'

Se

ADAPTI VE FORCE CONTROL
IN COVPLI ANT MOTI ON

Homayoun Scraji
Jet 1 ‘repulsion Laboratory

Cdifornia Institute of Technology
PPasadena, CA 91109

Abstract

This paper addresses the problem of controlling a manipulator in compliant motion
while in contact with an environment having an unknown stiffness. 1'wo classes of solu-
tions arc discussed: adaptive admittance control and adaptive compliance control. Ad-
mittance control is an explicit force control scheme in which a force setpoint is specified
and is tracked by the force compensator. 'T'wo adaptive PID and P1 force compensators
arc proposed in the paper which ensure robust tracking of step setpoints and rejection
of constant disturbances. Compliance control, on the other hand, is an implicit force
control scheme and establishes a user-spcciflcd target interaction dynamics between the
reference position and the contact force. 1'wo adaptive lag-plus-feedforward compliance
compensators arc developed in the paper. The ] force compensator and the proposed
compliance compensators do not require force rate information for implementat ion. It
both admittance and compliance control schemes, since the environmental stiffness can
typically vary by several orders of magnitude, compensator adaptation is used to en-
surc a stable and uniform system performance. Dynamic simulation results for a 7
1)011" Robotics Research arm arc presented to demonstrate the efficacy of the proposed
control schemes in executing contact tasks.




1 introduction

1Robust and rcliable operation of manipulators in contact with objects in their environment
is the basic requirement for successful cxecutionn of many robotic tasks. Stable control of
robot-environment interaction poses a technically challenging problem, and has attracted
the attention of several roboticists for aimost two decades. In 1977, Whitney [1] proposed a
sitnple scheme for contact control called ‘(position accommodation” where the contact force is
used to modify the reference position trajectory. in 1981, Raibert and Craig [2] suggested the
“hybrid control” approach where certain Cartesian directions arc under position control while
the others arc under force control. In a seminal paper in 1985, Hogan [3] proposed “impecdance
control” which attempts to establish a user-dl)ccificd dynamic relationship between the end-
effector position and force. Cormnpliant, motion control, which is in essence position-based
force control, has been suggested by Kazerooni [4-9] and Lawrence [1 O- 13] in a series of
papers. Several other rescarchers have also contributed to the decper understanding and
further development of contact control schemes, such as [14-41] to name a few.

‘Jhe objective Of this paper is to develop two simple and pragmatic approaches to contact
force control using the compliant motion framework. The first proposed approach, called
adaptive admittance control, is an explicit force control scheme which ensures robust force
sctpoint tracking with desirable ¢l ynamic response, ‘I’his approach is based on the concept
of 1nechani cal admi ttancc, whit}] relates the contact force to the resulting velocity perturba-
tion. The second proposed approach, called adaptive compliance control, is an implicit force
control scheme in which the reference position is used as a command to control the contact
force, ant] no force sctpointsare used. I'wo simple adaptive compliance compensators arc
developed which possess enhanced stability and improved performance over the conventional
compliance compensator. In both the admittance and cornpliance control approaches, comn-
pensator adaptation is used to provide stable and uniform performance under gross variation
of the environmental stiffness,

‘J ‘hc paper is structured as follows. Section 2 discusses fen-cc control within the compliant
motion framework. The concept of virtual forces for proximity control is discussed in Section
3. T'wo adaptive admittance control schemes resulting in PID and Pl force compensators
arc di scussed in Section 4 to ensure force setpoint tracking. “ In Section 5, adaptive lag-plus-
feedforward compensators are developed to accomplish compliance with the environment. In
Section 6, the Robotics Rescarch arm is used in a series of dynamic simulations to demonstrate
force and compliance control. The paper is concluded in Section 7 with a review and gencral
discussions.

2 Force Control in Compliant Motion

Robot manipulators arc always supplied with joint servo controllers which ensure tracking of
joint setpoints, and, in turn, enable the placement and orientation of their end-cflectorsit
the workspace. For unconstrained free-sl)ace motions, the end-effector Cartesian coor dinates
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X (typically, a 6x1vector of position and orientation) can follow a user-specified nominal or
reference motion trgjectory X, using the joint servos and inverse kincinatic transformation,
The underlying concept of compliant motion control is to usc the positio~l-controlled robot as
abascline system and to make the necessary modifications to this system to ecnable execution
of constrained tasks that require robot interaction with the enviromment. Figures land 2 show
the block diagrams of position-based explicit and implicit force control systems (including
the force sctpoint F;) when the robot interacts with the environment. 1 ‘hc force/torque
sensor mounted on the end-cffector detects this interaction an ¢l mecasures the contact force
I.'This sensory data is then feel back and used in real-time to modify or perturb the reference
motion trajectory X, to assure a desirable behavior of manipulator-environment interaction.
'l ‘his is accomplished by commanding the end-cffector to deviate by the amount X fromn its
reference trajectory and track the modified cominanded trajectory X.. ‘1 ‘he perturbation X
is gencrated by the force or compliance compensator which modifics the nominal end-cflector
motion automatical 1 y in response to the force/torc~uc sensory data in order to attain the
required interaction characteristi cs. 1 n general, the compensator is not restricted to have an
al gebraie-di fferential model and can perforin logical operations or follow certai n rule-tmscd
decisions. The manipulator can also be driven froin a multitude of other external sensors, and
the compensator can perform sensor fusion and inake the nccessary trajectory modification
based on multiple sensory data.

Now, since the manipulator position control system ensures Cartesian trajectory tracking,
the position controller, in effect, causes each end-effector coordinate to track the correspond-
ing command and to reject the disturbances caused by other cornmands. As a result, wc
can consi der each end-cffector coordinate independentl y and replace the end-effector posi tion
vector X in the control diagram by the scalar x, which can represent any element of X. Iur-
thermore, following Kazerooni [7], Lawrence [1 O], and other researchers, it is reasonable to
model each position-controlled enid- effector coordinate by a scconcl-order linear continuous-
time system, so that for each end-cflector coordinate the scalar transfer-function relating the
commanded position z. to the actua position x is given by

:1:(3) K. b
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where J,,,, Bp.,and K,,, arc the position- control] ccl manipulator mass, damping and st i fIncss

parameters in Cartesian-space, respectively, and a =- fim andb= Km ‘I'his simple model can

adequatel y account for the small time-clclays mvolvcd in the forward and inverse ki nematic
calculations as well as the dynamics of the position-controlled joint servo loops. This model
is particularly suitable for industrial robots that usc high gear ratios which attenuatc the
nonlinear mani pulator dynamics and make the second-orcicr joint motor dynamics dominant
[42].

The environment can often be modeled as a linear spring with coefficient of stiffness
K., aong the Cartesian axis of interest. Therefore, the force-displacement model for the
cnvironment is given by Hooke's law as



I - ](cn(m - -Tc) (2)

where z, is the nominal position of the environment. Similarly, the force/torque sensor
mounted on the end-cffector can be modeled as a pure spring with the stiffness cocflicient
K, since the dynamics of the sensor can be neglected in comparison with the compen-
sator and manipulator time-constants. Thercfore, the effective stiffness of the sensor plus
the environment in a Cartesian direction is given by Ke= (1 /Ken+11 /Ke)™!. Note that
although the manipul ator-cnvironinent interaction can be modeledin detail asa high-order
dynamical system [36, 38], the stiffness is often the dominating factor in contact tasks sue})
as asscmbly, mating, and deburring [1 O, 19, 35]. Furthermore, this simple model is math-
ematically tractable and has been widely adopted by several rescarchers. It isimportant
to note that when the robot is in contact with the environment, the dynamic model of the
position-controlled end-cflector coordinate is modified by the environment due to natural
force feedback as

I -1 By A Kz = Kxe - Kex (3)

since the contact force K.2 will now oppose the motion into the environment. Hence, at
contact, the modified transfer-funiction ~;(s) takes the form

.m(s) i Ko b

@

(;‘ = = - PR - e
(s) xc(s) Jns? 4 Bust (K4 Ke)  s24 as-t VY

where b/ - y('l',,j!fe,
the environment.
in this paper, we present two different approaches to force control: admittance control and
compliance control. in the admitt ance control scheme discussed in Section 4, the reference
posi tion 2, IS a constant exogeneous input used to ensure that the end-cflector is initialy
in contact with the environment. Force cent rol, however, is accompli shed by appl ying the
force setpoint F). as a command input to control the contact, fen-cc /' as the output. in the
cornpliance control scheme addressed in Section 5, the reference position z, is used as a
cornmand input to control the cont act force /', and no force setpoint is applied (/4 = O).
1 ncompliance control, z, is chosen to “penetrate” into the environment by an appropriate
atnount in order to produce the desired contact force. Therefore, to accomplish a constant
contact force, the reference motion trgjectory =z, is specified as a constant during, constrained
motion. In the absence of the force feedback pertubation x4, the steady-state contact force
I, solely due to the constant reference motion trgjectory =z, is obtained from Figure 2 as

), Note that the feedback loop K, closcs natural ly as the robot encounters

F,= k. [gw, = me] (5)

When the environmental parameters (k., z.) and the robot parameters (6, ¢) arc known
precisely, the reference trgjectory z, can be compruted from (5) to produce the desired contact
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force I.: k.. 1 n practice, however, this “open-loop” approach to foree control which requires
exact knowledge of the systcm parameters (ke, e, b, b') is unacceptable, and “closed-loop”
approach e nploying force fecdback is desirable since it does not require knowledge of the
systermn parameters.

