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A b s t r a c t

I%e-jlying  space manipulators have a symmetry not normally encountered in terrestrial
. . manipulators, arising from  the freedom oj choice jor the manipulator base-body. This paper analyzes

the ndationship  between this natuml  symmetry and the dynamical equations oj space manipulators.
The symmetry is used to develop a new formulation oj the manipulator dynamics in which two
independent O(JU)  ~cursions  pnxeeding  in opposite dirr.ctions  aw summed together to obtain the
complete jrwe-jiying manipulator dynamics. Each of the recursions is based upon sequential O(JU)
jorwati dynamics algorithms whose amputations ae decoupled and independent oj each other.
The new algorithms offer advantages jor pamllel  computation. Computation oj the opemtional
space inertia ineriia  for the links in the manipulator is also discussed.

1 Introduction

This paper studies the dynamical properties of free-flying space manipulators. Space manipulators
have several features not encountered in terrestrial manipulators [1-5]. One difference is that the
base-body for free-flying space manipulators has ful 6 degrees of freedom. Typically, from practical
considerations a link is preferably chosen as the base-body, eg. the spacecraft bus. However,
analytically any of the links in the manipulator can be chosen with equal validity as the base-body.
The symmetry of space manipulators arises simply from this non-uniqueness in the choice of the
base-body for the manipulator.

The generalization of the inverse dynamics algorithm to space manipulators has been dealt
with in reference [6] as a special case of the class of under–actuated manipulators. In this paper the
focus is developing a decoupled and symmetric forward dynamics algorithm for free--flying space
manipulators., The point of departure is the well known and highly eflcient O(N) articulated
body inertia forward dynamics algorithms for general manipulators [7-9]. This algorithm is highly
sequential in nature and consists of a series of recursive computations to compute the generalized
accelerations for the manipulator. ‘The symmetry of the space manipulators is used to transform
this forward dynamics algorithm into a new one with a highly decoupled structure. The new
algorithm consists of a pair of independent articulated body inertia recursions which proceed in
opposite directions. The structure of the algorithm offers obvious advantages for parallelization.
Also, it is shown that the operational space inertia, inertia for space manipulators can be obtained
M a simple combination of the pair of articulated body  inertia recursions. The  analysis  is general
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and applicable even when the base body forces arc non--zero, that is, even when the linear and
angular momenta arc not conserved.

2 Modeling and Dynamics of Manipulators

Consider a serial manipulator with n rigid body links. As shown in Figure  1, the links arc numbered
in incrcasitig  order from tip to base. The outer most link is denoted link 1 and the base link is

4—-– —--- Towards Base Towards Tip ~

Figure 1: Illustration of’ the links and hinges in a manipulator

denoted link n. l’hc  inertial frame is denoted “link (n+ 1 )“. The k~h link has two frames denoted
Ok and O~_l attached to it. Rame Q is on the inbc)ard  side and is the body frame for the kt~ link.
The  k’h hinge connects the (k+ l)~h and k’h links and its motion is defined M the motion of frame
ok with respect to frame ok+. Free spat.c motion of the manipulator is handled by attaching a 6
degree of freedom hinge between the base link and the inertial frame. The kth hinge is assumed
to have r(k)  dcgrccs of freedom where 1 < r(k) < 6, and its vector of generalized coordinates is
denoted O(k). For simplicity, and without any loss in generality, we assume that the number of
generalized velocities for the hinge is also r(k), i.e., there arc no nonho]onomic  constraints on the
hinge. The vector of generalized velocities for the kt” hinge is denoted ~(k) E R’. ‘1’hc choice of the
hinge angle rates /3(k) for the gcncralizcd  velocities ~(k) is often an obvious and convenient choice.
However, when the number of hinge dc.grccs  of freedom is larger than 1, alternative choices arc
often preferred since they simplify and decouple the kinematic and dynamic parts of t}lc equations
of motion, An example is the usc of the relative angular velocity (rather than Euler angle rates)
for the generalized velocities vector in the case of a free-flying rigid body. The overall number of
dcgrccs of freedom for the manipulator is given by N = >~~=1 r(k).

The sputid  uclocity  V(k) of the L-ih body frame 0, is defined as V(k) =
( )

w(k)
E lt~,

v(k)
with w(k) and v(k) dcnoti]lg  the angular  and linear vc]ocitics of (?k . ‘1’he  relative ipatial “velocity
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across the U* hinge is given by ll*(k)/3(k)  where 11*(A) G lRGxri~j  is the }linge map nldn”z  for the

hinge. The spatial force of interaction j(k) across the k
( )

N(k) ~ ~t6~~ ~,illgc is d e n o t e d  j(k) = ~.(k) 9

with N(k) and F(k) denoting the moment and force components rcspcctivc]y.  ‘J’hc spatial inertia
M(k)  of the k:h link about frame 0~ is defined as

M(k) =
(

y(k)

)

rn(k)f(k)  ~ ~L6x6
–?n(k)j(k)  nt(k)I~

WhCrC ?ll(k)’k the lIUiSS, p(k) 6 ~~3 k thC VCCtOr frOIn ok  to thC CCnter of 1113SS, and Z(k) e l~3xs
is the inertia of the IJh link about 0~ .

With V(k) denoting the spatial velocity, a(k) the spatial acceleration, f(k) the spatial force
and T(k) the hinge gcncralizcd  force at ok for the k~h link, the following Newton- Euler  recursive
equations [8, 10] describe the equations of motion as well as an O(Af)  inverse dynamics algorithm
for the serial manipulator:

Algorithm 1

V(7L + 1.) =: o, Cl(?t + 1) == o
f o r k  =.= n...l

v(k) == @*(k+ 1, k)v(k + 1) + H“(k)p(k)
cl(k) == q5*(k  -11,  k)o(k  + 1) + ll*(k)~(k)  + a(k)

end loop

{

f(o) == o
f o r k  = 1...?,

f(k) = @(k, k - l)j(k - 1 ) + -  M(k)cl(k)  +- b(k)
T(k) = H(k)j(k)

end loop

(2.1)

where a(k) and b(k)  denote the velocity dcpcndcnt  con”olis accclcmtion  and gyroscopic ~ome terms
respectively and

a(k) 5
(

LJ(k + I)Lo(k)

