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A CONTINUOUS SQUARE ROOT INFORMATION FILTER-SMOOTHER.
WITH DISCRETE DATA UPDATE

James K. Miller!

A differential equation forthe square root information matrix is derived and
adapted to the problems of filtering and smoothing. The resulting continuous
square root information filter (SRIF) performs the mapping of state and process
noise by numerica integration of the SRIF matrix and admits data via a discrete
least square update. For comparison, the matrix differential equations for the
covariance filter or continuous Kalman-Bucy filter, the information filter, and the
square root covariance filler are also derived.

Computational efliciency, accuracy, computer memory requirements and simplic-
ity of design are compared with other filter designs. Computational efliciency
seems to favor discrete filters since these have been developed to a high degree
of efficiency. The continuous SRIF isexpected to out perform discrete filters
with regard to accuracy and memory requirements becauscthere is no need to
compute the state transition matrix and error control may be placed directly on
the elements of the SRIF matrix. Elimination of the state transition matrix may
also eliminate numerical problems that have been experienced in computing this
matrix. Simplicity of design favors the continuous SRIF particularly when the
same numerical integration algorithm used to propagate the state is used to in-
tegrate the SRIF matrix. Also, the introduction, of process noise to the filter as
a differential equation enables the investigation of a wide variety of noise models
without the explicit solution of the differentia equation.

INTR.OI3UCTION

A data filler processes data in order to oht an an e ijmate of parameters that are related to the
data by a mathematicall model. Data filters y \jst in ma),, forms and usc the covariance of the state
pararnctcrs, or some equivalent representation, along with the measurements and a simulation of
the measurements including partial derivatives, to obtain the desired estimate. Data filters may be
separated into two categories depending on how the state covariance is evolved as a function of time.
Continuous data fillers evolve the state covariance by integration of a matrix differential equation or
Ricatti equation and discrete data filters evolve the state covariance by mapping over a finite time
interval. Discrete filters are thus obtained by solving the continuous equations over some finite time
interval. ‘I’he covariance matrix of the state may be represented by its inverse or information matrix
or square root factorization of either of these matrices.

In the formulation of the filter described in this paper, system dynamics and process noise arc
described by differential equations. Yor the simple case of exponentialy time correlated process
noise, both the continuous and discrete formulations are described. Data is processed sequentially
similar to the discrete Kalman-Bucy filter. The matrix differential equation for the mapping term of
the SRIF matrix is derived from the system dynamics. The process noise term and data update term
arc obtained by transformation of the correspordingterins in either the covariance or information
filters using simple matrix identities. Dualrel«ionssips arc shown for the continuous filters and
these arc exploited in the development of the filier.
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In order to complete the continuous SRII" description, the problems of smoothing, discrete pro-
cess noise update, iteration for solution, and numerical integration of the SRIF matrix are described.

SYSTEM DYNAMICS

‘I'he system dynamics may be described as a linear perturbation of a reference function of the
state variables. Given the nominal values of thestate variables described by the function #(¢) and a
perturbation of thestate(8z) at the initial epoch (1p), the perturbed state variables arc described

by

(1) = &(1) + d(t, o) 62(to) @
where the state transition matrix (®) is given by
d) - 8T—(t)
31‘(!0)

‘I'he state transition matrix may be obtained as a solution of the following differential equation or
by numerical integration.

gi(t ) _ 0z(t) Ox(l)

6.’6(10) - (‘).’l‘(t) 61,’(10)

d’(i,to) =F q)(tatO) (2)
where
20
T ox()

The above differential equation describing the evolution of the state variation may be generalized to
include other parameters and process noise.

X=rX 4+ GQ (3)

where G is the mapping of €2, the process noise. Here, the b’s have been dropped and the variation éx
isrepresented by X, The state vector variation X may be gencralized to include constant parameters
(y) and stochastic parameters (p) as well as the dynamic state variables (). The process noise (£2)
contains white noise (w) on the stochastic parameters. ‘I'hus wc have

)

The stochastic parameters (p) provide a means of introducing process noise into the state variables.
Thesc arc defined by scalar diflerential equations of the form

: 1
pi= n pi +wi ©®)

where 7; is the correlation time and w; is the white noise associated with the i’th stochastic parameter,
“1’bus, white noise is introduced directly to the parameter p and indirectly to the state via the mapping
matrix .