Before addressing admittance and compliance control, wc show that the compliant motion
control framework can also beused to accomplish ‘(proximity control” based on virtual forces
generated by proximity sensors or dynamic world mnodels.

3 Proximity Control using Virtual Forces

In Section 2, the robot end-effector makes physical contact with the environment and “real”
forces and torques arc gencerated based on this contact, in this section, the concepts laid out
in Section 2 willbe used for “virtual” forces and torques in order to accomplish proximity
control relative to the environment [25, 34, 36].

Virtual forces and torques can be generated based on the end-cffector proximity to the
cnviromment using either proximity sensorsor ¢l ynami ¢ world models as discused below.

3.1 Proximity Sensors

‘J hese sensors produce an output in response to the distance from an object. ‘Jhere is a
wide variety of commercial proximity sensors with different ranges of operation and physical
principles. Figure 3 shows the characteristic of a typical in-oxilnity sensor using the infra-red
triangulation method. The sensor produces a current output, ranging from 4mAto 20mA in
response to the object distance in the range of 520mumn to 180mm. The current output can
be converted to a voltage output ranging from 1V to 5V by connecting a resistor across the
output.In the linear operating range ABshown in Figure 3, the sensor can beinodeled as

Foz Fo ke [do- dy (6)
where d, is the sensed distance-toobjcct in min,do=520mm, k,is the dope Of the sensor
characteristiq :,2054,~ 0.047mA/mm , J, is the sensor current output inmA, and I,

4772A. Iquation(6) can beinterpreted as the force-displacement relationship for a ‘(virtual”
spring with stiffness k,. Therefore, the proximity sensor output can be used to perturb the
nominal motion trajectory x, based on the virtual force ¥y, as di scussed in Section 2.

3.2 Dynamic World Models

in an analogous manner to proximity sensing, world mode! information can be used to gen-
crate “fictitious” forces based on distances to objects in the geometric database of the robot
workspace. For instance, suppose that there is a moving object in the robot workspace. A
vision system can detect the position of the object and attach a fictitious surface to the object
in the world model. Therobot then reacts to this surface by experiencing a “fictitious” force
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I, that reflects proximity to the surface. The force }, can be generated in the software such
that as the end-effector approaches the surface, the magnitude of I+, increases. A simple
representation of this behavior is

. kulz-cf for @ > ¢
" '{ 0 for z<ec (7)
WI 1ere 2 is the end-eflector position, ¢ represents the surface location, ky, isthe stifiness of the
fictitious spring between the end-effector and the surface, and I, is the fictitious force. liqua-
tion (7) generates a force proportionalto the cnd-cffcctor/surface distance. This approach
canbe used to avoid coll ision bet ween two robot arms working in a common workspace by
attaching afictitious surface in the software to the end-cffector of onc robot and continuous] y
u}dating the geometri ¢ world model for the second robot.
‘I ‘he virtual forces generated based on object distance can beused for two purposes:
(i) Collision Avoidance: Avoidance of collision with objects in the robot workspace is
a basic requirement in al robotic tasks. The collision avoidance requircment cansimply be
cxpressed as the inequality

I, < Iy

where I, isthe virtual force generated by the proximity sensor or world model, and 77 is some
threshold force which reflects the allowable buffer for dynamic collision avoidance. Using the
cornpliant control system described in Section 2, we can form the force tracking-error as

0 for F,<Fyp
( Fu- By for 1> 1y (8)

and usc the admittance control approach described in Section 4 to ensure that the nominal
motion is perturbed such that ¢ tends to zero.

(ii) Maintaining a Constant Distance: Yor execution of some robotic tasks such
as surface inspection or contour following, the robot end-effector must be maintained at a
constant distance from a surface. ‘1 ‘his requirement cansimply be expressed as

C:

b= By 9

where F; reflects the desired distance-to-object. Using the admittance control approach of
Section 4, wc can ensure that the compliant control system meets this requirement.

Note that in dealing with virtual forces based on proximity sensors or d ynamic world
models, the rate-of-change of the force signal is rcadil y available in software and can be used
in the control law implementation. This is in contrast to the contact force measured by the
force/torcluc sensor which is a noisy signal and cannot be differentiated directly.
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4 Adaptive Admittance Control

1 ¢t us now consider the explicit force control systern shown in Figure 1. The end-effector /en vironment
contact force I is measured by the force/torque sensor and is compared with the desired force
sctpoint I specified by the user. The force compensator K(s) uses the force error informa-
tione- Iy - I’ to generate the necessary trgjectory modification xy on-line and in real-time,
and the end-cffector then tracks the modified motion trajectory x.:z, -1 x; as closely as
possible. Note that the force sctpoint F; is specified at the instant the robot contacts the
environment initial 1 y and is reset to zero when the end-cffector contact task is terminated,
so that during free-space motion I O.

]n contrast to pure position control which rejects disturbance forces in order to track
a given reference motion trajectory, the force compensator K(s) attempts to comply” with
the enviromnental interaction and react quickly to contact forces by rapidly modifying the
reference motion t rajectory. A proper measure of effectiveness of the compliant motion control
isthe mechanical admittance Y defined as [18]

Vg
= |
Yoo (lo)

where vy is the end-effector velocity and ' is the contact force, both at the point of interaction.
A large admittance corresponds to a rapid motion induced by applied forces; while a small
adi ni tL ancc represents a slow reaction to contact forces. Based on the above discussions, the
force compensator transfer-function K(s) = yé’((:;) is expressed as the product

KO : 2. v (11)

S

where the admit tance Y(s) relates the force error ¢ to the end-effector velocity perturbation
vr(s); i.e., Y(s) :%—S-)«]"or aknown environmental stiffness, an admittance Y(s) can be
constructed to achieve a desirable force response with smal 1 or zero error, low overshoot,
and rapid rise time. Howcever, the same admittance typically exhibits sluggish response in
contact with softer environments, and goes unstable when contacting stiffer environments.
Inother words, because different environments have diverse stiffness which can vary over
several orders of magnitude, a fixed admittance design based on a nomina environment leads
to non-uniform dynamic performance and often instability. To overcome this problem, wc
propose adaplive admittance control where the parameters of the admittance Y(s) arc tuned
autornaticall y on- line based on the force tracking performance of the system. ‘I’his approach
provides stable and uniform performance under gross variations in the environmental sti finess.

in this scction, wc consider two classes of adaptive admittances that canbe used for
force or proxir nity control within the compliant motion control framework. The scco]]d-order
admittance leads to an adaptive PII) force compensator, while the first-order admittance
lcads to an adaptive P1 force compensator.




4. 1 Adaptive PII Force Compensator

I this section, an adaptive sccond-order admittance control scheme will be developed to
accompli sh force control within the comnpli ant motion framework.

Consider the adlnittancc-based compliant control system shown in Figure 4. 1 .t us choose
a second-order admittance model as

Y (s): kas® 1k,s1 K 12)
resulting in the 1 11 ) force compensator
ki
K(s) - §] Y(s):= kas 4 kp .S,z. 13)

where { k,, k, ka} are the promotional, integral, and derivati vc force feedback gains, respee-
tivel y. This leads to the force feedback law

oA t
Ty= kd-atc 1 kpe ki/ﬁ edl (14)

which implics that the position perturbationz; due to cent act force is in direct proportion
to the rate-of-change of force crror 3 €, the instantanicous value of force error ¢, and the time-
integral of force error fj edt. Therefore, the force control law contains information about the
past history [through [} edt], the present value [through €], and the future trend [through j"tc]
of the force tracking perforinance of the syster n.

For the purpose of control law deveclopment, wc consider the control signal ay to be
cornprised of proportional and derivative terms in {c, ¢} together with an auxiliary signal
g(t) which contains the integral term, that is

zy(t) = g(t) - kp(t)e(t) -1 ka(t)é(t) (15)

where {&(t), ka (1)} are the adaptive proportional and derivative force fecedback gains, respec-
tively. On applying the control law (15) to the systemnshown in Figure 4, and noting that
I, ke, and z, are constant, wc obtain the force error dynamics as

& i [@ 1 bkoka)é A [V A bheky)e = VI — Iy - bkeg (16)

where F; isdefined in (5). Equation (16) represents the “adjustable system” in the model-
reference adaptive control (MRAC) frame work.  Suppose that the desired behavior of the
force tracking-error e,, is specified as

ém i 2< Wy, -1 wgcm = 0 (I I’)

where ¢ and w are the user-specified damping ratio and undamped natural frequency of the

force crror dynamics. IKquation (17) constitutes the “reference model” within the MRAC
fraincwork. Following Appendix 1,the adaptation laws for {g(t), k, (¢}, ka(t) } which ensure




that the solution ¢(t) of the error dynamics (16) tends asymptorically to the solution e,,(t)
of the reference model (17) arc given by

q(t) = wye(t) - waé(t)
o(0): 90)1 o [ alt)dt 1 0zq(t)
B0 k,(0) -101 [ g@e@dt Pat)e(t) (18)

ki) = ka0) 1 [ a@e)at ya(t)etr)

where (wp, wg) arc the positive position and velocity weighting factors, (@1, B1,v,) arc the
positive integral adaptation gains, (@2, 82,72) arc the positive or zero proportional adaptation
gains, and [g(O), k,(0),k4(0)] arc the positive initial values chosen to provide appropriate
initial position perturbation signal and initial proportional and derivative gains for the control
system. The force control scheme is shown in Figure 5. Using (18), the force control law (15)
can be written as

z(t) = x7(0) 1 K (Qe(t) 4 ki /0 “e@dt A k(D) (19)

where k) (1) = @1 wy-| @2Wp -1 k(1) IS the adaptive proportional gain, k} = ajwy, IS the constant
integral gain, k(1):a2wa -1 kq(t) is the adaptive derivative gain, and x; (0) = g(0). It is seen
that the position perturbation z(t) duc to contact force is generated by a 1’11 ) controller
driven by the force tracking-error c(t), where the controller is tom] »osed of a constant-gain
1'111 term and an adaptive-gain P1) term.