)G(k + l)[v(k)  – v(k + 1)] ‘ a*’d b(k) : (

L(k) fl(k)u(k)

)
(2.2)

?n(k)fi(k)ti(k)p(k)

@(k, k – 1) denotes the spatial tmnsjormution  opcraior  from O~_l to 0~ and is given by

llerc ~ & IL3X3 denotes the skew-symmetric cross- product matrix associated with  the vector x,
and i(k, k - 1) is the vector from frame C)k to frame ~~_ ~. ‘1’bough not shown explicitly, external
forces on any link in the manipulator are handled  by adding  their cflcct to the b(.) vector for the
link. ~

spatial operators [8] lead to conl~)act  exl)rcssioIls  for the C!(lUatiOIls  of nlotioI, aIid other kcy

dynamical  quantities. ‘1’hc vector O $ [0”(1), . . . O’(n)]’ c Itx clcllotes the vector of gcncralimd
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coordinates for the manipulator. similarly, we define the vectors of generalized velocities @ E MN
and generalized (hinge) forces 2’ c IfLN for the xnanipu]ator. ‘1’he vector of spatial velocities V is

defined as V ~ [V”(l) . . . V*(n)]’ c 1L6”. l’hc vector of spatial accelerations is dcIioted  o c ]t~n,
that of the Coriolis  accelerations by a G lltcn,  the link centrifugal forces by b c lt6n, and the link
interaction spatial forc~ by j E ItGn. ‘1’hc equatio:{s of motion for the serjal manipulator can be
written as follows [8]:

v  = q5*H”fl (2.3a)

c1 = @*[ll*~  -i a ] (2.3b)

j = q5[Ma  + b] (2.3c)

T’= Hf = Mb+ C (2.3d)

where

and H ~ diag{H(k)}  c RNx6n, A4 e diag{lkf(k)}  c lft~nxbn,

[

o 0 04(;,1) o .O. 0 0

c+ E o 1+(3,2) . . . 0 0 ~ ~~GnXGn
. . . .. . “. . .. . .
0 0 . . . @(n, Ll) o

(2.5)

with

@(~,j)  ~ d(iji  - 1) ““o d(j+l,  j)~ R6XG f o r  i >j

l’he  spatial transformation operator @(k, j) has the form
(: ‘(Y))

E RGX6 with /(k, j) C R3,

“~h body frame. ~ is the mass  matrix  of the manipulatordenoting the vector from the kth to the o
and the vector C contains the velocity dependent coriolis and  centrifugal] hinge forces. 13q. (2.4a)
is referred to [8] as the Newton–F,uler  factorization of the mass  matrix M .

2.1 Spatial Operator Factorization of &f--*

Operator factorization and inversion tcchlii,qucs  developed in [8] are used to oLtaiIl a closed forIn
spatial operator expression for M-1. First, we define the articulated My irlcrtia  quantities
P(.), D(.), G(.), K(.), T(.), P+(.) and #(., .) for the InaI1ipulator  ]inks using the fo)lowillg  til)- to
base recursive algorithm [7, 8]:
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Algorithm 2

p+ (()) ,: ()
f o r k  == l... ?t

r(k) = q’)(k, k - l)P+(k -- I)(j”(k,k - 1)+- M(k)
D(k) = H U H *
G ( k )  = P(k) H*(k) D-l(k)

K(k +- l,k) == ~J(k + 1, k)G(k)
Y(k) = 1~ –  G(k)Il (k)

p+ (k) == %(k) P(k)?”(k)  == ?(~)~(~)
Ij(k + l,k) = @(k+ l,k)7(k)

end loop

(2.6)

The operator P E R6nx6n is defined as a block diagonal matrix with the kth diagonal
element being P(k) G R6X6.  l’hc quantities in Eq. (2.6) arc also used to dc.fine the following spatial
operators:

The operators D, G and T are all Mock diagonal. l;vcn  though K and ~+ are not block diagonal
matrices, their only non zero block elements are the elements K(k, k – 1)’s and @(k, k – 1 )’s respec-
tively along the first subdiagonal.  II, is easy to verify from Eq. (2.6) that P satisfies the Riccati
equation

M == P -- &#>E; =: I’ –

NOW define the lower--triangular operato r @ < IR6nx~n  ~

7/, s (1 -- t+)-’

Its block elements #(i, j) c lItGx6 are as follows:

{

I/)(i, i--- 1) . . . @(j+-l
~~(i,j) s 16

0

(2.8)

(2.9)

,j) for i>j
for ~=, j

for i<j

The structure of the operators@ and &@ is identical to that of the operators @ and E+ except that
the elements are now, @(i,  j) rather than @(i, j).

l,emma 2.1 below describes an alterItativc  (to ]~q. (2,4a)) operator factori~,atioll  of M as
well as an expression for its inverse. l’urther discussion al)d t}lc proof of the lCIIIIna  call be found
in references [8, 9].
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Lemma 2.1: The opemtor  czpression for the innovations Factor t”zation  of the mass matrix M
and its inverse am is jollows:

M = [1+ JJ+K]DII  +- IIqX]* (2.lea)

[1+ Hf#)K]-’  == [1 -  11”7/11{] (2.10b)

M - ’ = [1 - IlqJK]*ll-’[I - H@K] (2.1OC)

The factor [1 + ll@K] 6 ItNxN is square while the factor D is block diagonal. Thus, the
factorization in Lemma 2.1 can also be regarded as a closed-form l,DL*  factorization of M. The
closed form operator expression for the inverse of the factor [1 + ll@l<] is given by Eq. (2.10 b). It
leads to the closed form operator expression for the inverse of the mass matrix M in Eq. (2.1OC).
l’his  factorization can be regarded as a closed--form 1,” DL factorization of M - 1.

