Situated Plan Attribution

Randall W. hill, Jr.
Jet Propulsion Laboratory / Caltech
4800 Oak Grove Drive M/S 525-3631
Pasadena, CA 91109-8099
hill@negev.jpl.nasa.gov

W. 1.ewis Johnson
USC / information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695
johnson@isi.edu

Abstract
Plan recognition techniques frequently make rigid assumptions about the student’s plans, and invest substantial effort to infer unobservable properties of the student. The pedagogical benefits of plan recognition analysis are not always obvious. We claim that these difficulties can be overcome if greater attention is paid to the situational context of the student’s activity and the pedagogical tasks which plan recognition is intended to support. This paper describes an approach to plan recognition called situated plan attribution that takes these factors into account. It devotes varying amounts of effort to the interpretation process, focusing the greatest effort on interpreting impasse points, i.e., points where the student encounters some difficulty completing the task. This approach has been implemented and evaluated in the context of the REACT tutor, a trainer for operators of deep space communications stations.

Introduction
Plan recognition and agent modeling capabilities are valuable for intelligent tutoring (Corbett et al., 1990; Johnson, 1986), as well as other areas such as natural language processing (Charniak & Goldman, 1991), expert consultation (Cailistri, 1990), and tactical decision making (Azarewicz et al., 1986). However, such capabilities are difficult to implement and employ effectively, for the following reasons. Plan recognition techniques can be rigid—they assume the agent is following a known plan step by step, and have difficulty interpreting deviations from the plan. The modeling process can be underconstrained, postulating mental activities that are difficult to infer from the agent’s observable actions. An example of this style of modeling can be seen in (Ward, 1991), where the tutor attempts to track the student by generating production paths that could have led to an observed action. Finally, they tend to be unfocused—they do not target their analysis on those situations where tutorial intervention is warranted. For instance, intelligent tutors that use model tracing (Anderson et al., 1990) to interpret student actions tend to intervene whenever the student wanders off of a correct solution path; this intervention policy

1 Portions of this paper are based on the AAAI-94 paper entitled “Situated Plan Attribution for Intelligent Tutoring Systems.” (Hill & Johnson, 1994)
is potentially disruptive and does not appear to be basal on an analysis of whether it is appropriate to intervene.

This paper describes an approach to plan recognition called situated plan attribution that takes these factors into account. Situated plan attribution analyzes both the student’s actions and the environmental situation. Attention to the situation is important because it allows the plan recognizer to recognize when the student must deviate from the usual plan, as well as alternative ways of achieving the goals of the plan. This flexibility avoids the rigidity problems of other techniques such as Kautz and Allen’s deductive approach (Kautz & Allen, 1986), which assumes that all possible ways of performing an action are known, and every action is a step in a known plan. The ability to mix goal-directed and reactive behavior has also been found to be important for situated agents which must model the intentions of other agents (Tambe & Rosenbloom, 1994).

Context: Operator Training

The situated plan attribution approach was developed and implemented in order to construct an intelligent tutoring system called RI:ACT for training human operators of complex devices. The training domain is the operation of a communications link in NASA’s Deep Space Network (DSN). The DSN is a worldwide system for navigating, tracking and communicating with all of NASA’s unmanned interplanetary spacecraft. Operators of the DSN are responsible for initializing and controlling a complex array of devices, which range from the hydraulic pumps used to move a 70-meter antenna to the software that controls the receivers, exciters and digital spectral processor (1 P). They must be able to carry out complex procedures accurately, as well as recognize and respond to unexpected situations when they arise.

Mission:

- **Mission:**

Procedures:

- **Procedures:**
 - Configure-DSP
 - Coherence-Test
 - Acquire-Data
 - Playback-Data

Directives:

- **Directives:**
 - Load-Predicts
 - Set-Attenuation-Values
 - Select-Recording-Device

Figure 1: Example of a task organized into three levels: Mission, Procedure, Directive. The cognitive model treats the task organization as a problem space hierarchy, where each box represents a problem space.
Tasks in this domain are organized into three levels: mission, procedure, and directive. The mission is a description of the overall task: it has a set of goals, it has a collection of devices assigned to a communications link, and it has a set of procedures, where some of the procedures may be common to other mission types. Procedures also have goals, usually with respect to the state of the devices that they affect. Each procedure has a sequence of directives that will, under ideal circumstances, cause the link devices to behave in a desired manner. A directive is a command that is issued by the link operator to control a device in the communications link. For each directive issued, a directive response is sent back indicating whether the device accepted or rejected the directive. If the directive is accepted, the operator watches for event notice messages and attends to subsystem displays for indications that the directive had its intended effect.