From a practical point of view, the contact force /' measured by the force/torque sensor
is often a noisy signa and hence di rect differentiation of this signal to obtain ¢ is undesirable.
T'wo alternati ve solutions are available to overcome this problem. The first solution is to
filter the measured force signal /' in order to remove the high-frequency noise superimposed
on I'. Oftentiines, a simple first-order low-pass filter is sufficient to remove the noise. The
“filtered” force signal F* can then be differentiated and used in the force control law (15). ‘I’he
second solution is to replace é by - kez, as suggested by F' = k.(x - x.), where F, is constant.
Also note that since k. is an unknown positive constant, it can be absorbed in the adaptation
gains and in the weighting factors. Furthermore, in the analysis so far, wc have neglected the
dynamical effects of the environment. To ensure robustness in the presence of this unmodeled
dynamics, wc dlightly modify the adpatation laws (18) using the a-modification terms [43].
‘Jbus, the modified adaptation laws using the velocity signal @ arc given by

zs(t) = g(t) -1 kp(De(t) - ko(t)a(t)
g(1):= g(0) -1 e /0 ' q()dt -1 axq(t) - 0, Jot g(t)dt
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B0 - k(O A [ a1 frae®) - o [ k(0 20)

ko(t) = ku(0) == Ay /Ot gilt - Aq(1)2(t) - 03/“: ky (t)dt

q(t) = wpe(t) - wyd(t)
where Ay = Yike, A2 = Yoke, w, = wgk. and oy, 92,03 arc small positive constants. The
addition of the o -modification terms enhances robustness in the presence of the unmodeled
dynamics, at the price of a residual force tracking-error of order (o+).

Wc conclude that the adaptive second-order admittance control scheme developed in this
section for generating the position perturbation is extremely simple and computationally very
eflicient. As a result, the control scheme can be implemented for real-time force control with
a high sampling rate, which is critical for closed-loop stability of force control loops that
contai n typically large environmental stiffness k.. Iurthermore, since the controller terms
clonot require knowledge of x. and k. and ar ¢ adjusted on-line based on the force tracking
performance through c ant] ¢,thecontroller can rapidly adapt itself to gross changes in the
cnivironinetal parameters z, and k..

4.2 Adaptive PlForce Compensator

in this section, an adaptive first-order admittance control scheme will be developed for force
control within the compli ant motion framework.

Consider the admittance-based compliant control systemn shown in Figure 4, with the
first-order admittance model

) (S) =kps ki (21)
resulting in the P1 force compensator
K@= YO=h -1 - @)
and the force feedback law
vr < ke 4 ks edt )

where { k;, k; } are the proportional and integral force feedback gains, respectively.in com-
parison with the sccol]d-order admittance model (12) used in Section 4,1, the first-order
admittance mode] (21) has the advantage of not requiring the rate-of-change of the force
error ¢, which is a noisy signal, As a result, the P’I control scheme is much simpler to imple-
ment in practice. However, the price paid for this simplicity is that there arc now insufficient
adjustable gains in the compensator to ensure that the error dynamics (16) follows an arbi-
trary user-spccificd reference model (17). In this case, the force feedback gains arc chosen to
ensure merely that the error dynamics is asymptotically stable, so that e(t)-» O ast-» cm.
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Applying the P1 control law (23) to the systern shown in Figure 4, we obtain the dynamic
model of the force tracking-error as

t
¢-Lac-1[V -Lbkekyle -Lbkeks 3 edt = V(I — 1] (24)

where I = ke [{;;xr -- xc] is the constant contact force solely clue to . It is seen that the
cocflicient of& in the error dynamics (24) is constant and cannot be aflected by the controller
gains {k,, k}, Thisis expected since the force compensator dots not have any active damping
terin kg€ to contribute to the passive damping “a” of the systern. Now, WC need to find the
adaptation laws for the proportional gain k, (1) and the integral gain k:(t) to ensure that (24)
represents an asymptotical] y stable systern.

‘Jo simplify the stability analysis, wc choose the integral gain K as a constant and employ
an adaptation law for the proportional gaink, as a nonlinear function of the for-cc tracking-
crror e. Wc adopt the lLiyapunov approach to investigate the stability of the t}lird-order
nonli near error differenti al equation (24). For acl ass of third-order nonlinear differential
equations such as (24), Barbashin [44] has obtained specific stability criteria using a Lyapunov
analysis; [sce Appendix 11]. Applying Barbashin’s method to the error dynamics (24) yields
the following three stability conditions:

() a>0
(i) bkekilfs cdt]? >0 - » k >0
(i) aft’ -1 bkeky) - bkeki >0 - K, <aky 434 ]

‘Jbus, we conclude that the stability of the nonlinear differential equation (24) is guaranteed
provided that

O<ki<a

bl
g o 25
bt | 25
Note that conservative estimates of the attenuation factor a and the forward path gain % can
readily be obtained from the open-Joop response of the contact force F' to the step reference
position z, with no force feedback (x;= O). Furthermore, observe that closed-loop stability

is attained for all environmental sti ffncss ke provided that the following relationship holds
between the proportional and integral gains

0 < ki < ak, (26)
It is seen that the stability condition (26) dots not contain the stiffness of the environment
k.. Onc viable choice for the proportional gain k, as a function of the force tracking-error c
is gi ven by

k(1) = ko 4 ac®(2) (27)
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where ky is the positive constant value chosen for k, when e = O, and « is the positive
constant adaptation gain chosenby the user to reflect the sensitivity of &, to e. Notice
that the adaptive term ac? contributes only to the transient response by increasing the
proportional gain k, so as to reduce the tracki~lg-error e. When e is small, the effect of ae?
is diminished and k, restores to its initial value k0. On substituting for k, in Barbashin’s
stability condition (25), we obtain

0<k<a %,,0 1 ac bl;;-c' (28)
Therefore, provided that the controller gains arc chosen such that
Y
O0<ki<a [pr 1 by (29)

the stability of the closed-loop compliant control system is guaranteed. Figure 6 shows a
block diagram of the adaptive PI force control scheme.
Fquation (27) implies that

k,(t) = 2ac(t)é(t) (30)

This means that the rate-of-change of the proportional gain k, is in direct proportion to
the size of the tracking-error eand the rate-of-change of c. ‘1'0 illustrate qualitatively the
adaptation of the controller gaink,, consider a typical force response and the corresponding
phase plot shown in Figures 7a and 7b. The force response and phase plot consist of four
segments AB, BC,CD, and DE; the segments arc repeated periodically after 15 with decreasing
amplitude. In segments BC and 1)1';, ¢ and ¢ have the same sign [in BC,e <0, € < O; in
DI, ¢c>0,¢ > O], and these segments represent unfavorable trends since the force error is
ncgative for BC (positive for 1 J1) and is decreasing further (increasing further). in these
cases, e¢¢ > 0 and from (30), k, > 0, and the controller gain k, increases. In segments AB
and CD, ¢ and ¢ have opposite signs [in All, ¢ > 0, ¢ ¢ O; inCD,c<0,é&> Q] and these
segiments represent favorable trends since the force error is positive in AB (negative in CD)
and is decreasing (increasi ng) toward zero. Inthese cases, e¢ <0 and k, < 0 which means
that k,, will decrease. We conclude that when the force response has an unfavorable trend,
the proportional gain increases rapidly to cor rcct the response; whereas during a favorable
trend, the gain decreases since no corrective action is called for. Notice that the proportional
gain will adjust continuously until the steady-state is reached when ¢ = é = O and k, assumes
the specified constant value kpo.