An estimate of the state is obtained from a mathematical model of the system dynamics that
include measurements processed by a data filter. The “best” estimate of the variation of the state
(X)isdescribed by the following equations,

X=FX+GQ+ K7 (6)
J=r-HX )
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where K isthe Kalman gain, Q represents an estimate of the process noise, # arc the actual
mecasurements and /7 is the matrix of data partials. TheKalman gain is computed as a function
of the mecasurement error, the data partials and the state error covariance (7). ‘1’bus, in order to
obtain a complete set of equations that would enable the computation of the estimated state wc
need an equation for the Kalman gain and an equation for evolving /* as a function of time.

DERIVATION OF CONTINUOUS FILTER. EQUATIONS
The covariance of the state estimate is defined by the expected value represented by
P=kE{XxXX"} (9)
As an dternative, wc may compute the information matrix (A), the square root of the covariance

(9), or the square root of the information matrix (R). The equations that define these matrices arc
given by

P=A" (lo)
pP=58" (11)
P1=R"R (12)

‘I"bus, wc arc interested in obtaining differential equations of the form

P=DPn4 P4 (13)
A=A, 4 A +Ag (14)
S=Sm+58,+Sa (15)
R= R + Ity + Ra (16)

where the subscript m refers to the mapping terms, the subscript g refers 1o process noise terms,
and the subscript d refers to the data update terms.

The evolution of the covariance as a function of time [I] may be obtained by mapping the state
covariance obtained at some epoch (fo) to some time in the future (1) with the state transition
matrix.

P(1) = @(1, o) Pto) ¥(t,10)" (17)
Taking the derivative with respect to time wc obtain
P(t) = ®(t,10) P(to) ®(1,10)" 4 @(t,10) P(to) d(t,10)" (18)
Since the state transition matrix is obtained by integrating
d(t, o) = 1(t) P(L,10) (19)

wc obtain after substitution )
])m:],vl) _*_ 1:117111 (20)

Process Noise Term

In the covariance matrix diflerential equation, process noise enters as a simple addition to the
covariance. Thus wc have

P+ At)y=P() + GAQG" (21)
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where AQ is the covariance of the process noise admitted over the time interval At and

AQ = Q At
where Q is the rate of accumulation of process noise. Thus, in the continuum wc have
' . P+ Aty — P(1) T
P I —
o= i { T soec )

Data Update Term

The discrete covariancc update may be obtained assuming an additional mecasurement Hy, 44
is added to a previously determined estimate based on mcasurements /1, with covariancc 7%,.The
derivation is given in many references [2,3] that are available,

Pag1 = [HYAW, Hy + 1Y, AWy 1 Hoga] ™ (23)

in the notation used here, H, is a matrix withn rows corresponding to the measurements and m
columns corresponding to the state parameters. I/nt1 is a row matrix of dimension m. We aso
have for the covariancc update,

])n¥+11 = Pyl ) AWy Hugs (24)
and since
A=p!
Apg1 = A + HY L AW gy (25)
over the time interval At between mecasurements, information accumulates at a rate W and
AWpp1= W AL (26)
Angr1-Ap=17Y | WAL Hni (27)

ividing by At and taking the limit as Af approaches zero,
Am=H" w11 (28)
wc obtain a differential equation for the evolution of the information matrix due to addition of data.

_Lecast Square Data Update

In order to complete the filter equations, we need an agorithm for processing the measurements
to obtain a best cstimate of the state. The discrete forin of the Kalman update algorithm is given

by [2]

AA’ = PIIT(AW-1+ 1 PI™M)! (29)

An equivalent expression is obtained by usc of the matrix inversion lemma

AK = [f’-] 4+ 0T AW 11]_1 nvaw (30)
If wc admit the data at a rate W over a time interval At wc have

AK = ?3-1 + 1T WAL 11]—]11“‘ WA{ (31)

where P’ is the covariance at the beginning of the interval prior to processing the data. ividing
through by At and taking the limit as At approaches zero wc obtain

[AK) .
A _ pl
K= A]:r_r'lo{ p } =rPHn'w (32

adifferential equation for the Kalmanupdate.