2.2 Articulated Body Forward Dynamics Algorithm

Using Eq.  (2,1OC) in Eq. (2.3d)  and after some simplifications [9] wc obtah]  the following operator
expression for generalized accelerations vector ~:

This  expression forms the basis for the O(N) articulated body inertia jorward  dynamics algorithm
[7,8] for manipulators. First we decompose Eq. (2.11) into the following sequence  of sub-expressions:

z == E+z+  + Pa 4 b (2.12a)

2+ == .?+GC (2.12b)

c == T–HZ (2.12C)

= ~-lc (2,12d)

cl: = J$.a (2.12e)

~ ~ “_G”a+ (2.12f)

c1 = a+ + H*D +- a (2,12g)

l’hc expressions in Eq. (2.12) map into the following computational algorithm:

G



Algorithm 3

z(o) =: o
fork == I... tt

z(k) = @(k, k – l)z~(k – 1)+ b(k)+ P(k)a(k)
c(k) = T(k) –  H(k)z(k)

z+”(k) == z ( k )  +  G(k)c(k)
v(k)  == D“c(k)

end loop

a+(7t-} 1)=0
jor k = ne~.1

a+ (k) = q’)”(k + l,k)fl(k +- 1 )
~(k) = v(k)  -  G“(k)a+:(k)
cl(k) = o+(k)  + H*(k)@(k)  -t- a(k)

end loop

(2.13a)

(2.13b)

l’he overall steps in this O(N) articulated body inertia forward dynamics algorithm are as follows:

1. Use the first base-to-tip recursion in Algorithln  1 to compute the spatial velocities V(k), and
the nonlinear velocity dependent terms a(k) and b(k) for each of the links.

2. Use the tip-to--base recursion in Algorithm 2 to compute the articulated body inertias  P(k)
etc.

3. Use the first  tip-t~base  recursion in Algorithm 3 to compute the residual forces z(k) etc.

4. Use the lat ter base--to-tip recursion in A1.gorit  hm 3 to compute the link and joint accelerations
a(k) and ~(k) for all the links.

3 Free-l?lying Space Manipulators

‘J%e above analysis is applicable to both ground-based as well as space manipulators. The model
for t}le space manipulator remains the same as above  – with bodies 1 through n – 1 being the links
of the manipulator, and body n denoting its lms~body.  ‘J’he nth hinge (between the base-  body and
the inertial frame) has  6 degrees of freedom, and the hinge map matrix II(7L) for this hinge is the
6 x 6 identity matrix, i.e. If(n) = 16. The joint velocities for this hinge are just the components
of the 6-dimensional spatial velocity of the base  body, that is, /3(n) = V(7i).

‘l’he operator factorization and inversion result as well as the O(JU) articulated body
inertia forward dynamics algorithm described earlier also extend to space manipulators as well. In
Algorithm 2, the n:h recursion step (for the base-body) simplifies to

For the residual force computations in Algorithl[l  3,

C(71)  =- T(7L) – 2(71), @) == 1/(7/) =  l’-’(n) c(?t), 0(71) = v(n) i (l(?,) (3.2)
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Figure 2: A space rnrinipulator  with a 6 degree of freedom hinge  at
the base -body

For a terrestrial manipulator, the choice for the base-body is unique and is the link attached to the
ground. In contrast, one of the interesting aspects of space manipulators is an inherent symmetry
that arises from the non-unique choice for base--bed y. ‘1’here may well be a reason from physical
considerations to prefer one of the bodies as base--body. IIowcvcr,  analytically there is no inherent
reason for selecting one body over the other as base body.  While, above we have designated link
n as the base-body and the remaining links as forming the manipulator, from a modeling and
algorithmic point of view we can in fact, choose other links as the base-body as well. Appendix A
establishes this rigorously, and shows that the operator factorization results carry over completely
even when links other than link n are used as the base–body, and thus so do the various algorithms.
In the following section we look specifically at the case where the outermost link (link 1) is chosen
as the “base” body. We regard and refer to this case as dual to the conventional case where link n
serves as the base--body.

We henceforth use the subscript ‘p” for the articulated body inertia and residual force
quantities defined in Section 2 where link n was used as the bwe--body  q’he quantities associated
with the dual approach (with link 1 as bassc  body) will have the subscript “s”. g’hus the vectors
P, and ~, denote the generalized velocity vectors with the base--body being link n and link 1
respectively.

3.1 Ilynarnics  Algorithm with I.ink 1 as 13ase 130dy

l’igurc  3 shows the configuration of the space manipulator with link 1 chosen as the base body. AS

discussed in Appendix A, the six components of the base body’s  spatial velocity  vector form part of
the generalized velocity coordinates for the manipulator. ‘1’bus, when the base -body is moved from

link 71 to link 1, the components of /3(n)  in /3P arc replaced by the compollcllts  O(O) ~ V(1) to obtain
the new generalized velocity coordinate vector P,. Note that the l],, q5,, M, etc. ol)erators  and
the mass matrix M, are all different in the dual forlllulat,ion,  Ncvcrtllcless,  as discussed inApl)endix
A, the essential operator forlnulatioll  and results including  t}losc  al)out  tllc op~:rator  factorization

8



E3ase

.’.

(7k,—/

d?
.’

n

NsNsN\\N
Inertial reference

hinge

Figure 3: A space manipulator witli the outer most link as base-body

and inversion of the new mass matrix still carry through and thus so does the articulated body
inertia forward dynamics algorithm.

‘1’he difference in the articulated body inertia algorithm that arises within the dual formula-
tion is that what was the tip before now is the base and vice versa. l’hus tip-to-base (lmse-t~tip)
recursions now proceed from link n to 1 (link 1 to n) rather than in the opposite direction. We
designate the ncw dual articulated body inertia by the symbol S+ (k), and the other dual quantities
by the subscript s, i.e. D,, G,, T, etc. I’he quantity dual  to P+ is given by

s A 7’, s+

Note that the reversal in direction also reverses the sense of orientation of the internal hinge axes,
and therefore all of their hinge map matrices H(.) reverse sign. The recursions corresponding to
Eq.  (2.6) in the dual articulated body inertia are as follows:

Algorithm 4

s(n) = o
f o r k  = n–l... O

S+-(k) = (#(k, k + l)[S(k + 1)+ M(k + I)]@* (k, k +- 1)
D,(k) == H(k)s+(k)H*(k)
G,(k) = --s+ (k) IJ”(k)lJ;’(k)