Finally, it is interesting to reder ive the Lyapunov stability condition (26) in the special
case of constant k,, ki using the classical root locus analysis. With constant k, and ki and
K(s) = ky 4 5, kst the variations of closed-loop poles as the environmental st i ffness
k. varies from O to oo arc shown in Figure 8 for the case where the position-controlled
robot is ovcrdamped. It is seen that as k. increases, one closed-loop pole moves toward
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the compensator zero at - k;/k, while the rernaining two closed-loop poles move toward the
asymptotes a s = o; where from the root locus method o = =% f"/ ¥ "Therefore, provided
that k; < ak,, wc obtain ¢ < 0 and theroot loci stay entirely in the left-half plane and
closed-loop stability is guaranteed for al k.. Notice that the condition k; < ak, was obtained
earlier in (26) using a Lyapunov analysis.

in conclusion, using the first-order admittance control scheme

2(1)= o | a(W]c) 1 ki [ Ce(t)dt 31)

wc ensure that the closed-loop force control system is always stable when the robot is in
contact with an environment having an unknown stiffness coefficient k..It is interesting
to note that the mechanical realization of the force control law (31) is a nonlinear spring in
series with a lincar damper as shown in Figure 9. in this case, wc have the force-displacement
relationships

c= k(xy—x): bt

1 1 rt
Zg - EC| })[) edl _ (32)

withk: Landb: L

}*‘inally,p wc discuss “the steady-state setpoint regulation and disturbance rejection charac-
teristics of the force control schemes developed in this section. Consider the admittance-Ixwccl
PID and 1'1 force control systems shown in Figures 5 and 6. Since the closed-loop system
is asymptotically stable, when the step force setpoint J;. ant] the constant force disturbance
Jyare applied to the system, the integral of force error f¢e(t)dt which is a system state-
variable rcaches a constant value in the steady-state. }Icnccd%[ Is c(t)dtj:-c(t) tends {o
zero as t-»o0; that is, the contact force ¥ tracks the force sctpoint I and rejects the force
disturbance I4 when the stcacly-state is reached. Furtherinore, when the system parameters
{a, b,b', k.} or the compensator gains {k;, ki, ks} undergo gross and arbitrary variations, the
control system is robust in the sense that the sctpoint regulation and disturbance rejection
characteristics are retained, provided that the closed- loop system remains stable. Note that
while these steady-state properties arc preserved, the closed-loop system tnay exhibit unac-
ceptable transient responses for certain values of system parameters or compensator gains.
Woc note that the robust setpoint regulation and disturbance rejection characteristics arc due
to the presence of the integral term in the force compensator. These inherent features of
i ntegral control make it a vital component in any practical explicit force control scheme.

5 Adaptive Compliance Control

In this section, wc consider the i1nplicit force control system shown in Figure 2 in which thie
reference position z, is used as a cornmand to control the contact force I* during constrained
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tasks. Thisis accomplished by establishing a desirable position-force (a, — 1) relationship
through an appropriate choice of the compensator K(s). Compliance control accepts the
position command z, as input and produces the contact force.1l’asoutput, and docs not usc
any force sctpoi nt. This is in contrast to admittance control discussed in Section 4, in which
the force sctpoint /4. is commanded to control the contact force I, and the force error c is
mapped to the position perturbation zj.

N subsequent sections, the conventional compliance compensator is first reviewed briefl y
from the stability point of view. A compensator modification is then proposed to enhance
closed-loop stabiliy, and simple methods for compensator adaptation arc developed to improve
system performance.

5.1 Structure of Compliance compensator

‘1 'he most common implementation of the compliance compensator K(s) is the first-order lag
filter [7, 10, 19, 20]

xs(s) 1
K(s)= = 1r%: o 33
() F(s)  kas-l ks (33)
where k¢ and k, arc positive constants. in this case, the trajectory perturbation z; duc to
the contact force ' obeys the diflerent ia equation

katy(t) -t kexs(1) = (1) (34)

Therefore, the compensator “behaves” like a spring with stiffness coeflicient k; in series with
a damper having friction cocflicient kq. Note that if a pure gain is used instead of the lag
compensator (i.e., ka= O) a spring with no damper is realized, which yields an undesirable
response since the manipulator clamping #3,, can not be altered by the compensator. 1f an
integrator is used instead of the lag compensator (i.e., k, = O), the position-accommodation
or damping control schcmc [1] is retrieved which has an undesirable feature duc to lack of a
spring action to restore the reference position when 7'= O. ‘J'hercfore, the lag fil tcr combi ncs
the attractive features of both the spring and the damper i1 a single compensator.

The perforinance and stability of the compliant control systcm with K(s) s %‘(75 has
been studied in detail by lLawrence and Stoughton [1 O]. They derive a set of stability bound-
arics in the (k,, ka) plane that divide the plane into a stable region and an unstable region of
operation. The instabilit y phenomernion becomes evident by considering the root locus behav-
ior of the closed-loop system. Ior a given compensator K(s) = i’cﬁliT,’ the loci of closed-]oop
poles as a function of the environmental stiffness k. arc shown in Figure 10, where it is
assutned that the manipulator poles arc slightly overdamped. It is seen that as the value
of k. isincrcased from zero, one pole moves on the negative rea-axis, while the remaining
two poles move on the rea-axis toward a breakaway point, the poles then coalesce and sub-
scquently become complex conjugates, and finally for k. > k¢ mar the poles move toward
the unstable region (right-half plane) on two asymptotes which intersect the real axis at an
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anglcof 3.60°. We conclude that the compliant cent rolsystem using the lag compensator
will become unstable when contacting environments with high stiffness k. > kcqnax. The
value of k¢ mar depends on the compensator parameters (ks, kq), as well as on the numerical
values of the manipulator parameters (a,b, U). Notice that if the second-order impedance
filter K(8):52,4s;% 1S Used instead of the first-order compensator (33), the closed-loop
systemn will beless stable due to the additional 90° phasc lag introduced by K(s). This isalso
cvident by noting that the angle of root locus asymptote.s will change from =-60° to :145°,
thus forcing the closed-loop poles to move sooner into the right-half plane.

In order to maintain system stability under high environmental stiffness, wc propose a
siinple modification to the basic compliance controlscheme of equation (33). Consi der the
conventional compliance compensator 1 /(kqs -1 k), and add in paral Icl the force feedfor ward
gaink; as shown in Figure 11 to yicld the lag-plus-feedforward compensator

gk L aslp

kas - ks kas 1 ks
where K is the gain of the lag term, a= kgkq and (3= ksks -1 K. 1t is seem that the
introduction of the fecdforward gain k; has given rise to a compensator zero at s = -- 3/a.
The proposed compliance compensator (35) has the simple mechanical realization of the
spri ng-damper-spri ng system shown in Figure 12. For this mechanical s ystem, wc have the
force-displacement relationship

K(s) = ks (35)

o Vg s kg Ky
I - kf(:c, x) = katl pt (36)
which yields the input-output model
J - kf | kds 1 ks

Let us now investigate the stability of the closed-loop system using the proposed com-
pliance compensator (35). Iigure 13 shows the root loci of the closed-loop systemn with the
cnvironment stiflnes ke as a parameter. It is seen that as k. increases, onc closed-loop pole
moves toward the compensator zero a s =- -- 8/a, while the remaining two poles move on
the real axis, coalesce, and then break away and move toward two asymptotes which are
perpendicular to the real-axis at s == 0. Thercfore, the effect of the additional compensator
zero (produced by the feedforward gain k) is to ‘(pull” the root loci to the stable left-half
plane by changing the angle of asymptotes from 60° to 90°, thus enhancing the stability
of the compliant control system. It is seen that provided o <0, the closed-loop poles arc
stable for all values of k., and thus the compliant control system is stable regardless of the
environmental stiffn ess. The value of o is obtained as

- ;i:_icslkd_'l-ﬁlg
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hence for large-stiffness stability, wc require o < O; that is

4 <a- ks (37)
8] kd
This result can be verified by applying Routh’s criterion to the closed-loop characteristic

polynomial A(s) obtained from

14 - u,{),,,,. . Pli,S_l B, -
SHas+b 7 kas -k,
as
A(8) = kgs® -1k, -1 akg)s® -1 |ak, -1 V'kq -1 abk,)s -1 [b'k, -1 Bbk,] (38)
When the parameters (g, b, ¥, ka, ks, a0, 3) are positive, for stability wc only require
(ks -1 akq)[ak, +Vka + abk,) > ka[b'k, -1 Bbke] (39)
which leads to
gk? -1 akgk, -1 aV'k3} K,
IB < ﬁmam -t T bk(ékd - la a[- ‘f kdl (40)

11 is seen that for soft environments, f,... is high; whereas for hard environments, Gyiar - *
@ [a, 1 4], Therefore, to ensure stability, it is sufficient to have

B <a [a , ’;d] (41)

which was obtained in (37) using the root locus method. A more conservative sufficient
condition for closed-loop stability is found to be

=t (42)

Note that £ < £ is a sufficient but not a nceessary condition for stability, andit is therefore
more stringent than need be. Since the compensator zero at s = —f/a is closer to the origin
than the compensator pole at s : - ks/ka when inequality (42) is satisfied, K (s)isa phase-
lead compensator. 1t is by virtue of the phase-lead that closfed-loo? stability is enhanpred
by the proposed compensat Oras%s,% %E)mparcd to the conventional lag compensator k,s4%,
Note that the compensator zero also speeds up the response of the compliant control system,
since the force fecdforward term kyJ° produces a corrective action spontancously while the lag
output is building up. It is important to note that the compensator cocfficients (k,, k4, Cv, B)
affect all four coefficients of the closed-loop characteristic polynomial A (s), and therefore the
compensator K(s) can be chosen such that A(s) has some desirable stable roots.
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1A usnow cxamine the relationship between the reference position trajectory x, and the
resulting contact force /7. Without loss of generality and to simplify the analysis, the world
frame is defined to be on the environment so that .= O. From Figure 11, wc have

FS iy  bke(kgs-1k)

X,(5) TAg b, S8 (2 as o V) (kas 1 K,) 4 bke(as 1 )
lsquation (43) represents a third-order system with poles in the stable left-half plane and a
zero at s = - k, /ka. Yor a step position command 2, (1) = 24, the steady-state contact force

is given by

(43)

, , "o bkcks 1

Pt Jn )= g T gt e e o
‘J] wrefore, the contact force J' can be controlled directly by the position command z, for
a given k. and K(s). liquation (44) implies that in the steady-state, the compliant control
system behaves like a pure spring with stiffness coefficient k,p, = [ - J:,’,' 1™, whichisthe
equivalent stiflness of two springs with stiflness coefficients "* and ’*’“* conncctcd in serles

Note that "‘ is the equivalent stiffness of the series comblnatlon of the two qprmge - and

' present |n the compliance compensator K(s), since kﬁ k!f"qr-,; = -2, As a rewlt in

the stcacly-state, the compliant control systern behaves Ilke t}ncc sprlngs connected in series:

e representing the robot- enV|ronment stiffness in serles with k7 'and k,k=! representing the
compensator, so that Iy, - [b'(bkc) -1k, -1 kk;'] 'zs. Note that the compliance compen-
sator 3 ;f’ acts like asprlng ks to change the robot environmental sti frncqq ¢ appropriately
and thm provide the desi rable apparent stiffness kap.

