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Abstract

Free-flying space manipulators have a symmetry not normally encountered in terrestrial
manipulators, arising from the freedom of choice for the manipulator base-body. This paper analyzes
the relationship between this natural symmetry and the dynamical equations of space manipulators.
The symmetry is used to develop a new formulation of the manipulator dynamics in which two
independent O(N) recursions proceeding in opposite directions are summed together to obiain the
complete free~flying manipulator dynamics. Each of the recursions is based upon sequential O(AN)
forward dynamics algorithms whose amputations are decoupled and independent of each other.
The new algorithms offer advantages for parallel computation. Computation of the operational
space inertia inertia for the links in the manipulator is also discussed.

1 Introduction

This paper studies the dynamical properties of free-flying space manipulators. Space manipulators
have several features not encountered in terrestrial manipulators [1-5]. One difference is that the
base-body for free-flying space manipulators has full 6 degrees of freedom. Typicaly, from practical
considerations a link is preferably chosen as the base-body, eg. the spacecraft bus. However,
analytically any of the links in the manipulator can be chosen with equal validity as the base-body.
The symmetry of space manipulators arises simply from this non-uniqueness in the choice of the
base-body for the manipulator.

The generalization of the inverse dynamics algorithm to space manipulators has been dealt
with in reference [6] as a specia case of the class of under—actuated manipulators. In this paper the
focus is developing a decoupled and symmetric forward dynamics algorithm for free--flying space
manipulators., The point of departure is the well known and highly efficient O(A) articulated
body inertia forward dynamics algorithms for general manipulators [7-9]. This algorithm is highly
sequential in nature and consists of a series of recursive computations to compute the generalized
accelerations for the manipulator. ‘The symmetry of the space manipulators is used to transform
this forward dynamics algorithm into a new one with a highly decoupled structure. The new
algorithm consists of a pair of independent articulated body inertia recursions which proceed in
opposite directions. The structure of the algorithm offers obvious advantages for parallelization.
Also,it is shown that the operational space inertia, inertia for space manipulators can be obtained
as a simple combination of the pair of articulated body inertia recursions. Theanalysis iS genera
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and applicable even when the base body forces are non--zero, that is, even when the linear and
angular momenta arc not conserved.

2 Modeling and Dynamics of Manipulators

Consider a serial manipulator with n rigid body links. As shown in Figure 1, the links arc numbered
in increasing order from tip to base. The outer most link is denoted link 1 and the base link is

th
kth hinge k™" body

(k-1)™H hinge

-1

<« Towards Base Towards Tip —————»

Figure 1: lllustration of the links and hinges in a manipulator

denoted link n.The inertial frame is denoted “link (n + 1)“. The k* link has two frames denoted
O, and Of_, attached to it. Frame O, is on the inboard side and is the body frame for the k** link.
The k** hinge connects the (k +1)** and &** links and its motion is defined as the motion of frame
O: with respect to frame O}. Free spat.c motion of the manipulator is handled by attaching a 6
degree of freedom hinge between the base link and the inertial frame. The k** hinge is assumed
to have r(k)degrees of freedom where 1< r(k) <6, and its vector of generalized coordinates is
denoted 8(k).¥or simplicity, and without any loss in generality, we assume that the number of
generalized velocities for the hinge is also r(k), i.e, there arc no nonholonomic constraints on the
hinge. The vector of generalized velocities for the k** hinge is denoted B(k)e R'. The choice of the
hinge angle rates /3(k) for the generalized velocities B(k) is often an obvious and convenient choice.
However, when the number of hinge degrees of freedom is larger than 1, alternative choices arc
often preferred since they simplify and decouple the kinematic and dynamic parts of the equations
of motion, An example is the usc of the relative angular velocity (rather than Euler angle rates)
for the generalized velocities vector in the case of a free-flying rigid body. The overall number of
degrees of freedom for the manipulator is given by N =377, r(Kk).

w(k)
( vk

with w(k) and v(k) denoting the angular and linear velocities of Ok . The relative spatial “velocity

The spatial velocity V(K) of the k** body frame O is defined as V(k) = € R,
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across the k*» hinge is given by H*(k)B(k) where I *(k) € R®*"®) is the hinge map matriz for the
hinge. The spatial force of interaction f(k) across the k*» hinge is denoted f(k)= INéli)) € RS,

with N (k) and F(k) denoting the moment and force components respectively. The spatial inertia
M(k) of the &** link about frame O, is defined as

- Jk)  m(k)p(k) x
M(k) = ( —m(k)p(k)  m(k)I, )6 R

where m(k) isthemass, p(k)€ R2isthe vector from Ok to the center of 1113SS, and J (k) € R3%?
is the inertia of the k** link about O .

With V(k) denoting the spatial velocity, a(k)the spatial acceleration, f(k) the spatial force
and 7'(k) the hinge generalized force at Ok for the k** link, the following Newton- Euler recursive
equations [8, 10] describe the equations of motion as well as an O(N') inverse dynamics agorithm
for the serial manipulator:

Algorithm 1

V(n+1l)=0,an + 1)=o0
fork ==n...1
V(k)= @*(k+ 1,k)V(k + 1) + H*(k)B(k)
a(k) = ¢*(k+1,k)a(k + 1) + H*(k)B(k) + a(k)
end loop
(2.2)
f(o)=0
fork =1...m
J(k) = ¢(k, k - 1)f(k -1)+- M(k)a(k) + b(k)
T(k) = H(k)f(k)
end loop

where a(k) and b(k) denote the velocity dependent Coriolis acceleration and gyroscopic force terms
respectively and

@k + Dw(k) 2 w(k)T (k)w(k) 2.2)
( @k + Dlv(k) - v(k+ P ( mk)e(R)o(k)p(k) )

¢(k,k — 1) denotes the spatial transformation operator from O,_;to (O, and is given by