K,(k - l,k) == ~(k - l,k)G,(k)
?,(k) = lG +  G,(k)H(k)
S(k )  = ?,(k)si (k)

I/),(k - l,k) = ~(k - l,k)T,(k)
end loop

(3.3)

‘I%e quantities @(k --1, k) are defined as

(@ ( k -  l,k)=#)-’(k,  k-l)= : -f(~;:--l) (3.4)

The residual- forces recursion dual to l’;q. (2.13) is as follows:
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Algorithm 5

.[

z,(n)  == o .

fork == 7L– 1..00
z: (k) == q5(k, k+ l)[z,(k+ 1)-1- b(k-l-  1)+ {S(k+ 1)-I A4(k+ l)}a,(k+  1 ) ]
c,(k) == T(k) -1- H(k)z#(k) (3.5a)
z,(k) == z:(k)  + G,(k) c,(k)
v,(k) = D - ’ c , ( k )

eqd loop

q(o) == o
fork = 0...7l–l

a(k)  = @*(k- l,k)a+(k - 1)
@(k) = v,(k) -  G:(k):(k)

a+(k) =  a(k) –II*(k)/3(k)  +-a,(k)
end loop

Here the Coriolis acceleration a,(k) is given by

a,(k)~  -~*(k-F l,k)aP(k  +-l)

(3.5b)

(3A)

3.2 Direct Computation of Link Spatial Acceleration

An important relationship which relates the inter-link forces, f(k), the residual forces ZP (k), and
the link spatial accelerations a(k) is given in the following lcmm a,

I.emrna 3.1: We have

f = P+cr+  +-z: =. P(a-ap)i-z,

Proof: From Eq. (2.12) it jollows  that

2.12/A2.12g
a a+ -t- H; up – r~a~ + aP 2“L2e E$,aP ~ H; vP -/- aP

2&9
+;(H;L’P +“ Up)

Thus

-...  ● +  2“2? E;,, ap %8 J;(ll”v,  -}- a , )‘P@P

wlim ~! e E+t) == t) – I. Also,

+  2J2%2J2*  E+,  z; + GP6P -1 pap +- ~P
X5  @j(GPcp  -i P a ,  + iJp)‘P

(3.7)

(3.8) ,

(3.9)

(3.10)
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l’hcrcjom  it jOllOUM thd,

f
2.3C
== ~p(A4pa -t b)
3.8
L: d’pwp(~~;v, i- %) 4“ 4,6

2.8
=.. [d 1)PP + P@~ (II; vP + aP) 4- qbPb
3.9
=: p+-a+ ~. ~,pP(I.T;Vp -/ up) fi- dpb

2.7,2 .12d,3.10
u: P+&’ + 2+

The latter half of Eq. (3. 7) can be proved  similarly.

The dual form of Eq. (3.7) is given by:

B

(3.11)

~’he above  relationships give alternative ways of expressing the inter-link spatial force j using
either the conventional or the dual articulated body inertia quantities. Combining these alternative
expressions provides a direct  method for computing the spatial accelerations of the links as described
in the following lemma.

Lemma 3.2: The spatial accelemtions  a(k)  of the links are given by:

o(k) = -[P(k)  + S(k)] -’[Zp(k) + a(~) - ~(~)ap(~)l

a+ (k) = -[p+-(k)  -t-s+ (k)] -’[zJ(k) -t z:(k) -s+ (~)a,(~)l (3.12)

Proof: Combine together Eq. (3.7] and Eq. (3. 11) to obtain  the above. 9

‘1’his result implies that the link accelerations a and a+” can be obtained by combining
together the results from the regular and dual articulated body inertia and residual force recursions.
l’hc  hinge acceleration is given by the following pair of expressions:

/@= v,(k) - G;(k) CY+(k) = v,(k) - G:(k)a(k) (3.13)

We now discuss the physiczd interpretation of Eq. (3.1 2). If we return to the regular forward
dynamics algorithm wc see that the key point in the algorithm is the computation of the articulated
body incrtias culminating with the computation of the articulated body inertia for the base body.
Once this inertia is obtained, the hinge acceleration for the base-body can be computed immediately
followed by the rest of the accelerations.

Let us now consider the intermediate link k as the lm.sc-body  as shown in Figure  4. For
thk choice, the components of the spatial velocity ,vector  V(k) for the k~h body now provide six
of the generalized velocity coordinates for the system. ‘1’he manipulator now has a tree topology
configuration, with two branches starting at the base.  The extension of the articulated body inertia
forward dynamics algorithm for such a tree topology configuration has Lee]l  dcscribcd  in [1 1]. The
basic algorithm remains the same as fol a serial chain except that the rec~lrsiolls  IIOW have a
scatter/gather structure, All recursions towards the IJasc “gather” all the inputs frolll  the incoming
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Figure  4: A space rnanipu]ator  with an intcrrnecliate  link as base--body

branches, while those proceeding outwards scatter their outputs along the outgoing branches. Thus
the articulated body inertia algorithm now involves two separate articulated body inertia recursions
starting off at link 1 and link n and proceeding independently towards link k. 11’he first recursion
is for the .F’(.)’s with link n .as the base-body, while the second recursion is for the S(. )’s with link
1 as the base-body. These recursions conle to a stop when the kth link is reached.

The results from the two recursions along the two arms are “gathered” together at the
k~h link to form the quantity ~(k) +- S(k). ‘l’his cluantity  is nothing but the articulated body
inertia of the whole manipulator as seen at frame ok with the Vh link regarded as the base-body.
Similarly zP(k) + z,(k) is the residual force at frame 0~ with the kth link being the base-body.
The relationship with the superscript + quantities is basically the same but with rwfercnce  frame
0~ . I!hus  Eq.  (3,12) is essentially telling us that one could compute the spatial accelerations for
the kth link by first making it the base-body, computing its articulated body inertia and residual
forces and then using I,cmma 3.2 to obtain its spatial accelerations.