An example of a task in this domain is shown in Figure 1. The mission is V1.B1 (Very Large Baseline Interferometry), and it involves performing the procedures called Configure-DSP, Coherence-Test, and so on. The Configure-DSP procedure has directives to: load the mission-specific prediction data file (Load-Predicts), set the attenuation values on the Intermediate Frequency Video Down Converter (Set-All-cells-...-Vdc-les), and select a recording device to capture the mission’s communication data (Select-1< ccor(I) II=-Illecic(t)). Each of the directive actions involves issuing a command (e.g. the Load-Predicts directive is NLOAD predictx-file).

Looking at Figure 1, it would appear that the tasks in this domain are straightforward and would require little or no training -- just follow the mission procedure manuals. We have found, however, that this is not the approach taken by domain experts. Through interviews with expert operators and system engineers, we determined that the procedure manuals only provide a subset of the knowledge needed to successfully perform a mission task. What is generally lacking in the procedure manuals is a complete description of the required device state conditions before and after a directive is issued. The expert operator possesses a knowledge of the preconditions and postconditions for each directive and verifies the sc. conditions are satisfied before and after each directive is sent. Operators who lack this knowledge may find it difficult to complete even simple procedures, since the directives may be rejected, or worse, put the device into an incorrect state for the procedure or mission. For example, (me. of the preconditions for the Load-Predicts directive is that the predicts-file being loaded must be present on the system. If the Load-Predicts directive is issued for the predicts-file named "JK" (i.e., NLOAD JK), it will be rejected if a file by that name is not present in the predicts file directory.

Devices may enter unexpected states due to failures. Furthermore, commands may have unexpected effects when issued in the wrong situation. In either case, to become an expert operator requires learning to recognize the device states, requirements (i.e., preconditions and...
postconditions) for each directive in every procedure. It also requires understanding the goals associated with each procedure, since, in many instances it is necessary to work around device state anomalies in order to complete the procedure.

Impasse-Driven Tutoring

Interactive simulations can be quite effective for training complex, situated tasks such as DSN operations. The REACT tutor is such a simulation-based training system. The student practices carrying out various missions, by issuing directives to computer simulations of the real devices. They thereby become more facile with the mission procedures, and gain experience in dealing with the various anomalous situations that may arise. The initial version of the REACT tutor incorporated custom-built simulations of the devices in the DSN communication link. Our current work makes use of the RIDE simulation authoring package (Munro et al., 1993) as a base.

Yet it was evident from the beginning that a simulation alone would be insufficient as a training system. It is not always evident to novices, or even to experts, why particular directives fail and are rejected. This can lead to confusion or frustration on the part of the student. Furthermore, it is not always apparent at the time whether a given mission was successfully completed. This is a serious problem for DSN operations: incorrect configuration can cause the data being collected from the spacecraft to be garbled and meaningless, and this may not be discovered until weeks later when scientists inspect the data that was collected. Therefore, it is apparent that some form of online guidance or coaching is necessary in order to ensure that students learn effectively.

In order to determine how best to design a tutor for this task, a cognitive model of students interacting with simulated devices was constructed (Hill & Johnson, 1993a). One of the key conclusions from this study is that tutorial interactions should center around *impasse points*. An impasse is defined in this work to be an obstacle to problem solving. That results from either a lack of knowledge or from incorrect knowledge (Hill, 1993; Brown & VanLehn, 1982; VanLehn, 1982, 1983). Our results agree with tile results of earlier studies (e.g., VanLehn, 1988) that suggest that such impasse points are natural learning opportunities. When the student is at an impasse, he or she naturally seeks information that can be used to overcome the impasse and continue the task. Information offered by the tutor at such points is readily accepted and assimilated.

These conclusions are the motivation for the approach to tutoring taken in the REACT system, called *impasse-driven tutoring*. In an illIJ>.-tsse-(iii."ell tutoring system, the student is called upon to carry out specific tasks; in REACT’s case, these tasks are missions performed with simulated
devices. The tutor monitors the student’s actions, but as long as he or she appears to be making progress, it does not intervene. If on the other hand the student appears to be at an impasse point, the tutor will offer suggestions as to how to resolve the impasse and proceed with the task. The tutor interrupts the students only when their actions are so faulty that they will be difficult or impossible for them ever to complete the task, and there is no obvious cue from the simulation that things are going wrong.