G(k, k—1) £ ({f ’(k”j‘]) ) € RO¥¢
3

a(k) & and b(k)

Here # € R3*3 denotes the skew-symmetric cross- product matrix associated with the vector z,
and I(k,k - 1) is the vector from frame (% to frame O,_,. ‘1’bough not shown explicitly, external
forces on any link in the manipulator are handled by adding their effect to the b(.) vector for the
link. @

Spatial operators [8] lead to compact expressions for the equations of motionand other kcy
dynamical quantities. The vector 02 [0°(1), ... O ()] ¢ RY denotes the vector of generalized




coordinates for the manipulator. similarly, we define the vectors of generalized velocities 8¢ RV
and generalized (hinge) forces 7' R for the manipulator. The vector of spatial velocities V is

defined as V & V() . . . V*¥(n)]’ € R. The vector of spatial accelerations is denoted a € RS,
that of the Coriolis accelerations by a € R°", the link centrifugal forces by b € R®*, and the link

interaction spatial forces by f € R®". The equations of motion for the serial manipulator can be
written as follows [8]:

Y = ¢*H'S (2.3a)
a =¢'(H'B4 a] (2.3b)
f=¢[Ma + b] (2.3¢)
T = Hf=MB+4C (2.3d)
where
M L HeMG H* € RVN (2.42)
C £ H¢M¢p'a+tbeRY (2.4b)

and H £ diag{H(k)} e R¥*e", M & diag{M(k)} € Ronxon,

0 o] 0 0 0
é(2,1) 0 0 0
8¢ é 0 d)(3,2) . . . 0 0 c IRanGn
0 0 . @(n,n=1) o
I 0 ... 0
2,1 I ... 0O
¢ 2 (Ten—Eg)'= d’(_’ ) ° _ e Roenxen (2.5)

e~ L.
-

$(n1) (n,2) ...
with
$(i,5) £ Blisi - 1)+ ¢+ 1,5) € RS*S for i>j

The spatial transformation operator ¢ (k, 7) has the form ( {)3 I(l;’j) ) € R®x¢ with I(k, 7) € R3,
3

denoting the vector from the k* to the 7** body frame. A is the mass matriz of the manipulator
and the vector C contains the velocity dependent Coriolis and centrifugal] hinge forces. Eq. (2.4a)
is referred to [8] as the Newton-FEuler factorization of the mass matrix M.

2.1 Spatial Operator Factorization of AM™!

Operator factorization and inversion techniques developed in [8] are used to obtain a closed form
spatial operator expression for M-1. First, we define the articulated body inertia quantities
P(.), D()), G(.), K(.), T(.), P¥(.) and (., .) fo,the manipulator links using the following tip- to
base recursive agorithm [7, 8J:




Algorithm 2

P (() =0

fork =1..-n
P(k) = ¢k, k-1)PH(k - 1)¢*(k, &k - D)+ M(k)

Dk)y= H U H *
G (k) = P(k) H*(k) D"1(k) (2.6)
Kk 4+ 1,k) = ¢(k+1, k)G(k) '

T(k) = 1s — G(k)H (k)
Pt (k) = 7 (k) P(kyre(k) = T(R)P(K)
Yk + L,k) = ¢(k+ 1,k)7(k)
end loop

The operator P € R®**%" js defined as a block diagonal matrix with the k** diagonal
element being P(k) € R%%¢. The quantities in Eq. (2.6) arc also used to dc.fine the following spatial
operators:

D = HPH®¢RVH

G £ PH'D'eR™HV

K & £4G € REMXN

¥ & I-GH eR™®
Pt & TP =P e RO
Ey A £47 € ROx6n (2.7)

The operators DD, G and ¥ are al Mock diagonal. Fven though K and £, are not block diagonal
matrices, their only non zero block elements are the elements K (k,k —1)'sand (k,k — 1 )’S respec-
tively along the first subdiagonal. It is easy to verify from Eq. (2.6) that P satisfies the Riccati
equation

M =P - E4PE = I - E4PEY, (2.8)
Now define the lower--triangular operato,+) € R6"*6" a5
PE( - £y)" (2.9)
Its block elements (%, ) € R%*® are as follows:

N Y(i,i~1) ... ¢(G+1,7) for i>j
P(i,j) = Ig for t=7
{ 0 for 1<jg

The structure of the operators@ and £, is identical to that of the operators ¢ and £, except that
the elements are now, +(i, j) rather than ¢(1, j).

Lemma 2.1 below describes an alternative (to Fq. (2,4a)) operator factorization of M as
well as an expression for its inverse. Further discussion andthe proof of thelemma canbe found
in references [8, 9].




Lemma 2.1: The operator cxpression for the innovations Facto rization of the mass matrix M
and its inverse are as follows:

M = [I4 H$K)D[I 4 H$K) (2.1ea)

I+ HOK)™' = [1 - H$K) (2.10b)
M- =[1- HpK]'D I - HpK] (2.100)

|

The factor [7 + H@K]€ RV*¥ is square while the factor D is block diagonal. Thus, the
factorization in Lemma 2.1 can also be regarded as a closed-form LD I* factorization of M. The
closed form operator expression for the inverse of the factor [I + H ¢ K] is given by Eq. (2.10 b). It
leads to the closed form operator expression for the inverse of the mass matrix M in Eg. (2.10C).
This factorization can be regarded as a closed--form 1* DI, factorization of M.