3 . 3  The 13ase-Invariant

‘1’he discussion in the previous

Decoupled Forward Dynamics Algorithm

section illustrated as to how each link in the manipulator could  in
principle be regarded as a base-body. This arbitrariness in the choice of the b~e--body  reflects
the inherent symmetry of space manipulators. IIowcver,  while any link will do, the articulated
body inertia forward dynamics algorithm requires a specific choice for the base- body. A specific
choice for the base-body breaks this inherent symmetry. We show here that it is unnecessary and
to break this symmetry. wc can reformulate the algorithm so as to preserve and take advantage
of the symmetry. The key to this is to tnmt cvcy link in the manipulator as a base- body. With
this in mind, wc make usc of I,enlma  3.2 to propose the following rcforlllu]atcd  forward dynamics
algorithm:

Algorithm 6 1. Use the Jirst ~mrt of A lgolithfn 1 to compute the orientations, spatial velocities
V(k), and the Coriolis  and gyroscopic  tcrlns a and b jor all the lil~ks  recursively.
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step

(a) Contputc  the articulated body quantities P(.) .ctc.  and the residual forces z,(.) in a ~.
curs ion fmm link n to link 1 using A lgon”thms  2 and 3. (6) Siniuhancously  compute the dual
articulated body quantities S+ (.) etc. and the dual residual fomcs  z,(.)  in a recursion from
link 1 to link n using A lgotv-thnls  ~ slid 5.

For the kth link, conlptdc the link spatial accclemtion  a(k)  using Lcrnma 3.2, and the hinge
accclcmtion  ~ using Kg.  (3.13). These  computations can bc cam”cd out indcpcndcntly  for
each link.

For each link, integrntc its hinge accdcmtion  and velocity to update its hinge velocity  and
angle. Return to step 1.

4 above  is ncccssary  for numerical simulations and is used to propagate the state of the
system in time. Further simplification and decoupling of the algorithm is possible by choosing a
new non-minimal set for the generalized coordinatcx  for the manipulator and is discussed next.

3 .3 .1  Sin~plifications  Using Non–Mininml  C o o r d i n a t e s

Wc have so far used the hinge angles plus the six base--body positional and orientation coordinates
as the gcncralizcd  coordinates for the space manipulator, l’hcse  coordinates form a minimal set
since their dimension is the same as the number of dcgrccs of freedom for the system. Wc now look
at an alternative and non–minimal choice of coordinates which simplifies the computations in the
decoupled dynamics algorithm.

Recall  that the very first step in the dynamics computations involves a recursion to compute
the orientations and spatial velocities of all the links using the gcncralizcd  coordinates O and the
generalized velocities /3. Step 3 computes the hinge accelerations from the link spatial velocities and
the last step updates the manipulator hinge coordinates and velocities using an integration routine,
These steps perform transformations bctwccn  the hinge coordinates and the spatial coordinates.
]n fact, these steps can bc entirely dispensed with.

Wc now regard each link as an independent rigid body systcm in its own right. l’hc
manipulator thus consists of a collection of these links connected together via hinges. For each
link, we choose its six orientation and positional cc)ordinatcs as its gcncralizcd coordinates, and
its spatial velocity vector as its 6--dimensional generalized velocity coordinates. l’akcn  together,
this gives us a system with 6n gcncralizcd  velocity coordinates. lhcsc  coordinates arc clearly non--
minimal and only JV of thcm arc truly independent. However, with the use these coordinates,
transformations bctwccn  the hillgc and s~]atial coordinate domains arc ul~neccssary. The modified
decoupled dynamics algorithm is as follows:

Algorithm 7 1. Usc each links’ gencm[izcd  vcbcitics  (i.e. spatial velocity V(k)) to compute
the Coriolis  and gymscopic  terms a and b for itself. l’hcsc ca~i be conlputcd  col?lpictcly  inde-
pendently  for each link.

2. (a) Compute the articulated
cursion  frmn iirtk 1 to link n

Lody qua?ltitics  l’(. ) ck. and the residual jorccs  Zp(.  )
usirig A lgorithlas  2 slid 3. (tJ) Silnultaricously  compute
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articulated body quantities S (.) etc.  and the dual rwidual  forces z,(. ) in a recursion frotn
link n to link 1 using Algorithms ~ and 5.

For  the Vh link, compute the link spatial acceicmtion  cx(k)  using I.emma  3.2.

For each link, integrate its spatial accclemlion  a(k) and spatial velocity V(k) to update its
spatial velocity, position and orkntation.  Go back to step  I.

The use of these non--minimal coordinates eliminates some of the computations in Algorithm 6.
IIowcvcr,  the price paid here with the use of redundant coordinates is that the integration method
now jnvolves  a differential-algebraic CqUtLtiOIl  rather t h an an ordinary differential equation.

3.3.2 Computational Issues

Like the articulated body forward dynamics algorithm, the decoup]cd  dynamics algorithm is of
O(N) complexity. Since it involves a pair of articulated body recursions, it is computationally
more expensive. However, since many of the computations are dccouplcd  and independent of each
other, it is useful for para.llcl  implementation. In Algorithm 7, the computations in step 1 can bc
carried out independently and in parallel for all the links. IXI step 2, the articulated body recursion
in one direction is completely indcpcndcnt  of the one in the opposite direction. Thus they can bc
computed in parallel. With an architecture in which each link is assigned its own computational
node, each link (node) reccivcs the results of the articulated body recursions from its neighbors,
updates its own articulated body incrtias,  and passes the results onto its neighbors. As in step 1,
the computations in step 3 are independent from link to link. Thus each link computes its own
spatial acceleration independent of the other nodes, Each  node even has its own local and integrator
to update the state of its link. Thus, when imp]emcntcd  on parallel hardware, there is a significant
amount of computational spccdup  over the conventional articulated body inertia forward dynamics
algorithm.

