Theory and Weighting Strategies of Mixed Sensitivity
H> Synthesis on a Class of Aerospace Applications '

Richard Y. Chiang and Fred Y. Hadaegh

Jel Propulsion Laboratory, California Institute of Technology, I’asadena, CA 91109-6'09.9

Abstract. This paper presents a vital design concept commonly used in the robust H* control
synthesis technique --- the Mized Sensitivity HI® optimization. The underlying theory is also
explained in a straightforward fashion. Several rea world aerospace design problems are solved via
this particular problem formulation. This simple approach provides control engineer a clean first
cut of many complicated aerospace control design issues, e.g., stability, performance and robustness
against frequency domain bounded unstructured uncertainty, etc. Only with this first cut result
in hand, one can then move on to more ad yan ced synthesis technique such as K-S ynthesis to

improve the system parametric robustness, if necessary.
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1. INTRODUCTION

For the past decade, robust control theory has made a
“quantum leap” on the design of precision control sys-
tems in the presence of large level of uncertainty. The
issues such as multivariable stability margin, multi-
channel loop-shaping, system robust stability and ro-
bust performance can be well formulated as one sound
and complete mathematical problem, where one only
needs to minimize the H* norm of the input/output
channels regardless it is a synthesis or analysis de-
sign problem. Figure 1 shows the “Canonical robust
control pro blem” setup,

In solving analysis problem, one can measure the
“size” of the transfer function matrix seen by the un-
certainty block(s) using the H®norm related tools
to assess the multivariable stability margin. On the
other hand, in solving synthesis problem, one can se-
lect a set of proper weighting functions to address a
particular loop shape that ultimately takes care of the
‘(robustness” and “performance” design objectives in
one mathematical framework. The tools that can be
utilized to achieve the latter objective are, for exam-
ple, -2, H®optimization, and p-synthesis procedure.

1 Submitter to IFAC, Symposium on Automatic Con-
trol in Aerospace, Sep. 12-16,1994, Palo Alto, Ca.

However, unlike the simple nature of “analysis” prob-
lem, synthesizing a robust coitroller that stabilizes a
plant (not necessarily a complicated one) with cer-
tain prescribed performance in the presence of all the
anticipated disturbance, uncertainty, noise, etc. is
absolutely a nontrivial task.

Mathematically, the Canonical Robust Control Prob-
km can be solved as follows:

Given a multivariable plant P(s), find a stabilizing
controller F(s) such thaltheclosccLJoor transfer func-
tion Ty, u, satisfies

w(Tyyuy) = Kl (Toyu, () £ 1 (€
where

Km(Tyyuy) = int{o(Q)ldet(I - Ty A) =0} (2)

with A = diag(Ay,. ... An).

From a robust control synthesis point of view, the
problem is to find a stabilizing F(s) to “shape” the
It(Ty,u, ) function in the frequency domain. On the
other hand, from a robust control analysis point of
view, the problem is to compute the Km (Ty,u; func-
tion, or its bounds. In general, this robust control
formulation is capable of handling multi-channel and
multivariable control problem.
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Figure 1: The Canonical Robust Control Problem

This paper catalogs a class of aerospace applications
solved by H*mixed sensitivity minimization, and de-
scribes their weighting strategies in detail. The ap-
plications covered here are 1) fighter flight control
problem; 2) large space structure vibration suppres-
sion problem; 3) spacecraft attitude control problem,
which are all related to the real-world design (not
textbook problem) in practice. With the guidelines
presented here and the examples of aerospace appli-
cations, robust control synthesis problem should no
longer be a mystery to engineers or theorists that are
ncw in this field.

2. H*MIXED-SENSITIVITY APPROACH

To compute the K,, function in our Canonical Ro-
bust Control Problem setup is mathematically difficult
(requires nonlinear programming), but the synthe-
sis part of the problem can be closcly approximated
via the so-called Jfired-Sensitivity Problem setup (see
Figure 2).

Figure 2: The Mixed-Sensitivity Problem.

First let's examing K. function’s upper bounds:

14 . . ) - .
je= i Tyw) < it IIDTyuD ™ oo < [iTyulleo (3)

where D :={diag(di],...,dn1}|di> O} .