In RlACT’s particular case, student is assumed to have some understanding of operational procedures. However, the devices may be in unexpected states or behave in unexpected ways; the student must learn to recognize such situations and deviate from the standard procedures as necessary. RlACT recognizes when the student has reached an impasse, because the student’s action has failed or cannot achieve its intended purpose in the devices’ current state. It then coaches the student through the impasse.

A tutor that is sensitive to such impasses does not run the risk of annoying the student with interruptions—the student’s problem solving has already been interrupted by the impasse. The tutoring system need not intervene in a heavy-handed fashion; it can serve as an information resource that the student can turn to for assistance as needed. The student therefore has a greater sense of control over how the task is performed.

Situated Plan Attribution

The question that is the focus of this paper is how best to track student performance in a situated activity such as device control, in support of impasse-driven tutoring. Previous approaches to student tracking have serious deficiencies in this context. Some do not provide the flexibility needed for such dynamic domains. Others incur substantial computational and development costs to generate information about the student that is of little value for the tutor. The situated plan attribution approach implemented in RlACT avoids both sets of problems. It is highly flexible, able to cope easily with deviations from normal mission procedures. It is specifically designed to identify potential impasse points, and to understand enough of the student’s plan to be able to offer useful advice at those points. This means that much of the computational cost of typical plan recognition or student modeling techniques can be avoided. Our stance is thus consistent with that of (Self, 1990), who argues that to make student modeling tractable one must focus on unrealistic, useful objectives.

Plan recognition approaches such as that of (Kautz & Allen, 1986) are inappropriate for domains such as the DSN because they make unrealistic assumptions. Kautz and Allen, for example, assume that both the observer and the agent have complete and correct knowledge about possible plans. In the DSN domain there is a standard set of procedures, which can serve
as the basis for a plan library. However, the plans do not always work, and the students do not always know when they can be expected to work. Systems such as PROUST (Johnson, 1986) do not make such strong assumptions, and are able to interpret a variety of buggy plans; however, they require detailed knowledge of the kinds of plan deviations that may be expected. Others such as (Calisti 1990) require knowledge of the probabilities of various misconceptions. The computational costs of plan recognition systems can be quite high: Kautz and Allen’s technique involves automated deduction, and other systems such as that of (Murray, 1986) and (Allemang, 1990) rely on theorem proving to determine whether or not the student’s plan is correct.

As it turns out, complex plan recognition algorithms are largely superfluous for situated tasks. The above approaches assume that one must analyze the plan in order to determine whether or not it is faulty. But in domains such as the DSN one need simply monitor the execution of the plan and see whether or not it has the desired effect. If the directives issued by the student are rejected, then the plan must be in error, and analysis of why the rejection occurred can help pinpoint the error. If the plan executes successfully, and has the desired effect, then it must have been correct; at any rate no tutorial intervention is warranted because no impasse occurred. Therefore the situated plan attribution approach involves simultaneous monitoring of the student’s actions and the simulated environment, without expensive plan analyses.

Model tracing systems such as that of (Anderson et al, 1990) encounter difficulties that are in many ways similar to those of plan recognition systems. In the model tracing approach, an executable model of the student’s performance is constructed. Each student action is matched against the model, in an attempt to predict and account for each action, such executable cognitive models can be quite detailed—in extreme cases such as the system of (Wad, 1991), internal cognitive processes such as perception are modeled as WC]. Since such mental operations are not directly observable, the matching process becomes ambiguous and intractable.

The situated plan attribution approach adopts some of the features of the model tracing approach, while avoiding the problems that increase computational cost. It tracks the student’s plan at an abstract level, at the level of missions and high-level procedures. This corresponds to model tracing in the sense that the system follows what the student is doing on the basis of its knowledge of how to carry out the task. However, an executable cognitive model is not usually required. The system traces the student by recognizing actions that are consistent with the expected plan. Actions that the system does not recognize are ignored, unless they have an undesirable effect on the state of one or more devices. An executable cognitive model, based on the one mentioned in the previous section, is employed, but only when an impasse is detected and the plan is found to be inappropriate for the current state of the devices. Furthermore, the emphasis here is not on inferring errors in the student’s knowledge but in determining what knowledge an expert would require in order to overcome the impasse. Thus computational effort
is limited only to what is required in order to help students resolve impasses. Furthermore, it roll decreases over time, because whenever the system employs the expert cognitive model to analyze the situation, it remembers the results of the analysis for use in similar situations.