3.3.3 Smoothing Interpretat ion of  the Algor i thm

As has been discussed in refcrcnccs  [12, 13], the O(N) articulated body inertia forward dynam-
ics algorithm in Section 2.2 resembles fixed-intcrvd optimal smoothing algorithms from optimal
estimation theory. The underlying estimation problcrn  consists of the computation of the optimal
smoothed estimates of the states of a discrete time system driven by white noise over a finite inter-
val, ‘J’hc smoothing algorithm consists in part of a causal l{a]man  filter to obtain optimal filtered
estimates of the state process. Once the filtered estimates arc obtained, an anti-causal smoothing
recursion is used to compute the smoothed estimates. These causal and anti-causal recursions
arc sjmilar  to the tip--to-base and base- tmtip recursions in the articulated body ilicrtia’ forward
dynamics algorithm.

An alternative formulation of the smoothing algorithm is possible  when the observations
over the finite interval arc all available together. It consists of running two independent Kahnan
filters -- one causal and the other anti- causal - to ge]leratc  two sets of filtered cstixnatcs  of the
systc:n  state [14, 15]. While  one of the filtered estimates is based  u~mn all the “past” observations,
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the other onc is based upon all the ‘future” observations. ‘I’he optimal smoothed estimate is shown
to consist of a simple linear combination of the causal and anti- causal filtered estimates. ‘l’he
structure of this dccouplcd  smoothing algorithm closely resembles t}(e structure of the dccouplcd
dynamics algorithm dcscribcd  here.

3 . 4  E x t e n s i o n s  t o  Tree–-l’opology  Mat~ipulators

The extension of the conventional articulated body inertia forward dynamics algorithm in Section
2.2 to tree-topology systems has been described in rcfcrcncc  [11]. ~’hc rccursivc  computations
now take on a gather/scatter structure. ‘1’hus recursions proceeding from the tips towards the
ba.sc gather inputs together from the incoming branches as they progress. On the other hand, the
recursions that start from the base and proceed towards the tips scatter their outputs along eac}~
of the outgoing branches. Thus the conventional (2(N) articulated body inertia algorithm consists
of sequential recursions in a manner similar to that for serial–chain systems.

As in the case of serial-chain space manipulators, tree-topologyj space manipulators also
possess a symmetry arising from the non-unique choi cc for the tmsc-bod  y. The decoupled dynamics
algorithm for tree-topology space manipulators is illustrated in Figure 5 and takes into account the
fact there are more than two extrcmal  bodies. Articulated body inertia recursions start from each

Figure 5: The
tree

extremal body and proceed

structure of the dccc)upled  dynamics  a lgor i thm fo r
topology space manipulators

inwards. These recursions correspond to the p articulated body inertia
recursions in the serial-manipulator CMC. AS they approach branch  poirtts,  tllcir  contributions are
gathered together and acculnulated  by the link in common, and passed on to the other branches.
There are also separate recursions corresponding to the S articulated body inertia recursions which
treat every cxtrcmal body as a base body. “1’hcsc recursions proceed  towards cac}l of tllc cxtrcmal
bodies accumulating the contributions froln the brwlchcs  as they gc) aloILg. “1’he ovcr]ap  in the
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computations among these recursions is such that along any of the serial chain  sub–branches there
arc only precisely two recursions proceeding in oppc~site  directions. Lemma 3.2 is still valid and is
used to compute the spatial accelerations of each of the links.

The overall structure of the decoupled dynamics algorithm remains the same as in Algorithm
7. ‘1’hc only ,change  is to the articulated body inertia computations in Step 2 as discussed above.

4 Bas&-Iwariant  Operational Space Inertia

We now look at the role of the operational syace  inertia  [16, 17] in the dynamics of space manip-
ulators. The operational space inertia inertia A(1) ~ 111.sx6, has traditionally been defined as the
cffectivc mass matrix of the whole manipulator as seen at the end- effcctor.  The expression for its
inverse is given by

A-’ ( l )  == JP(I)M;lJ;(l) (4.1)

where JP(l) E ItGxN denotes the Jacobian to the link 1 spatial velocity. It is given by

J,(l)  = I?*(l) @*H*,  w h e r e  lJ(I) ~ col{166(i,  l)};=, E R6” X6

with 6(., .) denoting the Kronecker delta function.

We generalize this notion of the operational space inertia to all links on the manipulator. Thus the
operational space inertia for the kth link, A(k), is the effcctivc  mass matrix of the manipulator as
seen at the Ok frame. Analogous to the earlier definition, its inverse is given by the expression

A;’(k) == 3p(k) M; ’J; (k) (4.2)

where JP (k) E R6XN  denotes the Jacobial(  to the kth link spatial velocity and is given by

J,(k)  = B“(k)(#)*H*, w h e r e  D(k) ~ Col{lGA(i,  k)}n c IIL6”X6 (4.3)
i=l

It has been shown in [8] that

It follows therefore that

A;l(k)  4’%4”4  Jp(k)M;’J;  (k) =: B“(k)Qpl?(k) (4.5)

The subscript p above is a reminder that the above expressions assume  that the base body is link
n. IIowevcr,  it is easy to show that CVCI1 though  Jp(k) and &fp depend 011 t}lc  choice of base--body,
flP is in fact independent of this choice. go see this, let us usc the subscript k to denote the usc of
the k~h link as the base body. We have from l,elnnla  A.1 ill Appendix A that

J~(k) @ B*(k) @; OIl;T.,~,  a n d  M~ !:6 7:,,, JU,,  T,,,,
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Therefore,

==.fi?~ for all k, this quantity is independent of the choice of the base body and wc drop theSince $lP .
subscrjpt  from Q altogether. ‘1’his  fact, taken together with F.q. (4.2) also establishes the invariance
of the operational space inertia A(k) with respect to the choice of the base-body.