2.2 Articulated Body Forward Dynamics Algorithm

Using Eq. (2,10C) in Eq.(2.3d) and after some simplifications [9] wc obtain the following operator
expression for generalized accelerations vector 8:

B=[I~HypK) DT - HY(KT + Pa+b)] - K*¢"H*a (2.11)

This expression forms the basis for the O(N) articulated body inertia forward dynamics algorithm
[7,8] for manipulators. First we decompose Eq. (2.11) into the following sequence of sub-expressions:

z =€g2 + Pa4 b (2.12a)
2V = 24 Ge (2.12b)
€ = T-Hz (2.12c)
v = Dle (2.12d)
at = £y (2.12¢)
B = v-Gat (2.12f)
a =ct + II'B 4 a (2.12¢g)

The expressions in Eq. (2.12) map into the following computational algorithm:




Algorithm 3

z(0) = 0
Jork =1l...n
z(k) = ¢k, k — D2tk — 1)+ bk)+ P(k)a(k)
e(k) (k) - H(k)2(k) (2.139)
2 (k) 2(k) + G(k)e(k)
v(k) D-Ye(k)
end loop

at(n-} 1)=0
jor k = n..-1
ot (k) = ¢*(k + 1,K)a(k + 1)
Bk) = v(k) - G'(K)a* (k)
a(k) = ot (k)+ H*(K)B(k)-t- a(k)
end loop

I

nn

(2.13b)

The overall stepsin this O(N) articulated body inertia forward dynamics algorithm are as follows:

1. Use the first base-to-tip recursion in Algorithmm 1 to compute the spatial velocities V(k), and
the nonlinear velocity dependent terms a(k) and b(k) for each of the links.

2. Use the tip-to--base recursion in Algorithm 2 to compute the articulated body inertias P(k)
etc.

3. Use the first tip—to—base recursion in Algorithm 3 to compute the residual forces z(k) etc.

4. Use the lat ter base--to-tip recursion in Algorit hm 3 to compute the link and joint accelerations
a(k) and B(k) for al the links.

3Free-Flying Space Manipulators

The above analysis is applicable to both ground-based as well as space manipulators. The model
for the space manipulator remains the same as above — with bodies 1 through n — 1 being the links
of the manipulator, and body n denocting its base-body. ‘Jhe n** hinge (between the base- body and
the inertial frame) has6 degrees of freedom, and the hinge map matrix I (n) for this hinge is the
6 x 6 identity matrix, i.e. H(n)=I,;. The joint velocities for this hinge are just the components
of the 6-dimensional spatial velocity of the base body, that is, 8(n)=V(n).

‘I'he operator factorization and inversion result as well as the O(N) articulated body
inertia forward dynamics algorithm described earlier also extend to space manipulators as well. In
Algorithm 2, the n** recursion step (for the base-body) simplifies to

D(n) = P(n), Gn)=1Is, v(n)=1I;, T(n)=0 (3.1)
For the residual force computations in Algorithmn 3,

e(n) = T(n) - 2(n), Bn) = v(n) = P '(n) c(n), a(n) = v(n) 4 a(n) (3.2
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Figure 2: A space manipulator with a 6 degree of freedom hinge at
the base-body

For a terrestrial manipulator, the choice for the base-body is unique and is the link attached to the
ground. In contrast, one of the interesting aspects of space manipulators is an inherent symmetry
that arises from the non-unique choice for base--bed y. There may well be a reason from physical
considerations to prefer one of the bodies as base--body. However, analytically there is no inherent
reason for selecting one body over the other as base -body. While, above we have designated link
n as the base-body and the remaining links as forming the manipulator, from a modeling and
algorithmic point of view we can in fact, choose other links as the base-body as well. Appendix A
establishes this rigorously, and shows that the operator factorization results carry over completely
even when links other than link n are used as the base-body, and thus so do the various algorithms.
In the following section we look specifically at the case where the outermost link (link 1) is chosen
as the “base” body. We regard and refer to this case as dual to the conventional case where link n
serves as the base--body.

We henceforth use the subscript “p™ for the articulated body inertia and residual force
quantities defined in Section 2 where link n was used as the base-body The quantities associated
with the dual approach (with link 1 as base body) will have the subscript “s’. Thus the vectors
B, and B, denote the generalized velocity vectors with the base--body being link n and link 1
respectively.

3.1Dynamics Algorithm with Link 1 as Base Body

Figure 3 shows the configuration of the space manipulator with link1chosen as the base body. As
discussed in Appendix A, the six components of the base body’s spatial velocity vector form part of
the generalized velocity coordinates for the manipulator. ‘1'bus, whenthe base -body is moved from
link 71 to link 1, the components of B(n)in 3, are replaced by the components ﬁ(o)é\: V(1) to obtain
the new generalized velocity coordinate vector 3,. Note that the H,, ¢,, M, €etc. operators and
the mass matrix M, are all different in the dua formulation,Nevertheless,as discussed inAppendix
A, the essential operator formulation and results including those about the operator factorization
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Figure 3: A space manipulator withthe outer most link as base-body

and inversion of the new mass matrix still carry through and thus so does the articulated body
inertia forward dynamics algorithm.

The difference in the articulated body inertia algorithm that arises within the dua formula-
tion is that what was the tip before now is the base and vice versa. Thus tip-to-base (base-to-tip)
recursions now proceed from link n to 1 (link 1 to =) rather than in the opposite direction. We
designate the ncw dual articulated body inertia by the symbol S'(k), and the other dual quantities
by the subscript s,i.e. D,, G, T, etc. The quantity dualto P+ is given by

s &7, &t

Note that the reversal in direction also reverses the sense of orientation of the internal hinge axes,
and therefore al of their hinge map matrices H(.) reverse sign. The recursions corresponding to
Eq. (2.6) in the dua articulated body inertia are as follows:

Algorithm 4
Sn) =0
fork =n—-1.--0
S+ (k)= g(k, k + 1)[S(k + 1)+ M(k + D]g* (k, k + 1)
D,(k) = H(k)S*(k)H*(k)
G,(k) = =S (k) H*(k)D(k) (3.3)
K,(k - 1,k) = ¢k - 1,k)G,(k) '
T,(k) = I¢ + G,(k)H(K)
S(k) = 7,(k)S' (k)
v, (k - 1L,k)=¢(k-1,k)7,(k)
end loop