We estimate that there are many real-world skills where feedback from the environment can guide the problem-solving process as in REACT. Intelligent tutoring systems tend to overlook the role of the environment because they are frequently applied to abstract domains such as geometry or subtraction. Even in these domains there may be useful environmental cues to exploit. For example, intelligent tutors for programming tend not to take advantage of feedback from actually running the student's program, although recent work such as GJ] is making such feedback more readily available to the student (Reiser et al., 1989).

Example Problem

To illustrate how REACT works we will now describe an example from our task domain. Students are assigned missions that involve activities such as configuring and calibrating a set of communications devices, establishing a link to a spacecraft, recording data from the spacecraft, and transferring the recorded data to a control center. These tasks involve sending commands asynchronously via a computer terminal over a local area network to the devices. Standard command sequences for each type of mission are defined by procedure manuals. The devices initially respond to each command with an indication of whether the command is accepted or rejected; if accepted, the devices require time to change state.

<table>
<thead>
<tr>
<th>Configure-DSP</th>
<th>Coherence-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>NLOAD x</td>
<td>1st file select</td>
</tr>
<tr>
<td>NRMM x</td>
<td>select-recorder</td>
</tr>
<tr>
<td>SAT x</td>
<td>S-band attenuation</td>
</tr>
<tr>
<td>NTOP x y</td>
<td>set temperature</td>
</tr>
<tr>
<td>01's 1' x</td>
<td>set offsettime</td>
</tr>
</tbody>
</table>

Figure 2: Example procedures

Figure 2 shows two procedures. The first procedure, Configure-DSP, is used to configure the DSP subsystem, which is used for spectrum processing. The steps mostly involve loading or setting parameters and selecting devices. The second procedure, Coherence-Test, is used to test the continuity and coherence of the communications link; it is supposed to be executed after the Configure-DSP procedure has been completed.

We will walk through the example shown in Figure 3 to illustrate how REACT overcomes the impediments to plan recognition. Here a student begins with Configure-DSP's first command for
loading the predicts file, NJ .OAIJK. Line 1 shows the NJ .OAI command, and line 2 shows the device's response, COMPLETED, indicating that the command was accepted. 1 everything is proceeding as predicted by the plan: the correct command was issued by the student and it was accepted by the device.

<table>
<thead>
<tr>
<th>#</th>
<th>Commands / Responses</th>
<th>RI:ACT's Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NJ .OAIJK</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>COMPLETED</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NRMEDJ.D0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>REJECTED:1.DODISABLED</td>
<td>The NRMED command failed because one of its preconditions was unsatisfied: 1.DO should be in the ONI .INI: mode instead of the OFF .INI: mode. To resolve the impasse, Issue the command:1/1(01; Then Issue the command: NRMEDJ 1.D0)</td>
</tr>
<tr>
<td>5</td>
<td>1.DO1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>COMPLETED:1.DO:ONI .N</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NRMEDJ.D0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>COMPLETED</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SAT 55</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>COMPLETED</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NTOP 20.0 30.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>COMPLETED</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NPCG MAN</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>COMPLETED</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>OFST 2.7</td>
<td>You started the Coherence-Test procedure before you finished the Configure-1.S1 procedure. Issue the Command: 01's1' <></td>
</tr>
<tr>
<td>16</td>
<td>1.COMPLETED:1.IO:INI</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NRMEDJ.D0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>COMPLETED</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>MTH1: E</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>COMP1:ST1 ii</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NTH1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>COMPLETED</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3: An example of tutoring with RI\:ACT

Things get a bit more complicated on lines 3 through 7. On line 3 the student issues the next command in the Configure-1.X3P plan, NRMED. This command follows the Configure-1.SP plan exactly, but the situation actually requires a different action to be taken, 1.DO1, (i.e., enable recorder 1.DO), which is why the command is rejected on line 4. 1(){} ACT thus must recognize when deviations from the plan are warranted; it does this by first noting the reject ion and reasoning about why the action was not appropriate. in this case the command was rejected due to an action constraint violation (i.e., an unsatisfied precondition) by the NRMED command. RI\:ACT explains its reasoning about the violation as well as deriving a way to resolve the
difficulty. The difficulty is viewed as an impasse because it prevents the student from continuing with the procedure, and it suggests a gap in the student's knowledge—if he had a good grasp of the procedure, he would have known to check the state of recorder1.D0 before selecting it. At line 7 the student issues the NRM1[D command a second time; the plan calls for it to be issued just once. The second occurrence of the command is determined to be appropriate, given that the first attempt at this action failed.