The inequality (3) implies that solving the “minimax”
H*optimization problem

Igrexi;) as:}z)& [D(s)Tyu(s)I)"l(s)] (4)

minimizes an upper bound on the quantity {(7yu).
Doyle proves that for 3 or less complex singular-value-
bounded uncertainty blocks, the first inequality be-
come exact equality.

Singular value is also an upper bound of K,;l. It can
be shown that in this H-mixed sensitivity setting, it
is is only 3 db different from the true Xy, function.
This will be our main focus of solving the Canonical
Robust Control problem. Let’s start with the follow-
ing inequality on the problem setup in Figure 2:

K;ml (Tyrv) S5(Tyyuy) =73 ( w;? _pu;,/;; ])
()
where S = (I+GF)’1 is the Sensitivity Function,
T = GF(I4GF)™" is the Complementary Sensitivity
Function, and clearly, S+- 7" =:1.

Take the singular value decomposition of the first col-
umn of Tyu
w; S
(W1

and substitute back to 7yu we obtain the following
upper-bound on K;!:
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How about a lower bound ? We know if D = diag(d;, d2),
then

. UnvT, (6)
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Now, recall a fundamental singular value property:

The maximum singular value of any matriz is bounded
below by the marimum singular value of its submatrices.

Thus, in particular one has the following lemma:

Lemma 1

aei(rsfoo)a([ XX DN2e([7]) ®

Proof: If a 2 1,

([ X aX ]) Z&([ X )=,\§,,,,, [x*X 4+ o?yey],

aY Y
(lo)




and

Amaz [/\"X 4 GQY‘Y] 2 Amaz [X‘X + Y* Y] =7 ([ X

1y
i e, the lemma holds. If « < 1, the same logics yields

([ x ix 1 .
a([ X & ])mea,(ﬁx'any Y)Z

Amaz (X*X 4+Y*Y) =5 ([ z ]) Q.E.D( 2)

Using the above lemma (equation (9)-(1 2)), equation 7)
finds its lower bound

, | wis
Kl @) 2o | ip 13)
Combining the results of eq.(7) and eq.(13) with the ro-

bust stability requirement * supKmy > 1", 0ne gets the
following important relationship:

Y 1)

[ 1], < ome it < va] [ w33 )]

(14)

T'his relationship guarantees that for the mized sensitivity
setup depicted in Figure 2, the 2-block H °° synthesis is the
same as the Ky synthesis (OT 1(+ ) synthesis) to within S

db (vV2) !

The singular value upper bound in this inequality is known
to be the so-called H® Small-Gain Problem, which by all
means should be our first cut of the robust Ky, synthesis
problem. It replaces the complicated mathematical prob-
lem to an easy-to-solve H*® Mixed- Sensmwty problem.
BY achieving ||7y; u;|]eo less than \;-.one has achieved

Ky~ 1 - - the “real” robust pcrformance.

Some important properties of the H%controllers are listed
below:

Property 1: The H%optimal control cost function
Tyyu, is all-pass, i.e., 5[Ty;u;] = | for al w € R.
This property guarantees the exact loop shaping of
H*®controller.

Troperty 2: An H *° “sub-optimal” controller has order
equal to that of the augmented plant (n-state). An
H > optimal controller can be computed having at
most (n - | )-states.

Property 3: In any Weighted Mixed Sensitivity problem
formulation, the H * controller always cancels the
stable poles of the plant with its transmission ze-
ros. For some plants with low-damped poles/zeros,
this can potentially move the closed-loop poles into
RHP and becomes unstable.

Property 4: In the Weighted Mixed Sensitivity problem
formulation, any unstable pole of the plant inside
the specified control bandwidth will be shifted ap-
proximately to its jw-axis mirror image once the
feedback loop is closed with an H® (or H*) con-
troller (similar to the “Cheap” I.QR control).

3. WEIGHTING STRATEGIES
H*FORMULATION

A Small-Gain problem setup shown in Figure 3 has 3 most
important signals (error, control energy, output) penalized
around the control loop with the cost function

<1 (15)

It catches most control system deS|gn issues such as sta-
bilit y, performance, and robustness in onc problem for-
mulation. Most of all, it also provides a vital trade-off
study among all these design issues. Namely, one can ad-
just each weighting function W, , Wz or W3 to come up a
better design that suits his design requirement..
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Figure 3: The Mixed-Sensitivit y Problem.