The quantities ¢(k --1, k) are defined as
/ (L 1.
@ (k- 1,k)=¢ '(k k—1y= o ~ikE=1) ) (3.4)
\ 0 13

The residual- forces recursion dua toliq. (2.13) is as follows:
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Algorithm §

2,(n)=0
Jork = n—1...0

2} (k) = @k, b+ 1)[z,(k4 1)+ bk + 1)+ {S(k+ 1)+ M(k41)}a, (k4 1)]
a(k) = T(k)+ H(k)z (k) (3.53)
z(k) = ZHk)+G,(K)c, (k)
v,(k) = D-'c,(k)
end loop
( a(0) =0
Jork = 0...n—1
ok) = ¢*(k—1,k)t(k - 1)
Blk) = (k) - Gi(K)a(k) (3:50)
at(k) = a(k) — H*(k)B(K) + a,(k)
. end loop

Here the Coriolis acceleration a,(k) is given by

a,(k) & = ¢°(k+ 1,k)a,(k +1) (3A)

3. 2 Direct Computation of Link Spatial Acceleration

An important relationship which relates the inter-link forces, f(k), the residual forces z, (k), and
the link spatial accelerations a(k)is given in the following lemm a,

Lemma 3.1: We have

f = Ptat 4z} = Pla-a,)4 2 (3.7)

Proof: From Kgq. (2.12) it follows that

2.12];,:2.129 ol - II;VP _ ‘r;a* + a, 2.1:2c 8:1,’(1;, + f]; v, 4 a,
9 Yo (H v, 4 ap) (3.8)
Thus
T 2 £y o Lo (H'v, + a,) (3.9)
where § £ Eyip =1 — 1. Also,

2.12a,2.12b
z+ = g¢

X ’z; N Gpcp 4 I)ap 4- bp 25 ¢;(Gp€p 4 Pa, 4 bp) (3.10)
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Therefore it follows that,

S ¢ (M)
= qf;pPz/:p(I]; v, 4 ap) + ¢,b
= [¢pb + 1)17;;1(11; v, + ay) 4 b
39 Ptat+ ¢, P(H v, 4 a,) 1 @b
272124310 4 4 42
The latter half of Eq. (3. 7) can be proved similarly. B
The dua form of Eq. (3.7) is given by:
~f = SYtat -a,)+ 2} =Sa+z (3.11)

The above relationships give alternative ways of expressing the inter-link spatial force j using
either the conventional or the dua articulated body inertia quantities. Combining these alternative
expressions provides a direct method for computing the spatial accelerations of the links as described
in the following lemma.

Lemma 3.2: The spatial accelcrations a(k) of the links are given by:
a(k) = —[P(k)+S(k)] "z(k) + 2(k)- P(k)ay(k)]
ot (k) = ~[PH(k)+ ST (K)] 5 (k) + 22 (k) =S+ (K)o, (k)] (312)
Proof: Combine together Fgq. (3.7] and Fgq. (3. 11) to obtain the above. |

This result implies that the link accelerations « and a* can be obtained by combining
together the results from the regular and dual articulated body inertia and residual force recursions.
The hinge acceleration is given by the following pair of expressions:

Bk) = vyp(k) - Gy(k) (k) = v, (k) - G;(k)a(k) (3.13)

We now discuss the physical interpretation of Eq. (3.1 2). If we return to the regular forward
dynamics agorithm wc see that the key point in the algorithm is the computation of the articulated
body inertias culminating with the computation of the articulated body inertia for the base body.
Once this inertia is obtained, the hinge acceleration for the base-body can be computed immediately
followed by the rest of the accelerations.

Let us now consider the intermediate link k as the base-body as shown in Figure 4. For
this choice, the components of the spatial velocity vector V(k) for the &*» body now provide six
of the generalized velocity coordinates for the system. The manipulator now has a tree topology
configuration, with two branches starting at the base. The extension of the articulated body inertia

forward dynamics algorithm for such a tree topology configuration hasbeendescribedin{1 1]. The
basic algorithm remains the same as for aserial chain except that the recursions now have a
scatter/gather structure, All recursions towards the basc “gather” all the inputs from the incoming

1
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Figure 4: A space manipulator with an intermediate link as base--body

branches, while those proceeding outwards scatter their outputs along the outgoing branches. Thus
the articulated body inertia algorithm now involves two separate articulated body inertia recursions
starting off at link 1 and link n and proceeding independently towards link k.The first recursion
is for the P(.)’s with link n .as the base-body, while the second recursion is for the S(. )'s with link
1 as the base-body. These recursions comie to a stop when the £** link is reached.

The results from the two recursions along the two arms are “gathered” together at the
k™ link to form the quantity P(k) +- S(k). ‘I’his quantity is nothing but the articulated body
inertia of the whole manipulator as seen at frame Ok with the k** link regarded as the base-body.
Similarly 2,(k) + z,(k) is the residual force at frame O, with the k** link being the base-body.
The relationship with the superscript + quantities is basically the same but with reference frame
Of . Thus Eq. (3,12) is essentialy telling us that one could compute the spatial accelerations for
the &' link by first making it the base-body, computing its articulated body inertia and residual
forces and then using I.emma 3.2 to obtain its spatial accelerations.