FILTER> DIFFERENTIAL EQUATIONS

Collecting the terms derived above, we have the following matrix differential equation or Ricatti
equation for the covarian cc filter,

P=FP4PF'4GQGC" + Iy (33)
K=prntw (34)
and for the information filter, o _ ‘
A=Ap+Ag+H"WH (35)
K=A1H"W (36)

The data update term (]"d) is missing from the covariance equation and the mapping (Am) and
process noise (A,) terms arc missing from the information filter equation and these may be obtained
by transforrnation using matrix identities. For the covariance and information equations, wc need
the following matrix identities.

PA=1
PA+PA=0

P=—-PAA'=_—PAP (37)

A=—P'PA=-APA (38)

Applying these identities to the above matrix differential equations, wc have
P=1T+ PFY4 G QG - rHYW 1P (39)

K =rn"w (40)

The covariance filter in this form is called the continuous form of the Kalman-Bucy filter. Yor the
information filter, wc have

A=—Ar—-FTA-AGQG"A+HTW Il (41)

K=A1'1n"w (42)

A similar set of matrix identities may be developed for the square root covariance filter (SRCYF)
andthe square root information filter (SRIF) that may be used to transform the covariance time
derivative. These identities arc derived by Scheeres in Reference 4 and the derivation is repeated
here.

1 =88"

P =887 488"
w1 P
SST— Pl 4+ 188" - -p =
[ 5 ]4[?5 21] 0

Because of symmetry associated with the above terms in the brackets, both terms in the brackets
musi be zero and

. 1. ,
S = 5J’S—“ (43)

A similar derivation for the SRIF matrix gives the identity

R=-rrPir"r (44)
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Applying these identities to the covariance and information filter equations gives the following matrix
differential equations for the SRCY and SRIF matrices.

S=5 [1S + SSTFYS™T] 4 %GQG‘S“ - %ssq H*'wius (45)
R= _% [BRF + R PTRYR) - %RGQG” RTR 4 51&"7 n*whnu (46)

The mapping terms for both the SRCYF and SRIF* contain matrix inverses. These may be eliminated
by introducing a different factorization of the sguare roots. Consider the mapping of the sguare root
covariance from an initial epoch %o to the epoch 1.

P(1)= @(t, 1) S(to)S(to)" ®(t,10)" (47)

The mapped sguare root is simply
S(t) = (1, 1o) S(to) (48)

Taking the derivative with respect to time,
S(t) = (1, o) S(to)
S(t) = i)(t,io)o(t,to)-"is(t)
S(t) = F(1)S(t) (49)

For the SRII® matrix wc have
SR =1

S@)R(t) + S@)R(1) = o
R(t) = —RA)S()S(1)™!
R(1) = - R(t) F(t) (50)

Making the above substitutions for the mapping terms, the matrix differential equations and Kalman
gain for the covariancc, information, square root covariance and sgquare root information filters arc
summarized below. FEquations for the discrete formulation of these filters arc given in Reference [5].

Covariance (Kalman-Bucy) Tilter

P=rp4prt+c Q6" = pyrw yp (51)
K=PHu™w (52)
Information I'ilter

h=—AF--FIA—AGQGYA +1H "W I (53)
K=A"'n"w (54)

Square Root Covariance Filter (SRCF)
S=FS + %G QGYS - %SST]ITW]]S (55)
K=8s"n"w (56)

Square Root,_information Filter (SRIF)
R=—RI"— %RGQGTR“‘R + %R‘THT w1l (57)
K=RT'R""HVW (58)




The data update and process noise terms of the above filter equations exhibit a symmetry or
duality when the information filters arc compared with the covariance filters. For example the data
update term of the information filter may be obtained by replacing Q with W and G with I/ in the
process noise term of the covariance filter. Also, the process noise update term of the information
filter may be obtained by making similar replacements in the data update term of the covariancc
filter. These same dua relationships exist for the filters in their square root form. The existence
of duality enables algorithms designed for data updating to be used for process noise updating and
vice versa. For example, the Potter square root covariance data update algorithm may be used to
update process noise in the SRIF.