Irom equation (44), the steady-state contact force Fji, can bc expressed as

ke
ﬂ | bt’:l k ‘88
1t is seen that given the environmental stifiness k. and the robot parameters (b, U), the

compensator parameters (3, k) can be chosen such that the 2, - ' relationship (45) matches
the user-specified target model

](‘38 - (45)

Fm = kmmu (46)

where 1, and k,,, arc the desired contact force duc to x4 and the desired apparent stiffness,
respectivel y. On comparing equations (45) and (46) and setting k, = 1, wc obtain

1 b
(TS “n
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The compliance compensator K(s) with 8 given by (47) ensures that the robot-environment
interaction cmulates the target model (46) in the stcacly-state. Note that for stiff cnviron-
ments, equation (45) reduces to
k

]’133 & ’lg' Tss (48)
and hence the apparent stiffness becomes kap = ks/B which is independent of k.1t is SCCn
that the contact force Fi; is di rectly proportional to k, and inverse] y proportional to 3. 1 lence
wc can set ks= 1 and 8- k - to emulate the target modcl (46).

Finall y, wc make the foIIowmg observations regarding the proposed compliance compen-
sator:

1. Whenk, = O in the compliance compensator K(s) = ;;,:", kj, the Plforce compensator
[f:d] - [,f’;] . : is retrieved, which is discussed in Section 4.2. From (44), it is seen that
in this casc Fy, = 0; i .c, the 1'1 compensator achicves zero steady-state contact force,
as expected.

2. The compensator K(s) = ,7‘:?{ f‘ can be viewed as thelow-pass filter rd;lq k; in cascade

with the proportional-derivative (P)) controller as - 8. Hence, in effect, the mca-
sured contact force 1° passes through the low-pass filter to produce the “filtered force”
Jo- 9 8{ %;» Which is then operated on by the P1) controller to generate the position
perturbation x; = adt]' Iﬂ] Alternatively, the compliance compensator can be ex-
in-csscd as K(s) - | 7595 krs, where k- Lok ﬁk“ﬂ“, and 7' - ﬁd This
xcpchnts a |proport|onal p] us-filtered- der vative” controllcr in whit}] the low-pass fil-
ter g3 %, removes the high-frequency noise supcrimposed on the measured contact force
b(forc differentiation. Note that the built-in low-pass filter is an attractive feature of
this compliance compensator.

3. The dynamical model of the compliance compensator relating the input F' to the output
xy is given by

d _d ., -
kd{ii 1@ A ks (t) = a?li] (1) -1 BF(1) (49)

It is seen that the position perturbation z;: z, — x. is related to the contact force /*
by a first-order differential equation, which also contains %f. The force derivative term
éd’if duc to the fecdforward gain k; results in a predictive corrective action and makes
the system more responsive, especialy when F' is small but is changing rapidly, e.g.,
at impact and initial phase of contact. This utilization of information on the future
trend of contact force enhances system stability and improves dynamic perfori nance
[sce, eg., 21 }. Notice that when the end-cffector is in contact with a hard environment,
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the relationship between the position command zr and the contact force F' is found
from equation (43) as

) 1. kas- ks
) []((S)] - "; ’ ,H

(s
(s

kadr (1) 1 koo (1) = adi(1) 1 BF(2)

which is a first-order differential equation containing both @, (¢) and ().

5.2 Stability-Based Adaptive Compliance Compensator

Consider the compliant motion control system shown in Figure 1 1. The differential equation
relating the contact force 77 to the reference position z, is found to be

a3y azr
kd‘d"[a‘ -+ ke aka]—; Q2
Now, to apply a constant force on the environment, the reference position z, w1]] be chosen
to penetrate into the environment by a constant amount. Hence, we can set % = O and
investigate the stability of the third-order differential equation (50) using a l.yapunov ap-
proach. In order to improve the performance of the compliant control systemn, it is suggested
that the compensator gain 8 be anonlincar function of the contact force F'. On applying
Barbashin’s theorem to the third-order nonlinear differential equation (50) with %ﬂ-:o[scc
Appendix 11], the following three stability conditions are obtained:

dz,
1 [aks |ym|cwkyf 4 kot BbkcLF = (bhokal- z T [bhoksfar (50)

) Lok g
(ii) ""-;jkeﬁlf‘? >0 |
(lll) [&.’}c";!_d] [9!‘11&'5:1 ".’Ec!’] - a‘i_ [ﬂoszsﬁj«'] >0

where it is assumed that the parameters (ka, ks, @) of the compensator arc fixed and the
parameter 8 is a function of the contact force F'. Conditions (i) and (ii) arc satisfied when
the compensator parameters (kq, ks, @, 3) arc chosen to be positive. Condition (iii) simplifies
Lo

.4 ] k: ; ks

[,Bl] } B [kdiabkdiak]»l [aaiakd (51)
It is seen that when 8 is a constant, Barbashin’s stability condition (51) reduces to Routh’s
stability condition (40) obtained in Section 5.1.
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Suppose that we wish to emulate the user-specified stc.acly-state static target interaction
model

o= ks (52) ,

Then, we can choose the compensator gain # as a function of deviation of the actual contact
force J* from its desired value Jy,. Now, 8 must be chosen such that 8 -1 1'% has a finite
upper-bound which satisfies the stability inequality (51). A viable choice of 3 is

B=0o -1 [l exp(Fs — 17y17-] (53)

where ~ and 7 arc positive constants specified by the user, and fo is the nomina value of 3
that produces the target model stiffness k,,. With this choice of 3, when F' > I, the value of
S increases, and this in turn decreases the apparent stiffness ko, and reduces the contact force
F. Similarly, when I’ < I, # decreases to increase the apparent stiffness and thus increases
the contact force. Note that smce[’ w2 exp((Fy - 1) IT], 7 reflects the “rate-of-adaptation”
or qcnsm vity of @ to F. in Appendlx 111 it is shown that with this choice of 3, the expression
B -11"SE is upper-bouT~ded by Bim, that is

g » 4 1 <ﬂm (54)

where B = Bo -l y[1-texp(Fn /7 - 2)]. Hence, from inequalities (51) and (54), wc conclude
that a sufficient condition for closed-loop stability is given by

ks
ﬂm < Qa * (0 2 (55)
ka
A more conservative sufficient, but not a necessary, condition for stability is found to be
,Bm ,,.0 T
kd ("6)

Incqualitics (55) and (56) arc similar to the conditions (41) and (42) obtained in Section 5.1
for a constant gain compensator. inequality (56) imposes a simple condition which guar-
antees closed-loop stability without any knowledge of the robot parameters (a, b, ') or the
environmental stiffness k..

In order to appreciate the operation of the compensator gain 3, from (53) we obtain

‘fif AZeanttrn - 9} 7

From (57), it is seen that —f’ and have the same sign. This implies that when #” isincreasing
ar > 0), 3 aso increases in order to reduce /' to F,,. Similar-l y, when }' is decreasing

aF < 0), B dso decreases o as to increase F' to Fy,,. We conclude that the adaptation law
given by (53) is expected to improve the performance of the compliant control system.
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5.3 MI{AC-I 3ased Adaptive Compliance Compensator

Consider the compliant motion control systern shown in Figure 11. In this section, wc develop
asimple MIiA~-based adaptive compliance control scheme to ensure that the dynamic model
relating the reference position z, to the contact force I’ emulates a user-spcci fied target
dynami c model. This enables the robot to exhibit the same response characteristics, e.g.,
apparent stiffness and time-constant, when contacting environments with different stiff 1esses.