3.3 The Base-Invariant Decoupled Forward Dynamics Algorithm

The discussion in the previous section illustrated as to how each link in the manipulator could in
principle be regarded as a base-body. This arbitrariness in the choice of the base-body reflects
the inherent symmetry of space manipulators. However, while any link will do, the articulated
body inertia forward dynamics algorithm requires a specific choice for the base- body. A specific
choice for the base-body breaks this inherent symmetry. We show here that it is unnecessary and
to break this symmetry. wc can reformulate the algorithm so as to preserve and take advantage
of the symmetry. The key to this is to treat cvery link in the manipulator as a base- body. With
this in mind, wc make usc of Lemma 3.2 to propose the following reformulated forward dynamics
algorithm:

Algorithm 6 1. Use the first part of A lgorithm 1 to compute the orientations, spatial velocities
V(K), and the Coriolis and gyroscopictlerms a and b for all the links recursively.
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2. (a) Compute the articulated body quantities P(.) etc. and the residual forces z(.) in a re-
curs ion fromlink nto link 1 using A Igorithms 2 and 3. (6) Simultancously compute the dual
articulated body quantities S* (.) etc. and the dual residual forces 2,(.) in a recursion from
link 1 tolink nusing A lIgorithms 4 and 5.

9. For the k** link, computethe link spatial acceleration a(k) using Lemma 3.2, and the hinge
acceleration B3 using Fg. (3.13). These computations can be carried out independently for
each link.

4. For each link, integrate its hinge acceleration and velocity to update its hinge velocity and
angle. Return to step 1.

Step 4 above is necessary for numerical simulations and is used to propagate the state of the
system in time. Further simplification and decoupling of the algorithm is possible by choosing a
new non-minimal set for the generalized coordinates for the manipulator and is discussed next.

3.3.1 Simplifications Using Non—Minimal Coordinates

We have so far used the hinge angles plus the six base--body positional and orientation coordinates
as the generalized coordinates for the space manipulator, These coordinates form a minimal set
since their dimension is the same as the number of degrees of freedom for the system. Wc now look
at an aternative and non—minimal choice of coordinates which simplifies the computations in the
decoupled dynamics algorithm.

Recall that the very first step in the dynamics computations involves a recursion to compute
the orientations and spatial velocities of al the links using the generalized coordinates @ and the
generalized velocities 3. Step 3 computes the hinge accelerations from the link spatial velocities and
the last step updates the manipulator hinge coordinates and velocities using an integration routine,
These steps perform transformations between the hinge coordinates and the spatial coordinates.
In fact, these steps can be entirely dispensed with.

Wc now regard each link as an independent rigid body systcm in its own right. The
manipulator thus consists of a collection of these links connected together via hinges. For each
link, we choose its six orientation and positional coordinates as its generalized coordinates, and
its spatial velocity vector as its 6--dimensional generalized velocity coordinates. Taken together,
this gives us a system with 6n generalized velocity coordinates. These coordinates arc clearly non--
minimal and only A" of thcm arc truly independent. However, with the use these coordinates,
transformations between the hinge and spatial coordinate domains arc unnecessary. The modified
decoupled dynamics agorithm is as follows:

Algorithm 7 1. Usc each links' generalized velocities (i.e. spatial velocity V(k)) to compute
the Coriolis and gyroscopic terms a and b for itself. These can be computed completely inde-
pendently for each link.

2. (a) Compute the articulated body quantitics P(.) etc. and the residua forces 2,(.) in a re-
cursion fromlink 1 to link n using A lgorithins 2 and 3. (b) Sirnultaneously compute the dual
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articulated body quantities S* (.) etec. and the dual residual forces z,(. ) in a recursion from
link n to link 1 using Algorithms 4 and 5.

s. For the k* link, compute the link spatial acceleration ak) using Lemma 3.2.

4. For each link, integrate its spatial acceleration a(k) and spatial velocity V( K) to update its
spatial velocity, position and orientation. Go back to step 1.

The use of these non--minimal coordinates eliminates some of the computations in Algorithm 6.
However, the price paid here with the use of redundant coordinates is that the integration method
now involves a differential-algebraic equation rather t h an an ordinary differential equation.

3.3.2 Computational Issues

Like the articulated body forward dynamics algorithm, the decoupled dynamics algorithm is of
O(N) complexity. Since it involves a pair of articulated body recursions, it is computationally
more expensive. However, since many of the computations are decoupled and independent of each
other, it is useful for parallel implementation. In Algorithm 7, the computations in step 1can be
carried out independently and in parallel for all the links. In step 2, the articulated body recursion
in one direction is completely independent of the one in the opposite direction. Thus they can be
computed in paralel. With an architecture in which each link is assigned its own computational
node, each link (node) receives the results of the articulated body recursions from its neighbors,
updates its own articulated body inertias, and passes the results onto its neighbors. As in step 1,
the computations in step 3 are independent from link to link. Thus each link computes its own
spatial acceleration independent of the other nodes, INach node even has its own local and integrator
to update the state of its link. Thus, when implemented on paralel hardware, there is a significant
amount of computational speedup over the conventiona articulated body inertia forward dynamics
algorithm.

3.3.3 Smoothing Interpretation of the Algorithm

As has been discussed in references [12, 13], the O(N) articulated body inertia forward dynam-
ics algorithm in Section 2.2 resembles fixed-intcrvd optimal smoothing algorithms from optimal
estimation theory. The underlying estimation problem consists of the computation of the optimal
smoothed estimates of the states of a discrete time system driven by white noise over a finite inter-
val, The smoothing algorithm consists in part of a causal Kalman filter to obtain optimal filtered
estimates of the state process. Once the filtered estimates arc obtained, an anti-causal smoothing
recursion is used to compute the smoothed estimates. These causal and anti-causal recursions
arc similar to the tip--to-base and base- to-tip recursions in the articulated body inertia’ forward
dynamics algorithm.