CONTINUOUS SRIF WITH DISCRETE DATA UPDATE

The selection of a filter algorithm depends on many competing criteria related to accuracy, com-
putational cfficiency, memory utilization and simplicity of design. Consideration of accuracy seems
to favor factorized or square root filters and computational efficiency seems to favor discrete filters.
With tbc proliferation of personal computers, computational efliciecncy has bccome less important
since computer processing time is relatively cheap. Simplicity of design and memory utilization
favor a continuous approach to filtering. Thesystem dynamics and data partial derivatives enter
directly into the filter and the need to compute a state transition matrix is completely eliminated.
However, data is generaly in the form of discrete data points and may not be easily transformed to
the continuous form. This suggests a hybrid approach which alows system dynamics and process
noise to be treated continuously and data to be treated as a discrete update.

The continuous SRIT, with discrete data update isselected for development of a filter algorithm.

information filters have the advantage that apriori on the constant parameters dots not have to be
placed on the filter until after all the data is processed. During filtering, the information arrays may

be sparse resulting in less computat ion. The SRV algorithm described below adso includes provision
for smoothing and discrete process noise update.
Discrete Data Update

The SRIF discrete data update algorithm follows directly from the least square data update.
The least square solution is given by [3]

X =[HI AW, 1] 1Y AW, 7, (59)
The measurements can be normalized by factoring AW, into
—T ——
AW, = VAW, VAW,

and

-

X = [11,3‘@'147"1‘ VAW, L] it /AWy AWy 2, (60)

By inspection wc can scc that o
Ry = VAW, 11,

so after substitution wc have ) . i .
X = (RYR)'RY VAW, Z,,

For the first m mcasurements, the number of estimated parameters (m) is equal to the number of
measurements (N) and R, is square.

X =R;'WAW, 7, (61)
Multiplying through by ¢, gives the data equation

Ro X = /AW, 70 = 2 (62)

-



where 7, isthe normalized mecasurement. A new measurement can be appended to the data equation

resulting in
oL
N X = (63)
\/A‘VV,H,] ]In-H ﬁn-H

Adding additional mecasurements results in the row dimension of R exceeding the column dimension.
The information matrix would then be given by

Am = RY Rom (64)

where the row dimension nexcceds the column dimension m. Since K., is not unique, it can be
replaced by an upper triangular R,, of dimension m by m,

Am = RE R, (65)

‘T'he Houscholder algorithm enables onc to obtain the matrix 2, without explicitly computing A,,.
If 7' is an orthogonal matrix which has the proper-ty

1T =1 (66)

then wc h ave
Am= 717" 1&v, (67)

The Houscholder agorithm finds a 7' that gives Ry, when multiplicd times I¢,,,. The right side of
the data equation () is is also multiplied by 7' to obtain a ncw data equation in upper triangular
form. Thelouscholder agorithm thus serves the same purpose in updating the SRII® matrix and
right side as the Kalman update algorithm serves to update the covariance and state estimate. An
updated state estimate can be obtained from the data equation by simply inverting the SRIIF" matrix
and multiplying times the right side.

Continuous I'recess Noise Update

T'he continuous process noise update enables onc to introduce process noise directly as a dif-
ferential equation to the filter, This form is convenient for describing process noise and enables
the investigation of a wide variety of process noise models without explicitly solving the differential
equation, The continuous process noise update term in the information filter has the same form
as the dataupdate term in the covariancc filter. The I'otter square root covariance data update
algorithm [6] provides a means of performing a scalar data update to the square root covariancc
filter. Because of duality, the discrete I'otter data update algorithm can be adapted to the SRIF
for a discrcte scalar process noise update. Taking tbc limit as At approaches zero enables onc to
convert the discrete process noise update to a continuous process noise update.