The example next illustrates difficulties that arise when the student follows a plan but fails to achieve its goals. The commands and responses on lines 9 through 14 follow the Configure-DSP plan exactly and all of the commands are accepted by the device. However, the parameter value of the SAT (Set S-Band attenuation value) command, 55, will not achieve one of the procedure's goals, that the value should be 12 by the time of the procedure's completion. This goal is not explicitly stated in the procedure, rather, it is derivable from the mission support data provided to the student. If the student does not correct this setting, it will affect the quality of the communications link with the spacecraft and of the data being recorded. Failure to achieve a goal is another type of impasse that can occur when a student is performing a task, indicating another type of knowledge gap in the student's skill set. REACT gives the student the opportunity to correct the error alone, but will intervene if not, before it is too late to correct it. When it detects the NRUNCOLD (i.e., run NC[program) command on line 19, that belongs to the Coherence-Test plan, it initiates the interaction concerning the unsatisfied goal. In this case REACT also employs its expert cognitive mode to analyze the cause of the impasse and determine a solution.

The final point made by the example centers on the actions listed on lines 15 through 18. On line 15 the student sends the NPCG MAN (i.e., set the NPCG device to manual mode) command, which is the first command in the Coherence-Test procedure, prior to finishing the Configure-DSP procedure, which has OFST (set the offset time) as its last command. This is a straightforward case of misordered plans, and REACT immediately alerts the student that a step was missed prior to starting the new procedure (see line 16). REACT recognizes this type of impasse as a plan dependency violation.

How REACT Works

Three types of impasses were introduced in the above example: (a) action constraint impasses, where the student takes an action that is in the plan but which the situation does not warrant, (b) goal failure impasses, where the student completes a plan without having achieved its goals, and (c) plan dependency impasses, where the student executes a plan before successfully completing
one of its required predecessors. We will now give the details of how REACT recognizes and resolves each of these types of impasses.

Soar cognitive architecture

REACT is implemented in Soar, an integrated problem solving and learning architecture that implements a theory of human cognition (Laird et al., 1987; Newell, 1990; Rosenbloom & Newell, 1986). The Soar architecture embodies the concept of problem solving as a goal-oriented activity involving the search for and application of operators to a state in order to attain some desired results. Tasks in Soar are represented and performed in problem spaces. A Soar problem space consists of a collection of operators and states. Search takes place in the hierarchy of problem spaces. Operators are proposed, selected, and applied to the current state; the resulting state changes may cause other operators in the problem space to be proposed, selected, and applied, which goes on until the goal of the problem space is achieved. Impasses occur in Soar when the problem solver stops making progress. To resolve an impasse, the Soar problem solver creates a subgoal and selects a different problem space where other operators are available for solving the problem. When a subgoal problem solving is successful, the results are saved in new productions created by Soar’s chunking mechanism, which also saves the conditions that led to the impasse in the first place. The next time the conditions occur the learned chunk will be applied instead of having to search for an operator in the goal hierarchy. Thus, the problem space hierarchy is searched via subgoaling, and learning occurs when a subgoal yields a result.

Knowledge representation in REACT

REACT models several other aspects of plans besides the component actions shown in Figure 2, as will be briefly described below. For each type of mission the temporal precedence relationships among the plans is modeled with a directed graph structure, called a temporal dependency network (TDN) (Fayyad & Cooper, 1992). A plan has a name and three attributes: state, execution status, and goal status. The state of a plan can be either active or inactive; a plan is considered to be active once all of its predecessors in the TDN have been successfully completed. It is inactive prior to being active, and it becomes inactive again once it has been successfully completed. A plan’s execution status (incomplete or complete) is determined by whether all of its commands have been observed. Each plan’s goal status is marked satisfied if all its goals have been satisfied, otherwise it is unsatisfied.