An aternative formulation of the smoothing algorithm is possible when the observations
over the finite interval arc all available together. i consists of running two independent Kahnan
filters -- onecausal and the other anti- causal - to generate two sets of filtered estimatesof the
systemstate [14, 15]. While one of the filtered estimates is basedupon al the “past” observations,
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the other onc is based upon all the ‘future” observations. The optimal smoothed estimate is shown
to consist of a simple linear combination of the causal and anti- causal filtered estimates. The
structure of this decoupled smoothing algorithm closely resembles the structure of the decoupled
dynamics algorithm described here.

3.4 Extensions to Tree—Topology Manipulators

The extension of the conventional articulated body inertia forward dynamics algorithm -in Section
2.2 to tree-topology systems has been described in reference [11]. The recursive computations
now take on a gather/scatter structure. Thus recursions proceeding from the tips towards the
base gather inputs together from the incoming branches as they progress. On the other hand, the
recursions that start from the base and proceed towards the tips scatter their outputs along each
of the outgoing branches. Thus the conventiona O(A) articulated body inertia algorithm consists
of sequential recursions in a manner similar to that for serial—chain systems.

As in the case of serial-chain space manipulators, tree-topologyj space manipulators also
possess a symmetry arising from the non-unique choi cc for the base-bod y. The decoupled dynamics
algorithm for tree-topology space manipulators is illustrated in Figure 5 and takes into account the
fact there are more than two extremal bodies. Articulated body inertia recursions start from each

QQ\\ e
P\ )

Figure 5: The structure of the decoupled dynamics algorithm for
tree topology space manipulators

extremal body and proceed inwards. These recursions correspond to the P articulated body inertia
recursions in the serial-manipulator case. Asthey approach branch points, their contributions are
gathered together and accumulated by the link in common, and passed on to the other branches.
There are also separate recursions corresponding to the S articulated body inertia recursions which
treat every extremal body as a base body. These recursions proceed towards cach of the extremal
bodies accumulating the contributions from the brauchesas they go along. The averlap in the




computations among these recursions is such that along any of the seria chain sub-branches there
arc only precisely two recursions proceeding in opposite directions. Lemma 3.2 is still valid and is
used to compute the spatial accelerations of each of the links.

The overall structure of the decoupled dynamics algorithm remains the same as in Algorithm
7. The only change is to the articulated body inertia computations in Step 2 as discussed above.

4 Base-Invariant Operational Space Inertia

We now look at the role of the operational space inertia [16, 17] in the dynamics of space manip-
ulators. The operational space inertia inertia A(1) €Ii®*6, has traditionally been defined as the
effective mass matrix of the whole manipulator as seen at the end- effector. The expression for its
inverse is given by

A= (1) =J(OM;I3 (1) (4.1)

where J,(1) € R®*¥ denotes the Jacobian to the link 1 spatial velocity. It is given by
(1) = B(1) ¢"H*, where B(1)2 col{I8(i,1)} eRexe
=1

with 6(., .) denoting the Kronecker delta function.

We generalize this notion of the operational space inertia to al links on the manipulator. Thus the
operational space inertia for the k** link, A(k), is the effective mass matrix of the manipulator as
seen at the O, frame. Analogous to the earlier definition, its inverse is given by the expression

AJHRY=J, (k) M5 (K) (4.2)

where J, (k) € R®*¥ denotes the Jacobian to the k** link spatial velocity and is given by

Jo(k)= B(K)#*H*, where B(k)2 col{Ib(, k)} € RO™e 4.3)
i=1
It has been shown in [8] that
S HI M ¢, = Y HI D H o, £ Q, € RO%On (4.4)
It follows therefore that
AR Y T ()M (k) = B (R)Q, B(k) (4.5)

The subscript p above is a reminder that the above expressions assume that the base- body is link
n. However, it is easy to show that even though J,(k)and A4, depend onthe choice of base--body,
Q, is in fact independent of this choice. To see this, let us usc the subscript £ to denote the usc of
the k™ link as the base body. We have from Lemma A.l in Appendix A that

Je(k) B B (k) ¢, OHT .y, and M A T8 M, T s
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Therefore,

">

Qe SrHI M,

= B.(k)d’;}I;qJn.k[T:.,kMan.kr17;,k11p¢p]}(k)
qB;H;M;‘H,,d)p

4

= QP

i

-

Since ;-8 for al k, this quantity is independent of the choice of the base body and wc drop the
subscript from 2 altogether. This fact, taken together with }q. (4.2) aso establishes the invariance
of the operational space inertia A(k) with respect 1o the choice of the base-body.

Using a new block diagonal operator Y ¢ IR x6n, it has been shown in references [8; 17]
that 2 can be decomposed as

Q=74 1/);T + T"[)P (4.6)

The block diagonal components of Y are denoted Y(k)eR®*¢, and are defined by the following
link n to link 1 recursion:

Yt(n)=0
for k = n..-1
T(k) = T(k)XH(kY7p(k)+ H (k) D (k) Hy(k) (4.7)
YHEk-1) = ¢ (k k1) Y(k)p(k, k - 1)

end loop

Superficialy, it appears from Eq. (4.7) that wc should be using the subscript p on ¥ and its
components to indicate their dependence on the choice of link n as the base-body. However, we
do not do so because Y is in fact independent of the choice of the base-body. This fact is obvious
once wc realize that the three terms on the right hand side of Eg. (4.6) arc block diagonal, block
strictly upper—triangular and block strictly lower-triangular respectively. Since € is independent
of the choice of base--body, therefore so also arc Y and its components. From the definition in
Eq. (4.5) and the decomposition in Eq. (4.6), it follows that

ATI R Y B R - X 4 Yo, B(R) = B (k) YB(k) = T(K) (4,8)

That is, Y(k) is the inverse of the operational space inertia A(k). For ground-based manipulators,
Y (k) is singular for the first 5 links connected to the base. The singularity reflects the fact that
there arc directions along which spatial forces induce no motion in the manipulator. 1n contrast,
at the base body (link n) of a space-manipulator

T(n) = P Y(a)

‘I'bus, for space manipulators, Y(n) is aways invertible. Indeed, it can be shown that T(k) is
invertible for allk. ‘I'he invertibility property reflects the fact that any spatia force at any point
on the space manipulator will cause a non-zero acceleration of the free flying manipulator.