Starting with the process noise update term in the information filter wc have

, . Ang1— A
— _ TA o iy 20+l ™ Bn
Ay =—-AGQG" A = AllTo Al (68)
and in the discrete form, o o
A =A-AGAQG™ A (69)

where the notation for An, tbc information matrix before the update or apriori, is replaced by A
and Apyqisreplaced by A. Since

A=R"R
wc have ‘ . o
R'R=R"[I —vAQV"| It (70)
where .
v=RG
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If AQ and G arc assumed to be diagonal (i.e. uncorrclated process noise parameters) then cach
diagonal clement of AQ is given by a scalar Ag;. Dropping the? subscript, we have for the ’th row
of J¢ and diagonal clement of AQ,

1 = Agquo” = (I = Aawvv™)?

R

I1-AquT =1 - 280 00" +- Aa 2vv oo (71)

Since v"v IS a scalar, the solution of the above quadratic equation is given by

Aa 1 — /1= vTvAq

vTy (72)
and _ .
R'R=R"(J - Aavw")' (I -~ Aavo™R
R=( - Aaw"l
R=10t— Aa RGG" R It (73)
in the continuum wc have . R o
R=-AaRGG" RTR (74)
and )
Ad = (1~ v vAg)F A (75)
In the limit as Ag and At go to zero wc have
Ad=tag=? 76
and
= - q RGG7'1?'1( (17)

If wc have more than onc stochastic parameter, the g’s can be assembled into a diagonal matrix Q
and wc have

. 1 R 1 .
- _Z BMRGGTRTR = - - T 551
R 5 E ¢ILGG'" R'R QR GQG R R (78)

‘I'his is the same equation as derived above for the continuous SRI} process noise update only wc
have assumed diagonal Q and G.

Discrete Process Noise Update

A problem with integrating the process noise differential equation is the computer time required
to integrate the SRIF matrix. An aternative to introducing continuous process noise to the filter is
the discrete process noise update [7]. The frequency of the discrete update is selected to approximate
the accuracy of the continuous update. Over the time interval betweendiscrete process noise updates,
the stochastic paramcters arc assumed to be constant and enter into the mapping the same as other
constant paramcters. The discretc process noise update consists of imposing an analytic solution for
the process noise variance over a fixed time interval as an impulsive delta function. This method is
equivalent to integrating the process noise differential equation by trapezoidal integration.

For the simple case of exponentiall y time correlated process noise, an anaytic solution [8,9]
for cacb process noise parameter as a function of time is obtained from the following differential
equation.

dp -1

0 (7),)+ w(t) (79)
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The solution is

—(t—1g) fo(=¢
o0 = i+ [ oo 80)
to
The variance of p(t)is givenby

20t —1 P9t —
0 = T o+ [ o @
to

The process noise variance may also be obtained by solution of the following differential equation,

do2(1) -2
P —= ol (1 82
R ACRRD (82
where
. 20?2
_ 404
17
and ¢? is the steady state noise variance. In diflerence equation form these give
Pis1 = Mpj +w; (83)
2 _ 2,2
Opipr = M70op,+ AQ (84)
where 22A1
Aq = (1 - Mz)a'f(’@’—'j;*‘(ff
- Al
M=c7
Al = i1 — tj

The data equation obtained as a result of integrating the sguare root information matrix from ¢jto
;47 is given by

Ry Rpe Rpy Dj
Rep  Re oy | |zj41] =1 (85)
[ 0 0 R y

For the discrete process noise data update, the value of the stochastic parameters (p; ) arc held
constant over the interval i;to ?j+1 while the SRIF matrix is mapped by numcrical integration. At
thetime 41, the processNOISE Variance accumulated over his Same time interval, is introduced via
the following data equation as a discrete impulse.

R, @5 =iy (86)
where .
R, = —

Ouw

Replacing @; by the equation in terms of p; and pj+1wc have
Ropjsr— RoM p; = flw = 0 (87)

The updated data cquation is obtained by partitioning and combining with the above noise data
equation.

—-RyM R, o 0

7,
Ity 0 o Rpy i+ [ 1
Rep 0  Re Ry | Bid 1

: 0
[ o O 0 IRy 1 L‘
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The data eguation is partially triangularized over the first columns corresponding to the process
noise termsto obtain

G Yo e ) (21 [

p pT PY Pi+1 | _ | 89
o ni 1 RmE | | o a1 89)
0o 0 0 R y

where the plus superscript is introduced to indicate a change im the numerical values after the
process noise update. The stochastic paramecter update is completed by stripping off the top rows
corresponding to p;, those containing the asterisk, and saving them aong with the right side (7”;]’.')
for smoothing.

