both the maximum and minimum singular values of

the loop gain in this frequency range.
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The minimum singular value of the loop gain appears to give a good indication of the

relative performance of the different controllers. Theoretically, this is only a lower bound

on the performance and may be misleading in multiple-input, multiple-output systems.

The higher values for KI and K3 suggest better performance and this is indeed the case.

Although it is difficult to pick appropriate weights a priori, one can use this experi-

mental information to go through another design iteration. It is expected that reducing

the perturbation associated with the first mode of the K3 design would improve perfor-

mance. Slightly increasing the additive perturbation weight in the region of 30 Hz would

be likely to improve the high frequency stability properties of the design.

VI. CONCLUSIONS

The robust, Hw /p-synthesis approach has been used to design

pression controllers in a very lightly damped, multiple-input,
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Fig. 12 Maximum and minimum singular values of the loop gains for Kl (solid), Kz

(dashed) and KS (dot-dash)

structure. The resulting designs significantly increased the damping in the lower fre-

quency modes to the point where in certain directions no modes were discernible.

Several means of modeling the perturbations were studied. There is currently no

theoretically based approach for determining the best perturbation bound or how the

perturbations should enter the model structure. Experimentally based iterative proce-

dures are found to be a suitable ad-hoc approach. In this case a design, with a specified

perturbation structure and bound, was experimentally tested and the resulting informa-

tion was used to refine the perturbation model.

A novel eigenvalue perturbation model was applied to this problem and resulted in a

controller with good performance. The ability of this approach to independently assign

differing levels of uncertainty to each mode is a potential benefit that was not examined

in this case.

The more classical means of estimating worst case performance and stability (singular
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value loop gain analysis) were found to correlate well with the experimental results. There

is no theoretical reason to expect this, particularly since the singular values range over a

factor of approximately 1000 in certain frequency ranges, and over a factor of about 100

everywhere else.

Some observations on the overall context of this work are in order. The above has

shown that it is possible to design controllers which roll-off through the system modes.

Experimental evidence suggests that this is particularly sensitive to relatively small

changes in the system. The controller which did not achieve gain stabilization of the

higher modes was successful for only a short time. Presumably, the system differed more

from its identified model as time progressed and the perturbation model used in the

design was unable to account for the system changes.

The 17M/p-synthesis procedure is an optimization and if the perturbation model does

not cover the system uncertainty then a high performance controller can result in in-

stability. This indicates that designing such controllers places significant requirements

on the identification and uncertainty characterization procedure in the cross-over fre-

quency region. Practical applications of such controllers may require regularly repeated

identification experiments to maintain a well characterized model in this frequency range.

In a complete spaceborne system design, one will also have the option of placing a

limited number of passive dampers in the system. The experience here suggests that those

dampers should be placed in order to increase the damping in the cross-over frequency

range. As the above experiments show, very lightly damped low frequency modes do not

pose a problem in this robust design. Similarly, high frequency gain stabilized modes are

also not a problem for the controller design. Note that the controller has no effect on

these modes — additional damping may be required to meet system objectives that a

low bandwidth controller cannot meet, It is hoped that applying damping to the modes

in the cross-over region will reduce their sensitivity to small system changes, thereby

making both the identification and design problems easier. Experimental verification

and quantification of this issue has yet to be resolved.
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