Even though wc have seen that. the value of the Y (.)’s do not depend of the choice of a base

body, the computational scheme in Eq. (4 .7) certainly does, since it makesuse of the articulated
body inertia quantities computed with link 71 as the base. Using link1 as the base body, we obtain
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the following dual algorithm for computing T(k) which makes usc of the dua articulated body
inertia quantities computed using Algorithm 4:

T(0)=0
fork =0+ ~-1
‘I‘*(k) =7, (k) Y(k)7, (k) 4 H*(k) D; Y(k)H (k) (4.9)
Y(k+ 1) = @*(k, k 4- 1) X (k) p(k, k4 1)
end loop

Both Eq. (4.7) and Eq. (4.9) describe computational schemes consisting of a recursion one way to
compute the articulated body inertia quantities, followed by a recursion in the opposite direction
to compute the T(k) 's. The lemma below shows that the symmetry of space manipulators in fact
alows us to dispense with these algorithms and express the Y'(k)’s directly using the articulated
body inertia P(k) and its dua S+(k).
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Lemma 4.1:

[T(k)]-" = P(k)+ S(k) (4.10a)
[YHE) = PHE)+ S*(E) (4.10b)

Proof: It follows from Eq. (2.6), Eq. (3.3) and Fq.(4.7) that Kq.({.10a) is true jerk =i if
and only if Eq.(4.10b)is true jor k=i — 1. We have that Y~ !(n)= P(n). Since by definition
S(n) = O, 'this implies that FEq. (4. 10a) holds jor k=:n. Thus Eq. (./.106) holds fork=n - 1. We
use proof by induction to establish the general result.

Assume that Eq. (4.10b) holds for a certaink. Then from Eq.(2.6), Fq.(4. 7) and that
S(k) H*(k)=0, it follows that

[PR) + SEY () & [P(K)+ SE)] [ (k)Y (kYTp(k) + H(k) Dy *(k)H,p(k))
P (k) YHR)T(R) + (k) 4 S(kyr (k)Y (k)7 (K)

PHEYYH(kYrp(k) +1p(k) + S(k) X (k)T, (k)

Ig— 7, (R)ST(R)YH (k)T (k)

= Ig— 7, (K)[Is— PHk)Y(R)]TH(K)

= Ie—7, (k)7 (B)Is — PY(k) YH(E)F,(K)]

= I

i

The last step follows from the jact that
TAL)T(K) =7.(k) - Gy(k) H(E) G,(R)H(K) = 7,(k) - G,(k)H(k) =0

Thusij Eq. (4. 10b) is true jor a certain k, Fg. (4,10a) isalso true for the same k. When combined
with the earlier result, it implics that Fq. (4.10a) isalso true jor k — 1. This establishes the induction
process since we have seen that Fyg. (4.10a) is in fact true for k = n.

This result once again highlights the natural symmetry of space manipulators. The positive
definiteness of P(.) and St(.) teken together with the above result clearly implies that Y(.) and
YT*(.) are aso positive definite (and hence invertible). Also, the operational space inertia A(K) is
given by

A(R) ¥BE1% P+ S(K) (4.11)

Lemma 4.1 provides us with a ncw method to compute the operational space inertias for
the links on the space manipulator. The agorithm is as follows:

Algorithm 8 1. (a) Compute the articulated body quantities P’(.) recursively from link 1 to link
n using Algorithm 2. (b) simultaneously comnpute the dual articulated body quantities S+ (.)
recursively from link n to link 1 using Algorithin 4.
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2. Compute A(K) =:[P(k) + S(k)] forthek® link. These computations can be carried out
independently jor each link.

Unlike the agorithms in Eq. (4.7) and ¥.q. (4.9), Algorithm 8 has a decoupled structure arising from
the symmetry of the space manipulators. The two sequential recursions in the earlier agorithms
arc now replaced by a pair of paralel recursions. This can be used to advantage in a parallel
computing environment.

As is’ the case for seria chain manipulators, the operational space inertia at any link of a
tree-topology space manipulator is simply obtained by summing up the P and S articulated body
inertia terms at the link,

5Conclusions

Space manipulators possess a symmetry not normally encountered in terrestrial manipulators. The
symmetry arises from the freedom available in the choice of a base-body for the manipulator. We
use this symmetry to develop a new O(N) forward dynamics algorithm with a highly decoupled
structure. A key idea was to treat ‘every link” as a base body. It has been shown that key dy-
namical quantities can be obtained by comnbining results from independent articulated body inertia
computations. ‘I'he usc of non—minimal coordinates to further decouple the forward dynamics al-
gorithm has also been discussed. The extension of the decoupled algorithm to tree-topology space
manipulators is straightforward. In addition, it has also shown that the algorithm for computing
the operational space inertia inertia for the manipulator can be simplified using the decoupled
articulated body inertia recursions.
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Appendix A: Transformation of the Base Body to Link &

The spatial velocity of the base body contributes siX of the generalized velocity coordinates for
the manipulator, The generalized velocities vector 8 with link 7. as the base body consists of

21



{B(1), === ,B(n" 1), V(n) where we have used the fact that
A= v(n)

In this section wc will usc the base-body index as a subscript to denote the choice of the base-body.
Thus 8 above will now be denoted 3,.

When we switch the base--body from link n to another link, say link k, the six velocity
coordinates given by V(' N)  arc replaced by the six coordinates V( K)  consisting of the the spatial
velocity of link k so that the new coordinates Bk ¢ R¥ arc givenby.