Solution Algorithm

The filter is first initialized with apriori information on the state and stochastic parameters,
Apriori information on the constant parameters is saved and combined after the data is processed.

R(to) = R(to) (90)

where
_ Rpy  Rpozo  Ipoy
R{to) = o Ry Reoy (91)
[ 0 0 0

The reference state (X) is set equal to the apriori estimate of the state(X) and the nominal
state as a function of time, computed measurements, and partial derivatives arc computed for the
reference state. Thus we have for the initial data equation,

R(lo) X (L) =0

Data is processed and the state and /2 are mapped via the current state SRIF to the final epoch ;.

R(ty) X (1) =n(ty) (92)

Next, the apriori on the constant parameters (1,) is combined with R(i; ) to obtain Rs(ty), the
SRII* matrix for the solution at f; The solution is given by

Xo(tr) = Ry () s (ty) (93)

X.(t5) = X(ty) + Xu(ty) (94)

The solution at epoch is obtained by smoothing, or in the absence of stochastic parameters may
be obtained by integrating the solution at ¢; back to ¢;. The procedure for obtaining smoothed
cstimates is described below. If the mapping of the state is linear, the solution obtained by a single
iteration is the correct solution and no further processing is required, The linearity _of the mapping
can bechecked by passing the solution through the data using the best estimate X, (to) as a ncw
reference. If a subsequent solution is attempted and results in zero update, convergence has been
achicved. Otherwise, the process is repeated until the update is acceptably small. The purpose of
iteration is to base the final solution on a reference that is as closc to the true state as possible. If
the best estimate of the state is used as a reference, the measurement residuals are minimized and
the affect of nonlinearity is also minimized.

The procedure for iterating the solution is Newton-ltaphson and tbc following agorithm is used.
At the conclusion of the k th iteration, the correction computed from the data equation is given by

Xi(ty) = 18 (tg) i (y) (95)
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‘1’ dissolution is mapped back to epoch and we have for the new reference state

Xiy1(to) = X (o) + Xeq1(Lo) (96)

k
Xiq1(to) = Z Xi(to)
i=1
The data equation at the beginning of the k + literation is given by
RXp41(to) = firs1(to) (97)

fet1(to) =~ Xiy1(to)

Using the same procedure described above, the data is processed again and the state and 2 arc
mapped via the current state SRIFto the final epoch ;. A ncw solution is computed and this
procedure is repeated until convergence is obtained.

CONTINUOUS SRIF SMOOTHING ALGORITHM

Often, the objective of a data filler isto obtain a filtered best estimate of the state at the end
of the data arc or time of the last data point. Sometimes solutions arc needed at other times, such
as a the beginning of the data arc or a some time interior to the data arc. These solutions are
obtained by smoothing, If there is no process noise, these interior solutions may be obtained by
deterministic mapping of the filtered solution. Yor an epoch state filter, deterministic mapping is
performed by simply integrating forward in time; but, for a current state filter the integration would
be backward in time.

An epoch state solution is necded for iterating solutions to minimize the effect of nonlinearity
and for checking the solution by examination of post-fit data residuals. An epoch state smoothed
best estimate, or for that matter a smoothed solution at any epoch, can beobtained by appending
constant parameters to the state that represent the values of the dynamic state and stochastic
parameters at the desired epoch [10]). These may be conveniently included at the top of the list of
y parameters and ordered the same as the stochastic and dynamic state parameters they represent.
Since these parameters arc constant and do not aflect the data, entries in the I matrix and 17
matrix arc normally zero. The onc exception is a the smoothing epoch. At this time, a constraint
is placed on the SRIF matrix to force the constant smoothing parameters to equal the dynamic
parameters that arc being smoothed. This may be accomplished by introducing a dummy data
point for each smoothed parameter that forces equality with the corresponding dynamic parameter.
These dummy measurements arc processed thus forcing unity correlation between the smoothed and
dynamic parameters at the smoothing epoch. This type of smoother is referred to as a fixed point
smoother.