From equation (50), the actual interaction dynamics representing the manipulator-environment
interaction can be described by the third-order diflerential equation

ko AF [k aka) &°F [ake A Vka o Jdl (ke gl g o dTe 58
bk A7 [7;;“] a VU e e e B ke ke (58)

The numerical value of ka is often chosen to be small to filter out the high-frequency noise
supcerimposed on the contact force. Furthermore, ;‘ is often a small number in practice.
Therefore, for adaptive control development [43], the third-order full dynamic model (58)

can be approximated by the first-order reduced dynamic model

[Ef“s Lk a] () 4 koo (1) (59)
bke R- ‘1] () ‘dir(’)-’
or
_]_"(;5'1 o kas + k, L
v (s) {e!:}b;}kd-“l a] s+ [ - ) )

Notice that the rcduccd-order model (59)-(60) can alternatively be obtained by ignoring the
dynamics of the position-controlled robot. Equations (59) and (60) can be written in terms
of the “filtered” contact force J* = ¢ iz I as

aks - b'kq d bks e . B, I
a0 [ {020 70—
(61)
On applying a reference position command z, with constant final value, the contact force
Fresponds with the time-constant 7 = gkﬁbéigﬁi%ﬁ and presents the steady-state apparent
stiffncss kap * wxljebkes” It is seen that both the response time and the apparent stiffness
arc functions of the environmental stiffness k.. Therefore, during contact kvvitg gft environ-
Im,ntsﬁwglm;ffj and ka, & O; while for hard " environments) 7% % and kep =4 - Since the
environmental  stiffness ke can vary by several orders of magnitude, if the compensator param-
cters|a, B, ka, ko) arc fixed, the robot will exhibit highly non-uniform and possibly unstable

response characteri sties when cent acting di flerent cnvironrnents.
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In order to overcome this problem and obtain a uniform and desirable performance, a
simple adaptive scheme is proposed to ‘(tune” the compensator gains a and § automatically
on-line as functions of the contact force I, while choosing constant values for ks and k. In
practice, wc set k, = 1 and choose k4 to filter out the force mecasurement noise. Suppose that
the desired dynamic performance of the contact force /' in response to the reference position
x, is described by the target interaction dynamics

m 7. 1 \ .
P (0)4 5 Fn) - Kabe(®) 1 ka0 (62)
m n
or
Frn(s) . km(kas A ki) (63)
2y (S) TmS 11
where Iy, denotes the desired behavior of ¥, and 7,, and k., arc the desired user-spccificd
time-constant and apparent stiffness, respectively. This ensures that the environment behaves
like a simple spring-damper-spring system with user-spccificd paramters 7y, km, ka, and k.
Notice that the target dynamics (62)-(63) can be written as

Tm d A 1 ~ —_ Frn(S) ’C-,,,
e I @)1 I () — o A DR
ko dt () k ®) v xr(s)  Tms-11 (64)

where I, is the desired behavior of the filtered force F'. Now, following Appendix IV, the
adaptation laws for a(t) and B(¢) which ensure that the actual interaction dynamics (59)
tends to the target interaction dynamics (62) arc given by

a(®)=a()tn [ Lo @)L -i 12e)F (L) (65)
B) = B0) 1 M [ ()DL 4 dae(t) (D) (66)

where ¢(t): }'(t) — F,(t) is the deviation of the actual contact force '(t) from its desired
value I, (t), [v1, M) arc constant positive integral adaptation gains, and [-7,, A2} arc zero
or positive constant proportional adaptation gai ns. The adaptation laws (65)-(66) ensure
that the actual contact force /' follows the desired contact force /4, asymptotically, i.e.,
e(t)-» o as t— 00. Note that the desired force Fi,(t) is obtained by solving the target
interaction dynamics (62) with the given reference position a, (t), To enhance robustness
to the unmodcled manipulator dynamics, the o-modification method [43] is used, and the
i mproved adaptation laws arc given by

o(®)= a(0) 4 m e F)dL 1 ve (L) — oy / La()dt (67)
BE) = AO)4 M [ @@L Mac®)PR) o3 [ B (68)
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"The o-modificd adaptation laws (67)-(68) for « and 3 ensure that the residual tracking-error
c:1"-- I, tends to a bounded set of order (a;), while guarantceing robustness to the
unmodcled third and second-order dynamic terms in equation (58).

Finally, by setting 72 = O and using integration-by-parts, equation (67) simplifies to

t . t
a(t) = «a(0) ’)’1/0 [1°() ~ I () F'(t)dt -~ 01'/(; a(t)dt
a0 - BEOFO A [ Fn@FOd oy [aa (9

Note that since the desired contact force J+,(t) is a smooth noise-free signal obtained from
the target interaction model (62), the desired force rate Fy,(t) can be computed directly and
used in the adaptation law (69). 1t is seen that the computation of the compensator gain
a(t) from equation (69) dots not require knowledge of the actual force rate #'(t), which can
be difficult to obtain in practice since F'(t) is a noisy signal.

We conclude that the adaptive lag-plus-fecdforward compliance control law is given by

xr(t) = kl‘;a(t)lf‘(t) -1 [ﬁ(t)'!,:ia(t)ll7'(t> (70)

where F is the filtered contact force, and the control scheme is shown in Figure 14. Notice
that neither the compliance control law (70) nor the adaptation laws (68)- (69) require the
contact force rate information #'(t).

6 Simulation Study

The force control schemes described in Sections 4 and 5 are now applied through computer
simulations to the 7 DOF Robotics Research Corporation (RRC) Model K-1607 arm, shown
in Figurc 15. The complete kinematic and dynamic models for this arm are integrated into
a graphics-based robot simulation environment hosted on a Silicon Graphics Personal IRIS
workstation [45]. ‘1 ‘he simulation software incorporates models of all important dynamic sub-
systems and phenomena, such as full nonlinear arm dynamics, joint stiction, and transinission
effects, and therefore provides the basis for a redlistic cvaluation of the control system perfor-
mance. The RRC arm has an anthropomorphic design with seven revolute joints, and is one
of the fcw commercial | y available kinematicall y redundant manipulators. The overall reach
of the arm is approximately 80in and the total weight of the arm is over 500lb.

in the simulations, the robot position control system employs a high-performance adaptive
controller described in [40]. ‘I"his controller ensures that any commanded end-effector position
trajectory x.istracked accurately. All integrations required by the force control schemes are
implemented using a simple trapezoidal integration rule with a time-step of one millisecond.
Throughout the simulations, the unit of length is inch, the unit of time is second, the unit of
angle is degree, and the unit of force is pound.
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The simulation study demonstrates the capability of the proposed admittance and com-
pliance control schemes to achieve a desired end-effector /environment contact force. in this
study, a fri ctionless reaction surface modeled as linear] y clasti ¢ with a stiffness of 1001b. /in
in series with a uni-directional damnper having the friction cocflicient of 10lb.sec. /inis placed
in the robot workspace. This reaction surface is oriented normal to the y axis and is located

aty. = — 22.125; thus the mcasured contact force I is modeled as
0 if y < --22.125 (no contact)
J O 100(y -1 22,125) -110y if y >--22,125 and y >0 (contact, moving in)
100(y -1 22."125) if y > 22.125and y < 0 (contact, moving out)

'l *he task requires the exertion of a 10lb contact force normal to the reaction surface while
tracking a smooth 5in trgjectory tangent to the surface. Thus we define I, = 10 and =, -
x; -1 2.5[1 - cos(m/5)t] for t C [0, 5], where z; is the 2 component of the initial end-cffector
position. For simplicity, the end-cflector orientation ant] 2 coordinate are maintained at their
initial val ues throughout the task.

To illustrate robustness of the force control schemes in accommodating unexpected changes
in the environmental stiffness, the stiffness k. is changed abruptly from k. = 1001b/in to k.
:25lb/in at the midpoint of the z, trajectory at ¢ = 2.5 seconds. The control objective is to
maintain the contact force at 1 0lb despite this stiffness variation, This situation can occur in
practicc when tracking along a surface composed of two materials with different stiflnesses.

‘1 '‘wo computer simulation studies arc now described using the explicit force control (ad-
mittance control ) and the implicit force control (compliance control) schemes developed in
Sections 4 and 5.

G. 1 Adaptive Admittance Control

1 n this case, wc usc the adaptive P1 force control law

1r(0) = o 1 ac?(Dle(®) 1 ki [ et (71)

developed in Section 4,2, where e =- F, -- Iis the force tracking-error. This control scheme
has the attractive feature of not requiring force rate information for implementation. The
desired force setpoint is specified as

. 5[1 -- coswt]t <1

so that the force setpoint changes smoothly from Oto 1 0lbin 1 sccond.

First, the open-loop response of the contact, force I to the step reference input g, with
no force fecdback (y, = O) is obtained. The response indicates that the robot-plus-position
co]]trollcr-plus-reaction surface can be approximated by alinear second-orctcr t ransfer-function
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Wit}) theforward path gain®e= 100 and the attenuation factor a = 10, since for the com-
mand y, = 0.2 inches the force response rcaches the steady-state value JFy, = 20 1bin1
second. Fol lowing Scction 4.2, the integral gain &; and the initial proportional gain k, arc
chosen as k;: 0.10 and kp, = 0.004 to satisfy the inequality O < k.-<a[k,,0 -1 &]. The
rate-of-adaptation of the proportional gain is chosen as o= 0.0001 and the reference position
is set to g, = 0.2 inches. Figures 16a and 16b show the variations of the contact force J' and
the adaptive proportions] gain k, during the task. ¥rom Figure 163, it is seen that }* tracks
the desired force scipoint Fi.in the steady-state, which is reached in 1 second. ‘I’he contact
force is then perturbed at ¢t- 2.5 seconds duc to the change in environmental stiffness, but
rceovers subsequent] y duc to the integral action to, settle again at the desired setpoint F, =
101b in the steady-state. Figure 16b shows that the adaptive term ac?(t) in the proportional
gain k, causes an increase in the value of k, during the transient responses, where there are
discrepencics between the actual and desired. forces. Once the force tracking-error e dimin-
I shcs to zero in the steady-state, the proportional gain returns to its initial value k. Hence,
the compensator adaptation improves the transient behavior by increasing k,, automatically
when c is large, without affecting the steady-state performance.