B(1)

e

: Al
P B(n - 1) (Al)

()

Lemma A.1 below defines the nonlinear transformation 77(.,.) which transforms between the 8,
and g8 coordinates. First we rewrite H, in the following partitioned form

©

H, = ( 7; ?G ; y Where X édialg }I(i)};_lleﬁ()\’-s)xﬁ(n-l) (A.2)
Lemma Al: The transformation map T , is such that
By = TinB,, whore Tin= ( e ¢.(2 " ) € RN (A.3)
)
with
Xe £ (0, I6,¢"(k+ LK)y .. ' (n = 1,k)] € R (Ad)

The inverse transformation T, such that B, = 7 B4 is given by

Tn é -1 I"—l 0 NxN .
& Tk.f! ( —~@*(k, )X H" ¢*(k, n) ) eR (A.5)

Proof: From Eq. (2.39) it follows that
V()= 367G RITEBG) = X, ¢ (n, )8,
i=k

From this follows the expression for T, in Eq. (A .3). The expression for its inverse, T, ., follows
quite simply frommatriz manipulation. L

The kinetic energy is given by
l - ] L - -
'éﬁnMnﬂn = —?:Bkyn,an’] n,kﬁk
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therefore, the mass matrix My in the B8, set of coordinates is given by

My =T MaTnp = T, Had Madh H T (A.6)

We now show that the operator formalism developed with link n as the base-body - in-
cluding the results related to the operator factorization and inversion of the mass matrix in Lemma
2.1 — also hold when link % is chosen as the base body. If wc look closely at the derivation of the
factorization and inversion results for the mass matrix and the articulated body inertia forward
dynamics algorithm, wc see that the kcy properties in the derivation were that the mass matrix
has a Newton-Euler operator factorization as in Yq. (2.4a) and that H, and M,, arc diagonal, and
¢, has the form

$n =1 - E4,]™"

where €4, is anilpotent matrix. We show in Lemma A.2 below that a similar Newton-Euler
operator factorization of the new mass matrix is also possible, and one from which the remaining
operator results follow. However, to do this wc need to define a ncw velocity coordinates vector 37
obtained by reordering the components of 3, as follows:

(B
ﬁ(k.—— 1) Iy 0
Bi =Pl = V(k) , where P& 0 0 I (A7)
ﬁ(k) I(;(,,_),_‘l) 0
\ Bz~ 1) /

Note that P is simply a permutation matrix which reorders the coordinate elements within 83,.
Moreover, P~! = P*. In the B} coordinates, the mass matrix A1 is given by

L= PMP Y PT MT P = PT Ho¢ M@ HyT o i P (A.8)
Lemma A.2: The mass matriz M} has the following opcrator factorization:
Ml; = IIk¢kA4k¢;II; (Ag)
where
H, & »Hop
¢ £ D £
M, 2 AgMAG (A.10)
Ig, 0
Ay & ( , " € Ronxon
0 dlag{d)(z - 1’1)}.':&4-1 )
where

Y, Y.
Eq4; & ( 01 Yz ) (A.11)




is nilpotent with Y; € RS¥*¢k 'Y, € RS- B)x6(n-k) qnd Y, € REXS(~F) defined as

REX6"  (A.12)

0 0 0 0 0
#¢2,1) o . . . 0 o0
0 0 ...¢kk=1) 0
O ¢k, k+1) 0 0 0
0 0 ok+1, k+2)... 0 0
L]0 0 0 0 0
Y;; == : : . :
I p(n—-2, n-—-1)
0 0 0 . 0 0
and
000 0 O
00 .00
Y & . .
1,0 . 00
Proof: We have
H'T,, 45 " 0
ok ( —@*(k, n) X H* ¢*(k, N) )
. I 0
= QH* where Q & LSn-1) .
O et wXegh €
Let
. n-17* N
e 2 [col{IJ(z,k)}_ﬂ] 10, Igye++,0], and I 2 [Tgn1,0]

where 6(., .) denotes the Kronecker delta function. We have that
Xe, ¢'(n, k)] = ady,

Therefore,

. -1 __ IG(n-]) 0 _ j
e = ( X & (n, k) ) n (ekgb; )

- -1 - N -1
-1 * -
¢). = O"l - A.l4 Id)" I - IE
"Q [(’ " ] ) ( €y > h ( Cy ¢
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(A.14)

(A.15)



At the component level,

{I¢ 421) o O . . . O0...0 0
- - 0 I ;5 3, 2)0.-.0--.0 0
( i-ie, ) | . ’ P DO oo
e . . . . . H N J .
' 0 0 0 0 - 0 v I —¢*(n,n-1)
0 0 O 0 e IG e 0 0

The above matriz is identical in formto (1 - £5 ) except for the last row. Siraighiforward matrix
manipulation shows that

”( T )Aqs' = [ - €4] (A.10)

In the above, the permutation matrix P is used to transform into a tri-diagonal

L1}

malriz form, while A4* normalizes the terms along the dlagonal( to 1 It is (gasy to verify that €4,
is nilpotent, and hence (I — €4, )isinvertible. We denote this inverse as ¢(k + 1, k). Thus

N ey =1 »
(I'"ef" ) 4% AL PP (A.17)
Therefore we have that
S H T P 425 QU P VA PP = AL (A.18)
Thus
M} = PT, H¢M$ H*T, (P* = H ¢ My Hy
This establishes the result. ]

Note that ¢, is no longer fully lower triangular, but nevertheless block--wise triangular.
The new indexing scheme is more natural in that the sequence of coordinates now follows the
natural ordering of the hinges along the manipulator. Since wc now see that A} has the necessary
Newton—Euler operator factorization, the operator inversion results corresponding to Lemma 2.1
can be obtained here as well. It can be shown that

(M3} = [T — B, K DT - Hiop, Ko (A.19)