The smoothed epoch state solution for the state and stochastic parameters head the list of
constant y parameters and wc have
po

y= o (98)
[ Ye1

Po= P(io)

Tp = .’lf(io)

where po and Zo arc the smoothed epoch state stochastic parameters and state parameters respec-
tively and y, represents al the other constant parameters.

A properly constrained apriori SRIIF matrix is obtained by first triangularizing and inverting
the portion of the apriori covariance corresponding to the state and stochastic parameters. The
remainder of the SRII" matrix corresponding to al the constant parameters is filled in with zeros.
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The initiad apriori covariance on the state, stochastic parameters and constant estimated parameters
is thus given try

]
R(te) =0 K, (99)
0 o

For each state and stochastic parameter, a dummy mcasurement iS processed of the form
ir=x—1xp (100)

217 =p-—DPo (10])
‘Jbus, thedata partials for each of these dummy measurements has 1 corresponding to the current
state parameter and -1 corresponding to the smoothed epoch state parameter. The data weight is set
equal to a large number forcing the apriori correlation between the actual and smoothed parameters
to be as closc to unity as possible. The apriori covariance on the remaining constant parameters
may be applied when the solution is gencrated after al the measurements have been processed. The
initia apriori covariance after the dummy measurements have been processed is given by

Rpo Rporo Rpoy
I(to) 0 Ry Raoy (102)
0 0 0

All the measurcments are then processed and the SRIF matrix propagated to the terminal epoch (1y).
The termina SRI¥ matrix is combined with the apriori on the constant parameters and a solution
generated as described above. At this time, we have a filtered best estimate of the final state and
stochastic parameters, a smoothed best estimate of the initial epoch state and stochastic parameters,
and a best estimate of the constant parameters, For many applications this is all wc need because
the direct dynamic effect of the stochastic parameters on the state is insignificant. However, for some
applications, wc need the complcte time history of the state and stochastic parameters and this is
obtained by smoothing. In the conventional discrete SRI I formulation, smoothed best estimates
of state and the stochastic parameters arc obtained by smoothing backwards from the final filtered
solution. Since wc have available solutions at both ends of the data arc, wc have the option of
smoothing forward or backwards, A forward smoothing algorithm is highly desirable since wc would
not need to propagate the state backwards in time.

Wec start with the terminal SRIF matrix and extract the sub-matrix associated with the constant

y parameters recaling that these arc headed by smoothed epoch state solutions of the state and
stochastic parametcers. Thus wc have for the initial apriori smoothing data equation

Po .
Rem(to) Boo | 7o (103)
Ye
where
Rsm(to) = Iy(ty) (104)
flo = n(ly)

and the dimension of the SRIF matrix has been reduced by the number of state and stochastic
paramctcrs. Next, wc integrate the square root SRIF matrix from %o to the time of the first filter
interrupt (¢;). For the continuous process noise update, the filter interrupt times arc coincident
with data point processing times. For the discrete process noise update, the filter interrupt times
arc coincident with the process noise update times.

o,
]ism(i]) = Rdt + ]fsm(to) (105)

to
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W thus have for the case of a discrete process noise update,

p
Rsm(tl) [7'1 ) ﬁO (106)
Y

and this data equation may be triangularized and partitioned to make oom for the stochastic
paramcters defined at 1.

rky, 0 Ry, 15,7 [po]
0O 0 O 0 p1
0 0 Ry By ||=:

0o 0o 0 Ry JLyl

In the notation used here, the SRIF matrix elements change as information or noise is added to the
systcm or the matrix is retriangularized. Integer subscripts and superscripts denote the epoch of the
SRII" matrix element and a minus superscript indicates values before the smoothing update. The
asterisk identifies clements that arc introduced for smoothing. The above data equation is combined
with the data equation saved previously during filtering,

Po
* * 14! L ak
(6, Ropy ey 15y, o | T (108)
Ye

to give the SRII® matrix after the smoothing update is pcrforrncd at
oY R OB RD | po