Using a ncw block diagonal operator Y ~ IItGn X6n , it has been shown in references [8; 17]
that Q can be decomposed as

l’hc  block diagonal components of T arc denoted T(k) E IRGX6,  and are defined by the following
link n to link 1 recursion:

{

Y+(?l)  == o
for k = n~~.1

T(k) == 7;(k)T+ (k)h’p(k)  +- H;(k)  D;l(k)Hp(k)
T+(k – 1) = @*(k, k -- l) T(k)~(k,  k - 1)

end loop

(4.7)

Superficially, it appears from Eq. (4.7) that wc s}lould  be using the subscript p on Y and its
components to indicate their dependence on the choice of link n as the base-body. However, we
do not do so because Y is in fact independent of the choice of the base-body. This fact is obvious
once wc realize that the three terms on the right hand side of Eq. (4.6) arc block diagonal, block
strictly upper–triangular and block strictly lower-triangular respectively. Since Q is independent
of the choice of base--body, therefore so also arc Y and its components. From the definition in
Eq. (4.5) and the decomposition in Eq.  (4.6), it follows that

A-l(k) 4“%4’6  li’*(k)[T  -t- @jT +- Y@P]ll(k) == 13’(k) Tl?(k) == T(k) (4,8)

That is, Y(k) is the inverse of the operational space inertia A(k). For ground-based manipulators,
Y(k) is singular for the first 5 links conncctcd  to the base. ‘1’hc singularity reflects the fact that
t}lcrc arc directions along which spatial forces induce no motion in the manipulator. In contrast,
at the base body (link n) of a space-manipulator

‘1’bus, for space manipulators, T(71) is always invertible. Indeed, it can be shown that T(k) is
invertible for all k. ‘l’he invcrtibility  property reflects the fact that any spatial force at any point
on the space manipulator will cause a non-zero acceleration of the free flying manipulator.

Even  though wc have seen that. the value of the Y(.)’s  do not C] CpCIId of t]lc choice of a base
body, the computational scheme in I}q. (4 .7) ccrtairlly  does, sillcc  it tl~akc,s  USC of tl}c articulated
body inertia quantities computed with link 71 as the base. using  link 1 as the base body, wc obtain
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the following dual algorithm for computing T(k) which makes usc of the dual articulated body
inertia quantities computed using Algorithm 4:

{

T(o) == o
f o r k  = 0.wc7L --I

T+(k) = ?:(k) Y(k)3’, (k) -1 H*(k)  ll; l(k)H(k)
T(k +- 1) = @*(k,  k 4- l) T+(k) @(k,  k -1- 1)

end loop

(4.9)

]Ioth  Itq.  (4.7) and Eq. (4.9) describe computational schemes consisting of a recursion one way to
compute the articulated body inertia quantities, followed by a recursion in the opposite direction
to cox~~putc  the T(k) ’s. The lemma below shows that the symmetry of space manipulators in fact
allows us to dispense with these algorithms and express the Y(k)’s directly using the articulated
body inertia p(k) and its dual S+(k).
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Lemma  ~.1:

[ T ( k ) ] - ’  = P(k)+s(k) (4.10a)

[T+(k)]-’ c- P+(k) + s+”(k) (4.10b)

Proof:  It’ follows  jrom Eq. (2.6), Eq. (3.3) and Eq. (4.7) that Eg. (~,lOa) is true jerk = i ij
and only ijEq. (~.10b) is true jor k = i – 1. We have that T-l(n) == F’(n).  Since by dcjinition
S(n) = O, ‘this implies that Eq. (~. 10a) holds jor k =- n. Thus ICq. (./.106) holds jor k = n – 1. We
use prooj by induction to establish the general rvsult,

Assume that Eq. (./.lOb) holds jor a certairl  k. Then jwm Eq. (2.6), Eq. (~. 7) and that
S(k) H”(k) == O, it fo/lows  that

[P(k) + s(k)]Y(k) %7 [ P ( k ) +  S(k)] [5”j(k)T’(k)TP(k)  -I H;(k) D; ’(k)HP(k)]
2=6 P+ (k) T+(k)T;(k)  +- T,(k) +- S(k)Tj(k)T~ (k)TP(k)

= P+(k)Y+(k)YP(k)  +- T,(k) + S(k)  Y+(k)TP(k)
= 1,-- 7“, (k)s+(k)Y+ (k)Tp(k)

16- 7“, (k)[l~ – P+ (k)T+  (k)] TP(k)=

= r~ – 7“, (k)Tp(k)[16  – P+”(k) Y+(k)Tp(k)]
= 16

The last step follows from the jact that

T , ( L ’ ) T ( k )  = T,(k) – G,(k) H(k)  Gp(k)U(k)  = T,(k) - G,(k)H(k)  = O

Thus ij L’q. (~. 10b) is true jor a certain k, Eq. (4,10a) is also true for the sarrw k. When combined
with the earlier result, it irnplics  that Eq. (4.10a) is also true jor k – 1. This establishes the induction
pmeess  since tve have seen that Eq. (4.10a) is in jact true for k = n.

This result once again highlights the natural symmetry of space manipulators. l’he positive
definiteness of I’(.) and St(.) taken together with the above result clearly implies that Y(.) and
T+(.) are also positive definite (and hence invertible). Also, the opcrationa.1  space inertia A(k) is
given by

A(k)  ‘“’’i!:’b  P(k)+- S(k) (4.11)

Lcmrna  4.1 provides us with a ncw mctl)od  to compute the operational space inertias  for
the links on the space manipulator. MC algorithm is as follows:

Algorithm 8 1. (a) Compute t}ic articulated bod~y guontities  l’(. ) ?zcursiuc/y jrorn lirik 1 to link
n using Algorithm ,!?. (b) simultaneously corn]jutc the dual articuiotcd  &iY quantities S+ (.)
rwcursivcly  jlwrn link n to link 1 tisitlg Algorithln J.
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2. Compute A(k) =: [P(k) + S(k)] for the Vh link. These computations can be carried out
independently jor each link.

Unlike the algorithms in Eq. (4.7) and Eq. (4.9), Algorithm 8 has a dccouplcd  structure arising from
the symmetry of the space manipulators. I’he two sequential recursions in the earlier algorithms
arc now replaced by a pair of parallel recursions. This can be used to advantage in a parallel
computing environment.