6.2 Adaptive Compliance Control

in this case, wc usc the MI1.AC-based adaptive lag-plus-fecdforward compliance compensator
K(s) = “”p developed in Section 5.3, where a and 8 arc adaptive gains while k¢ and k,
arc flxed coeff|C|ents set a kg= 0.05, and k,- 1. With this choice of (k4, k,), the cutoff
frequency of the low-pass filter - %T is at 20rad/scc. For compliance control, there is no
force sctpoint F; instead the deﬂred contact dynamics is specified by the user. Suppose that
the target contact dynamics is choscn as

0.004F, (1) -1 0.02F,(t) *- 0.05¢,(t) -t ¥ (1) (72)

whi ch has the desired time-constant 7,,= %%5'=0.2 scc and the desired stiffness k,, =

sz: 501 b/i n. ‘J ‘o obtain a constant contact force of 10lb, the reference position is chosen to
penctrate into the reaction surface by y, =- 0.2 inches, so that Fys = knyr = (50)(0.2) =101b.
‘J'he adaptation laws for the compensator gains o and 8 are chosen as

t . t
aft)= 10-* {0.1 -10.001 /0 e(t)F (1) dt - /0 a(t)dt} (73)
. t , t
B(1) = 10--{0.1 -1 10 /0 e(t)1(t)dt - /0 ﬂ(t)dt}
where e(t) = (1) -- F,.(1), and F;,,(t) is obtained by solving the target dynamics (72)

withy, = 0.2. Figures 17a and 17b depict the variations of the contact force /' and the
compensator gain B during the task. 'Irom Figure 17a, it is seen that initially the contact

‘Since the adaptat|on gain for « iSsmall, o varies very sight] y from itsinitial value.

25




force I responds rapidly to the step reference position y,. Thisinitial deviation of F from F,,
causes the adaptive gain g to increase, which in turn forces /' to track the desired trajectory
F,,. ‘1 'he transient response lasts 57, = 1 sccond and for ¢ > 1, I tracks F,, exactly and
rcaches the steady-state value Fig, = ky,y, = 10 Ib. Att = 2.5 scc when the environmental
stiflnes k. decreases abrupt] y, the contact force drops instantaneous] y but is restored to the
target force I4,in 1.5 seconds. Since @ determines the stiflness of the compensator as given
by k.= K’ (0) :»%:ﬂ“‘,it is interesting to consider the steady-state values of £ in
the time periods O < t < 25 and 2.5 <t < 5. 1)uring contact with the hard surface
(k.= 100), from ¥igure17b wc have B4 = 0.01; hence k, = 100 and the apparent stiffness
iskeyp = [k '-1k;Y71 = [0.01 -10.01] "= 50 which is the specified model stiffness k,,,.
During contact with the soft surface (k. = 25), from Figure 17b wc have Bss = — 0.02; hence
k. = --50 and kop = [-0.02 -I- 0.04]'=:50::k, again. Wc conclude that the adaptation
law has resulted in a negative value for 8 [corresponding to positive force feedback loop] in
order to increase the apparent stiffness of the surface from k. = 25 to &, =- 50. Finally, note
that from Section 5.3 the force rate information J*is not required for implementation of this
control scheme.

7 Discussions and Conclusions

T'wo classes of force control schemes based on compliant motion arc discussed in this paper.
‘1 “hc admittance control approach is an explicit force control scheme that uscs force setpoint as
command and accomplishes contact force control directly. The compliance control approach,
on the other hand, is an implicit force control scheme that uscs reference position as command
and achicves a desired contact dynamics. Bothschemes usc adaptive compensator gains
to ensure stable and uniform performance in contact with environments having unknown
stiff yesses.

It is interesting to compare the performance of admittance and compliance control schemes
for constrained tasks. The admittance scheme has the advantage of robust force setpoint
tracking and rejection of constant disturbances. 1 lowevcr, it has the disadvantage of re-
quiring switching between z, as command (for unconstrained tasks) and ¥, as command
(for constrained tasks), and possibly poor transition response. The compliance scheme, on
the other hand, has the advantage of not switching commands between unconstrained and
constrained tasks (both with z, as command),and therefore generally good response at
transition. However, it has the disadvantage of possibly less robust command tracking and
disturbance rejection. Therefore, the utilization of admittance or compliance control is dic-
tated by the requirements of the particular application at hand.

Finally, it is important to appreciate the subtle difference between the conventional
impedance control and the proposed compliance control. Consider the standard second-order
target impedance dynamics [3]

mi, 4 bld, -- &) -1 klz, — X] = F (74)
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where z, is the reference position and x is the actual position of the end-effector and I is the
contact force. Assuming a lincarly elastic cnvircmment, /' = k.x, equation (74) reduces to

ﬁf«‘ 1 (] 1 -k) P =mi,41bt, A ka, (75)
k. k.

It is seen that the dynamic model relating z,to }' is dependent on the environmental stifl-
ness k.. Hence, under impedance control, the robot will exhibit different characteristics,
c.g., apparent stiffness and response time, when contacting different environments. I ‘his
is in contrast to the proposed compli ancc control approach which attempts to maintain a
user-speci fied invariant target dynamics betweena, and F irrespective of the environmental
stiffness, such as

2 Fonft) 7: Foult) = kaior(2) - koo (t) (76)

where 7,,, k,,,, k4, and k, arc user-spccificd parameters. Ience, the goal of compliance
control is to provide the same robot-environiment interaction dynamics regardless of the
environmental  stiffness.

‘J'hc ana ysis presented in Sections 4 and 5 is in continuous-time and predicts closed-
loop satiability for arbitrary large environmental stiffness or compensator gain. However, in
performing the computer simulations of Section 6, it was found that the force control systemn
tends to become unstable when the environmental stiffness or the compensator gain have large
numnerical values, “J'his instability can be attributed to the discretization effects (such as zero-
order hold, sampling, etc. ) present in the discrctc-time implementation of the force cent rol
sc} iemes. In discrcte-time control s ystcms, decreasing the sampling period 7' results in an
increasc in the range of allowable loop gain K and yields improved system performance; whi le
increasing 7" will require adecrease in k and results in degradation of systern performance
[see, .., 1]. As a consequence, simple force control laws that can be computed rapidly, such
as those devcloped in Sections 4 and 5, allow a smaller sampling period to be used and lead
to more stable closed-loop force control systems.

Current work is aimed at real-time implementation and experimental evaluation of the
admittance and compliance control schemes proposed in this paper on a 7 1YOF Robotics
Rescarch arm. Proper utilization of the arm redundancy to improve the system performance
will also be investigated,

8 Appendices

in these Appendices, wc derive the results used in the development of the admittance and
compliance control schemes in Sections 4 and 5.




8.1 Appendix 1: Derivation of Adaptation l.aws for Admittance Control

Consider the second-order system

é(1) -1 a(t)e(t) -1 b(t)e(d) = f(1) (77)
where a(t), b(t) and f(t) contain both fixed system parameters and adjustable controller
gains. l.ct the desired behavior of e(t) be described by the second-order reference model

Em(t) -t 2¢ W (t) -1 wen(t)= 0 (78)

where ¢ and w are the user-specified clamping ratio and undamped natural frequency, respec-
tively. The problem is to find the appropriate time functions [a(t), b(t), f(2)]such that the

state of the adjustable system (77), i.e. [&], tends to that of the reference model (78), i.e.,

[ o (t 1, asymptotically. To this end, we subtract equation (78) from equation (77) to obtain

(e o ém) -1 QCUJ(é - ém) -1 w2(c - cm) = f -t (2(&) - a)é - (w2 -- b)c

or, in the state-space form

-, 0 1 X 0 e 0
ji- ( __Azcw)p,...,(whmw_a)(é)-; (f) 79)

Where 1= [(e -- e,,), (é - é,,)]7 IS the 2x1 tracking-error vector. I.ct usdefine the positive
seal ar Lyapunov function candidate