0 Rp, Rpwy Ipy . | | o1
(109)

i

0 Rap, Moy Ray . | |2

0 0o o0 R.lly

The SRIF matrix at t; is integrated to the time of the next filter interrupt (12). After expanding to
rnakc room for the stochastic parameters at t2 wc have

wQ— *0— *0— 0~ .
FL A [/ VIS (A5 [ Po
0 R, 0 R, I, m
0 0 0 0 0 pa | =75 (110)
0 ke, 0 R, IR, T3
0 0o 0 0 Iy, Uy,

This data equation is combined with the data equation saved during filtering for smoothing at 1o
and given by

Po
n
[0 R;;z R;pz 1(‘,;',12 ]{;y2] 2 | =15 (]]])
)
Ye
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and after triangularizing wc have

R0 Ry 1{;3 15;2 I Po
o It ol ol |p
0 0 Rp, Bpr, Itpy, pa| = (112)

0 0 Rep, Izy Hay, Ty

o 0 0 0 R, llyl

Finally, since wc now have al the data equations that involve pjcombined into one SRIF matrix,
wc may solve for p1. Solving for piinvolves inverting the SRIF matrix and multiplying times the
right side. The values of thestochastic parameters (p,) arc written to a file for usc in subsequent
filter iterations. The top rows corresponding to Po arc discarded and wc continue on to the next
data point continuing in this fashion until wc reach the fina data point. The smoothing algorithm
for the case of continuous process noise is similar to that described above only the SRII® matrices
must be adjusted to reflect the mapping of stochastic parameters by numerical integration.

NUMERICAL INTEGRATION OF SRIF MATRIX

The continuous SRIF data processing agorithm involves mapping the SRIF matrix from the
time of a discrete data or process noise update to the time of the next data point or process
noise update, The mapping is accomplished by numerica integration of the SRIF matrix differen-
tial equation. ‘I’he numerical integration is performed with a suitable agorithm. The fifth order
Runge-Kutta-Fehlberg method with error control has been successfully employed. Recall the matrix
differential equation derived above for the SRI1F¥ and discard the data update term.

R=-RI - %RGQGTRTR (113)
Consider the following partition.
‘ . Ry Rpr Ry [3GQGTRIR,
R:—[]Ed ]]ﬁgy] [’0"]— 0 Re Ry 0 (114)
v 0 0 Ry 0

where fta corresponds to the dynamic paramcters and the matrix ¥ contains only the rows of »
corresponding to the dynamic parameters. This equation simplifies to

: 1 S
= —Raly— 5Tt GQG" R It, (115)

We only have to integrate the top rows of the SRII" matrix corresponding to the dynamic parameters
and the derivative is a function of only the /a partition of the SRII* matrix. For the simple case of
exponentially correlated process noise wc have,

g 00
Fa= 103 0: 0i
o 05 oy

]
<




2
207,
Ti
2
Q= 20
= —JZTZ
(3 2
204
T

and G is the identity matrix.
CONCLUSION

A continuous matrix differential equation for the SRIF has been derived and a computer algo-
rithm developed to implement this filter. Th:filter algorithm performs the mapping of state and
process noise by numerical integration of the SRII' matrix and admits data via a discrete least square
update.

Accuracy, computational cfficiency, memory requirements and simplicity of design arc compared
with other filter algorithms. This comparison consisted of comparing the filter algorithms at the
equation level. A more rigorous comparison of filter algorithms is being pursued that involves
parallel implementation. A preliminary evaluation of these competing criteria reveals no significant
differences. llowever, the continuous SRIT is expected Lo out perform discrete filters with regard to
accuracy and memory requirements because there is no need to compute a state transition matrix
and error control may be placed directly on the clements of the SRII" matrix. Simplicity of design
seems to favor the continuous SRI1¥ particularly when the same numerical integration algorithm
used for the state propagation is used to integrate the SRIF matrix.

The integration of process noise makes the continuous SRII' somewhat computationally inef-
ficient. However, an exact result is obtained and discrete filters only approximate the integration

of process noise. When process noise is admitted to the continuous filter as discrete updates, the
computational efficiency is comparable to the discretce filter implementation.
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