This setup yields the following open loop transfer func-
tions:

A | By B,
= Ci Dy ) Dig
Cs Doy Doy

(16)
This will be the input to the software hinf.m or hin-
fopt. m Chiang and Safonvo (1988-1994) to compute an

H ‘controller.

P(s) =

Minimizing the H%norm of the “plant” P(s) with proper
weighting functions will result an all-pass closed loop
cost function, which implies that one can get exact 100P
shaping to within 3 db out of any of the two-block synthe-
sis problems (ref. Section 2, Property 1):

wis wi S ]
P = Py N
TR wT1 T [ WoFs o

The following list summarizes some important rules
(weighting strategies) associated with the H*robust con-
trol synthesis, which is really a collection of facts from the
fundamental H * theory.

Rule # 1: For problem P1, an necessary condition for
an achievable H*solution is

(W) + s (W) > 1w (18)
which means that the sum of the two weighting
function singular values must be larger than 1 for

all frequencies. This is simply due to the funda-
mental feedback “limitation” S+ 7'=1I. ‘The

p. 3




weighting WI controls tracking error and distur-
bance rejection. The weighting W3 controls over-
all system bandwidth, roll-off rate and robustness
against multiplicative uncertainty (see Figure 4).
Together they form a desired loop shaping of the
loop transfer function L = GF along the frequency
range of interest.

Hint Mixed Sensitivity W sighting Funotions
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Figure 4 The standard weighting function Wik
W3.

Rule # 2: For MIMO system, diagonal weighting func-
tion Wj or W, forces the system to be “decoupled”,
which may or may not be a desirable thing to do
depending on the physical problem (Ref. Section
4).

Rule # 3: The state-space H%software currently coded
in Chiang and Safonov (1988-1994) requires that
the following conditions hold

rank(D12) = dim(u2) < dim(y ) (19

rank(D21) = dim(y2) <dim(uy ) (20)
i.e.,, P12 must be a “tall” matrix with full col-
umn rank, and 721 must be a ‘(fat” matrix with
full row rank, Therefore, always including a non-
trivial weighting W,ensures that Diz condition
satisfies. For most engineering “tracking” control
problems, D, is always square, hence satisfying
the D21 condition. However, there are cases like
the one shown in Section 4, one must use Pz for-
mulation to solve a particular flight control problem
without W,weighting.
Rule # 4: Always select stable and minimum phase
weighting function, because

. Weighting functions are not stabilizable or
detectable

. Poles of weighting function Wj aways be-
comes part of the poles of the H%controller

Rule # 5: Preprocess the plant that has jw-axis zeros or
poles. Otherwise, it can cause the H*algorithms
to fail. This is due to the fact that when H%cost
function approaching “optimal”, the overall closed
loop system will have an irrational transfer function
with point discontinuities on the jw-axis at the of-
fending jw-axis poles and zeros of the plant (Ref.
Safonov, 1986 for details). Solutions have been de-
veloped to deal with such situations:

. For plant has jw-axis poles, a simple bilinear
pole-shifting transform

(21)

can map the jw-axis onto a RHP circle I'z,
while preserving the H%®norm of the prob-
lem. After solving the problem on the circle
(instead of on jw-axis), simply apply the in-
verse bilinear transform to the H°controller
to go back to the original domain (see Figure
5, Ref. Chiang and Safonov, 1992 for more

details).
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Figure 5: The bilinear pole-shifting transform (from
8 — plane to & - plane).

. For plant has jw-axis zeros (any strictly
proper plant), attaching improper weighting
function W3

Wa(s)= C(Is+A)" ' B+Dtans™ 4. 4oystao
(22)
can not only penalize plant roll-off rate
against unstructured uncertainty but also
keep the size of the augmented plant P(s)un-
changed. The state-space form of this special
kirrd of plant augmentation has been imple-
mented in Chiang and Safonov (1988-1994)

(augtf.m and augss.m) based on the theory of
state-space resolvant.

Rule # 6: Use some engineering judgement before de-
manding H%software to find a controller for you.
For example, one can not suppress sensitivity func-
tion to be less than one at vicinity of RHP trans-
mission zeros. This is one fundamental feedback
control limitation (not H°).

Rule # 7: Balance the augment plant in equation (16)
for a better numerical condition so that the Riccati
equation solver can be well-posed.