V= ETPEAQ.(f — )10 W b4b*)? -1 Q2(2€w - a+ a*) (80)
where [f*,b*, @*] are functions of time to bespecified later, [Qo, @1, @2] are constant positive

seal ars, and F’ = 1;12 F;)Z is the 2x2 constant symmetric positive-dcflnitc matrix which
3

satisfies the 1,yapunov equation for the reference model, i .c.,

mop (0 1 (0 - mpY (@ e (81)
P2 D3 ~w? 20w 1 —2Cw P2 D3 7 G

where Q = ( Z’ z: ) is a symmetric positive-dcfitlitc 2x2 matrix. Diflerentiating V along
2

the error trgjectory (79) and simplifying the result, wc obtain
Voo —FTQE-112Q.7(f — f*)129] - 2Q.f*(f - [*)]
+ [2Q(b -- w?)(b - b*)- 29(b - w?e- 2Q1b‘(b - b‘)] (82
-112Q2(a - 2¢w)(a -- u*) - 29(a — 2{w)é - 2Q2a* (6 - U*)]

where g = p,cpsé is the weighted position-velocity error. ‘1’0 ensure asymptotic stability of
(79), we set
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2Qu(f — [ampoo f—F* = gl
2Q:(b - wHB-b) - 29(b - we: O > b- b = —q}iqc (83)
2Q2(a - 2Aw)(a -~ @) - 2g(a - 2w)é: O -+ & — a* = g-g¢

in this case, we obtain
V - BTQE i 27 - 26°ge — 2a*ge

Now, let US choose j*, u* , b* asfollows:

froe —Qg
b* = Qige (84)
a* =  Qiq¢

where @3, Q7, Q3 arc zero or positive constants. ‘J hen, V simplifies to

Vo= - 170n - - 2Qi~2Q)(ge) - 2Q3(e6) (85)

which is negative-definite in s, and hence (79) is stable [46]. From (83) and (84), the
adaptation laws for j, a, and b arc obtained as

f o Fa- Qg

b o= 4ged Qiglae] (86)
@ = A4 Q3dled]
andhencc
f@) = J(0) - 4. Joq(t)dt — Qia(t)
b(t) = b0)4 5, foa()e(t)dt 4 Qigt)e(t) (87)
a(t) = a(0)+ g, fsat)e(t)dt 4 Qia(t)e(t)
where

q(t) = wpe(t) + wac(t)
and wp = P2,Wd = p3. A closer look at (87) reveals that

1 t
o i v Wa _Up . ¢

SO = §(0) - fupQs 1 7 )= [ et - [wai] e(v (89

which shows that the auxiliary signal f(t) is produced by a constant-gain P] 1> controller

acting on the error e(t). Note that f(t), a(t), and b(t) vary as functions of e(t) and é(t) until

e=¢ = O in which case j, g, and b reach constant values.
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8.2 Appendix 11: Barbashin’s Theorem for ‘J’bird-Order Nonlinear Systems

Recall the error differential equation (24) in Section 4,2, viz:

t
E4 aé - [b 1 bhoky)e 4 bkoks /0 edt= B[, - 1] (89)
Lt us define new variables as follows:
X - Jledt-C
g T I1:=€
T3 = j;z ::'.c'

where ¢ = zﬁ’kg [}, — F.] is a constant. Then (89) can be written as the homogeneous equation

&1 -1 aZy -1 [V -1 bkoky) iy - bkekizy = O (90)

Specific stability criteria have been obtained for onc particular class of third-orde systems
by Barbashin [44]. The system is described by the state equations

i:] = .',EQ
.’ifz T3 (91)
&3 = —f(z1)- 9(@2) -- axs

where j(0) = O and g(0) = O, and both f(z1) and 9(X,) arc differentiable.If written as a
single third-order differential equation, this system is equivalent to
-l adr 1 g(d1) 1 f(x1)= o (92)
The equilibrium point, z.= O, is asymptotically stable in the large if
(i) a >0

(ii) f(x)zy >0, 717/ O (93)
(iii) ag(x2)/x2 - f'(z1) >0, 22/ O

where f'(x;) =d| f(x;)]/dx;. Note that in terms of the original variables, the equilibrium
point is defined as {f{edt= c, e = 0,6 =- O}. While equations (91) and (92) arc written
wit]) dots indicating differentiation with respect to time, the independent variable must be
a dimensionless time in order that the z’sbe of the same dimensions and the criteria of
cquation (93) be direct] y applicable. A seal ar Liyapunov function for the system is

V(X) = aF(x) - f(x1)ze -1 G(x2)41/2(azxs -1 23)° (94)
where F'(x;) = f&* f(x1)dxy and G(22) = [ g(x2)dz2. *Then, wc obtain

v(x) = -- lag(z2)/x2 - f'(m1)]23 (95)
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“1'bus, provided thatthe conditions of equations (93) apply, then V(x) >0 and V() <0,
and thercfore the system is asymptotically stable. Note that the variable x3 does not, appear
inV(x).

While equation (92) is a nonlinear third-order equation with rather general nonlinearitics
allowed in both the dependent variable 1 and its first derivative €1, it is necessary that there
be no products of these two types of terms, and that the second and third derivatives appear
only in linear terms. Note that for the linear third-order differential equations

F1da1xy + az®) -1 3Ty ‘ 0

where @i, a2, and as arc positive constants, 1 3arbashin’s Theorem reduces to the classical
Routh-Hurwitz condition, namely

a1az2 > agy

8.3 Appendix Ill: Boundedness of 3 - ]«’5% in Compliance Control
in this Appendix, we show that using the adaptive compensator gain

B=PBo4v[1 - exp(Fn - 19)17-] (96)
the expression
ag
= B4 F—= 97
A= g4 F Tz (97)

is upper bounded. Using equation (96), A can be expressed as

A= G -1yay(F/r-1)exp(Fn-F)/1=0 4 v+ B (98)

where B:=(I'/7 - )exp(} - F)/7.To determine the extremum of B as a function of ¥,
we find

dB, = -](2 - P/r)exp(Fm - I)/7=0 (99)
ar 1

hence {I =21, B = exp(Fn/7 — 2)} defines the maximum of B. Therefore, B starts at
—exp(Fy,/7) for F = O, increases to exp(F,,/7 -- 2) as F' increases from O to 27, and then
decreases to zero as F' tends to infinity. Thus B is bounded by

- exp(ln/T)<B<exp(Fn/T - 2)
W conclude that the upper boundon A is

A< B (loo)
where B = 0o -1 y[1+ exp(Fn./T - 2)].
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8.4 Appendix 1V: Derivation of Adaptation Laws for Compliance Control

sonsider the first-order adjustable system

a()&() 4 b()z() = u(t) (102)
where u(t) is the scalar input, z(t)is the scalar output, and the cocfficients a(t) and b(¢) con-
tain both fixed system parameters and adjustable controller gains. I.ct the desired behavior
of the output X.,(t) be described by the first-order reference model

ami'm(t) -1 bmxm(t) = U(t) (102)

where a,, and b,, arc positive constant coefficients chosen by the user to ensure that a,
responds to U with a desirable time-constant 7= 3§ and steady-state gain k = b‘ , that is,

f‘i’is; , Z;;ZQJES ' *—-” 'The problem is to find the appropriate time functions [a(t), b(t)] such
that, for all inputs u(t), the output z(t) of the adjustable system (101) tends to the output
(1) of the reference model (102) asymptoticaly; i.e, x(1)--»xn(t) ast-— oc.To this end,
wc subtract equation (102) from equation (101) to obtain, after some simplification, the error

di flerenti al equation

sty 2 Wy 2 o0 oo

Where e(t):xz(t) - z,,(1) is the output tracking-error. lLet us define the positive scalar
Lyapunov function candidate

2 2
V(t) - go€?(1) i qi [Dl—‘.b.(t.).-— ~-q1(t) -1 M_..aﬂ)_.‘. @ (1) (104)
am 1 [ am 1
where [g] (1), g;(t)] are time functions to be specified later, and [go, g, 9,] are constant pos-
itive scalars. Diflerentiating V(t) with respect to time along the error trajectory (103) and
si mpli fying the result, wc obtain

. byn b - b q]i) . ( i)
Vo= 2 Mgee?12|( exr — — — 14} ] - N
a,,,q [( am ) (flo am N4 nq tn 01
. G20 : a
2 i~ %% 0ais) 4 gy (24 ) 105
S (% 2 (QO . (12(12) 929, X q2 ( )

To ensure asymptotic stability of the error differential equation (103), we Set

b
goex — no_ @141 =0 — — 4 ¢y = KL
am 0 a1
. a " a . .
qoei — 22~ gags= 0 gy g (1 06)
Ay m q2
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Using eguation (1 06), V in eguation (105) simplifies to
i bnl * * :
V' —2-" qoe? 4 2q}qocx -+ 2g5gocd:

Now, let us choose g7, g3 as follows:

q; = —pcx (107)
ql = -~ paed
where py and P2 arc zero or positi vc constants. Then, V simpli fits to

by, .
Vs - 2-"ane” - 2miao(cr)’ 2paa0(ci)”
m o

which is negative-definite in e, and hence (103) is stable [46]. From (106) and (107), the
adaptation laws for a and b arc obtained as

. G " 4 d
b = aypy z]? €r — Qg = Ay '(}(: exr 1 amp Ei (CIE) (108)
. d. .
a=Q, "QOCfi? ——= Cl'mq’: = a'mgo' ex -1, p2 -; (CT) (109)
o 72 dt

Let us define the adaptation gains

SC IR Y S R R Y )

A= an L A2 = QP2

0
1

and integrate equations (108) and (109) to yield

() =" b(o) -1 [ ez )dt e t)z(2) (110)
at) = a(0) 4\ /0 L e)i)dt 1 2e()i(t) (112)

Note that a(t) and b(t) vary as functions of e(t) until e(t): O; i.e, X(t) = xm(t), in which
case a and b reach constant values.
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Figure 16b. Variation of the adaptive proportional gain kp in the simulation study




12

o e
g

DESIRED AND ACTUAL FORCES (LB)

0 | | ]l } — [ | i 4 ]
< L4 T T T T L 4 T 1

00 o5 1.0 15 20 25 3.0 35 40 4 50
TiME (SEC)

Figure 17a. Variation of the contact force Fin the simulation study

0.010

0.005

B

0.000

-0.005

-0.010

= OMPENSATOR GAIN

-0.015

-0.020

| | d 1 ] }
T T T T T A\

-

-0.025 4 +
00 05 1.0 15 20 25 30 3.5 40 45
TIME (SEC)

—
5

.0

Figure 17b. Variation of the adaptive compensator gain B in the simulation study