As is” the case for serial chain manipulators, the operational space inertia at any link of a
tree-topology space manipulator is simply obtained by summing up the P and S articulated body
inertia terms at the link,

5 Conclusions

space manipulators possess a symmetry not normally encountered in terrestrial manipulators. The
symn~etry  arises from the freedom available in the choice of a Im.sc-bocly  for the manipulator. We
use this symmetry to develop a new C)(N)  forward dynamics algorithm with a highly decoupled
structure. A key idea was to treat ‘every link” as a base body. It has been shown that key dy-
namical quantities can bc obtained by coxnbining results from indcpcndcnt  articulated body inertia
computations. ‘l’he usc of non–minimal coordinates to further decouple the forward dynamics al-
gorithm has  also been discussed. The extension of the decoupled algorithm to tree-topology space
manipulators is straightforward. In addition, it has also shown that the algorithm for computing
the operational space inertia inertia for the manipulator can be simplified using the decoupled
articulated body inertia recursions.
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Appendix A: Transformation of the Base Body to Link k

‘rhe spatial velocity of the base body colltribut,cs six of tlie generalized  velocity cc)ordinatcs  for
the manipulator, 2’IIC generalized velocities vc!ctor  ~ with li]lk 71 as t]lc base body  consists of
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{Ml),  “““ ,Mt~ - 1), V(n) where we have used the fact that

p(n) = v(n)

In this section wc will usc the base-body index as a subscript to denote the choice of the base-body.
l’hus  /3 above will now be denoted ~n.

When we switch the base--body from link n to another link, say link k, the six velocity
coordinates given by V(n) arc replaced by the six coordinates V(k) consisting of the the spatial
velocity  of link k so that the new coordinates ~k C ItN arc giVell by.

[)
p(l)

@kg !
p(ll -1)
v(k)

( A l )

Lemma A.1 below defines the nonlinear transformation T(.,.) which transforms between the ~~
and ~n coordinates. First. we rewrite 11. in the following partitioned form

( )
H.==  % 0016’ {w h e r e  ‘H $  diag  ll(~)}fl-l  ~ ~(~-6)x6(n-1) (;.2)

1=1

Lemma A l : The tmnsjormation  map T~,. is such that

with

~@ [0,”””, IG,4*(ki-  l,k), ””” ,@*(n–  l,k)] c IR6X”-I

The inverse tmnsfornlation  Tn,k such that /3. == T’~,@t  iS given by

~n,k 5 ~;,~ = ( In. ~ o
-@*(k, 71)X,H* f$”(k, n) )

~ ]LNxN

(A.3)

(A.4)

(A.5)

l’roof:  Front  Eq. (2.3a) it follows that

v(k) ~ ~@*(~jk)}~*(i)/?(i) = [~k~”, @“(7t, k)]pn
i=k

~“mnk thi9 jo[lows  the ezprwsion for 7k,,, in $;q.  (A .3). The expression for its inverse, 7~,t,  jo[[ows
quite simply from  rnatra”z  manipulation. E

The kinetic energy is given by

22



therefore, the mass matrix Mk in the ~~ set of coordinates is given by

&fk == ~’~,~M.p”.,k  == T;,~H.q5~M.~;II;T.,~ (A.6)

We now show that the operator formalism dcvclopcd  with link n as the base-body - in-
cluding the results related to the operator factorization and inversion of the mass matrix in I,cmrna
2.1 – also hold when link k is chosen as the base body. If wc look closely at the derivation of the
factorization and inversion results for the mass matrix and the articulated body inertia forward
dynamics algorithm, wc see that the kcy properties in the derivation were that the mass matrix
has a Newton-Euler operator factorization as in Nq. (2.4a) and that H: and M. arc diagonal, and
@n has the form

#n = [1 - C+m]-’

where ~~n is a nilpotent  matrix. We show in Lemma A.2 below that a similar Newton-Euler
operator factorization of the new mass matrix is also possible, and one from which the remaining
operator results follow. Nowcvcr,  to do this wc need to define a ncw velocity coordinates vector ~~
obtained by reordering the components of ~t as follows:

Note that P is simply a permutation matrix which reorders the coordinate elements within ~~.
Moreover, ‘P- 1 = 7“. In the ~~ coordinates, the mass matrix M~ is given by

Lemma A.2: T}ie mass matrix JU~ has

~k ==

PII’P*

[I - &@k]-’

A@ fnA4*

the jollowing  operntor  jactorv”zatiofz:

(A.9)

(A.1O)

Ulhcre

(A.]])
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and

( 0 0 0 0
#(;,]) o . . . 0 ()
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(: . .. “.. ..

0 0 . . . (#@,i-1) o
0 q!(k, k+l) . . . 0
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o
0
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.“. .
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o . , . 0 0
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Proof: We have

H“T.,~ ‘ti5
(

‘H”
+$”(k, n) Xk?f” q$”(!, n) )

GUI”,
(

Iq~-l,=-. where Q $
-@”(k,  7L)X~  @“(:,  n) )

c 1t6nx’” (A.12)

where 6(., .) denotes the Kroneckcr  delta function. We have that

[x,, ~”(?z, k)] == C,+; (A.13)

Thcmjomj

(A.14)

(A.15)
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At the component level,

/1, -4”(2,1) o 0 . . . 0 . . . c1
1~ -(/)”(3  ,2) (1 . . . () . . . 0

. . . . . .. . . . . .. . . . . . .
0 0 0 . . . 0 . . . I

(0 o 0 0 ...16...0

l’}ie above lrlatriz  is identical in jorrn to (I -. ~~n) except for the last row.
manipulation shows that

o
0
..

+“(n;n – 1)
o )

Stmighljorurard matrix

(A.16)

. In the above, the permutation matrix ‘P is used to tmnsjorm
( ’ - $ ’ ” )

into a trv”-diagonal

matriz  jorrn,  while A+” normalizes the terms along the diagonal to 16. It is easy to uert”jy  that C+k
is nilpotent,  and hence (I – &+k) is invertible. We denote this inverse as 4(~ + 1, k). !l’hus

(A.17)

l’hemjorw  we have that

Thus
M; = P7;,kH@Wq5*H”7n,  kP’ = JIk~~Mk#;H;

This establishes the result. m

Note that 4~ is no longer fully lower triangular, but nevertheless block--wise triangular.
The new indexing scheme is more natural in that the sequence of coordinates now follows the
natural ordering of the hinges along the manipulator. Since wc now see that M; has the necessary
Newton–Euler operator factorization, the operator inversion results corresponding to I,emma 2.1
can be obtained here as well. It can be shown that
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