This set of rules must be kept irr mind in every H* control
designer.

4. DESIGN EXAMPLES

The following aerospace design examples utilize this
H°° Mired-Sensitivity problem formulation described in
equation (17) to achieve their requirements.

Example # 1: Flight Control Bank Turn{Thompson
and Chiang, 1988). An interesting flight con-
trol problem that requires coordination between
bank angle ¢ and stability yaw rate r, is solved
using the standard H ‘mixed sensitivity problem

formulation, where Wj (s) = diag[ %3533, 0.01],
Wa(s) = 2 » diag[£ity, Soth) and no W
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Figure 6: H®mixed sensitivity design (bank turn).
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Figure 7: Bank turn step response.

weighting! If one uses diagonal Wj and W,weight-
ing. on ¢ and r,, the side-slip angle 8 will diverge
quickly. Because in any airplane bank turn situ-
ation, r,=gtané/Vp, decoupling ¢ from r, is
against the physics law. However, in other situation
like the Himat flight control problem, standard W,
and W3 are necessary weightings to decouple the ¢
and « variables for a Direct Lift flight control de-
sign (Safonov and Chiang, 19S8). See Figures 6 and
7 for H®*bank turn design.

FExample # 2: Structure Vibration Suppression (Ba-
yard and Chiang, 1993) An integrated I and ro-
bust control design methodology (MACSYN) has
been developed in JPL (Bayardetal.,1994) In this
design, H*mixed sensitivity approach was again
used effectively to remove the most critical un-
wanted vibration modes. Weighting W,is an over-
bound on all the identification and modeling errors.
Weighting WI is chosen to home in just the first 3
bending modes. It is a 6-state modal model trun-
cated from the full 100-state plant seen from the
disturbance actuator to the accelerometer. Figures
8 and 9 list the outstanding performance of this
approach.

Example # 3: Rigid Body Attitude Control (Chiang et
al., 1993). Controlling rigid body dynamics is a
very common industrial task. From EM actua-
tor, spacecraft dynamics to any rotating object that
needs to be precisely controlled, we have a double
integrator p]ant:jl;f.where J is the polar moment
inertia. A spacecraft rigid body with J = 5700 has
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Figure 8: H®mixed sensitivity design (vibration
suppression).
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been controlled using }[°°mix2ed sensitivity formu-
lation. Here we have W3 = 755 and

B(as? + 2C1wer/as + w?)
W, =
(Bs? + 2¢owe/Bs + w2)

where B= 100 is the DC gain that controls the
disturbance rejection, cs = 1/1.5 is the high fre-
quency gain that controls the peak overshoot re-
sponse, we = 3 is the sensit ivit y cross-over fre-
quency, ¢ =62 = 0.7 are the damping of the
poles and zeros. Additional attention needs to
pay for the jw-axis plant poles (Rule # 5 !}. We
simply shift the plant “A” matrix by 0.1 to the
right (Ag = Ag + 0.1), then shift back the fi-
nal H® controller to the left by the same amount
(d..,= Acp— 0.1). This is equivalent to a bilin-
ear mapping with circle coefficients p;=-0.1 and
p,== —co. This kind of mapping guarantees that
wc have a strictly proper controller that never am-
plifies sensor noise at high frequencies. Figure 10
shows the overall design.

(23)
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Figure 10: H*®mixed sensitivity design (double in-
tegrator plant).

5. CONCLUSION

H*°Mixed Sensitivity problem formulation provides con-
trol designer the first clean cut of any complicated con-
trol problem. Mathematically, it has the advantage of by-
passing the difficult Ky computation. From control de-
sign viewpoint, it provides direct design knobs on the loop
transfer function, whit}) essentially solves the fundamental
feedback issues like stability, tracking performance, distur-
bance rejection, and robustness against unstructured un-
certainty, This paper documents the basic theory, weight-
ing strategies and three nontrivial aerospace design ex-
amples to show the merits of this approach. More ad -
vanced technique such as Km-Synthesis (Chiang and Sa-
fonov, 1992; Safonov and Chiang, 1993) can then be in-
voked to focus on the parametric robustness of the prob-
lem, after the H*®mixed sensitivity problem is solved. A
similar Xy, tutorial paper like the onc presented here will
be published elsewhere.
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