Plans have two entities associated with them: operators (commands) and Seals. The operators for the plans named Configure-DSP and Coherence-Test are shown in Figure 2. Each operator has a set of preconditions. A precondition is a tuple representing a device state that must be true
before it can be considered satisfied. Similarly, a plan goal is also a tuple that represents a device state. As will be seen in the following sections, an active plan's goals are individually monitored for satisfaction at all times.

Problem solving organization of REACT

The problem solving in REACT is organized into two high-level activities: plan tracking and impasse interpretation. Plan tracking involves watching the student interact with the environment and deciding whether the student's actions are appropriate for the assigned task and situation. An inappropriate action is classified into an impasse category, and REACT interprets the impasse by executing an expert cognitive model to explain the impasse and to suggest repairs to the procedure that will overcome it. The resulting explanation is used for tutoring the student. Plan tracking is implemented by performing the following activities:

- **Perceive objects in the environment:** REACT must continuously monitor the attributes of each of the objects in the environment. The perceive-object operator in Figure 4 initially perceives each of the objects in the environment and registers them in REACT's working memory. These attribute values are updated as the objects are observed or change state in the environment.

- **Monitor and evaluate student actions:** Each of the student's actions is observed and matched with a plan. During the plan matching, preference is given to active plans over inactive plans. Likewise, the effects of the action on the device are also evaluated to determine whether the action was successfully completed or not. If an action was unsuccessful, it is immediately classified as an action-constraint impasse. Regardless of the action's outcome, the plan containing the action is marked with a match. If the action does not match any active plan but (loc, s) match with an inactive plan, then REACT recognizes that a plan-dependency impasse has occurred. All the activities for evaluating individual actions are performed by the analyze-action-response operator and its associated problem space; every (lii,active-els) else pair is analyzed by subgoaling into the analyze-action-response problem space, where the plan matching and impasse recognition occurs. Subgoaling into this problem space occurs regardless of whether the student did what was expected or not, and chunks are built each time the subgoal successfully terminates. The resulting chunks eliminate the need to subgoal into this problem space the next time the same situation occurs.

- **Monitor individual goal status:** The achievement status of the individual goals of active plans is continually monitored. A plan's goals begin to be monitored when the plan becomes active; monitoring ends when the plan is inactive. The recognize-desired-results operator tests for satisfied goals, while the recognize-undesired-results operator tests for unsatisfied goals.
Monitor conjunctive goal status: In addition to testing for the satisfaction of individual goals, REACT also continually monitors whether the conjunction of a plan's goals has been achieved. The recognize-goal-completion operator tests for the conjunctive satisfaction of a plan's goals.

Monitor plan execution status: Besides monitoring whether a plan's goals have been achieved, REACT also monitors whether all of a plan's actions have been matched. The plan is marked COMPLETED once all of its actions have been observed. The recognition.plan-completion operator is responsible for monitoring a plan's execution status.

Figure 4: REACT's problem space hierarchy

- **Evaluate completed plans:** If a plan marked 'completed' has unsatisfied goals, then REACT recognizes that a goal-failure impasse has occurred. The evaluate-plan operator is used to perform this analysis—it subgoals into the evaluate-plan problem space where a determination is made of whether the completed plan has satisfied its goals. Chunks are built summarizing the results of the evaluation, once a determination of whether or not a goal failure impasse exists.

 Impasse interpretation, which is performed by the italicized Soar problem spaces shown in Figure 4, is implemented by performing the following activities:
- **Resolve a plan dependency impasse**: RI:ACT first determines which plans should have been active at the time that the student took the inappropriate action. The situation may have warranted a deviation from the standard procedure, e.g., the precondition of an action was unsatisfied. RI:ACT checks the effects of the student's actions to determine whether it satisfies a precondition or else satisfies a goal of one of the plans. If either of these cases is true, the impasse is interpreted to be a situationally warranted deviation, and no further interpretation is necessary. On the other hand, if the action cannot be justified by the situation, then RI:ACT notifies the student of the violation of the plan ordering. The resolve-plan-dependency-impasse operator is initially selected for these tasks, and it subgoals into a problem space by the same name where the interpretation steps just described are taken.

- **Resolve a goal failure impasse**: When a goal failure impasse is detected, RI:ACT selects the plan where the goal failure impasse occurred and determines how to achieve the unsatisfied goals. It reviews the plan, which contains some history of how the student executed its actions, by checking the operators related to the unachieved goals to determine whether the student sent the correct parameters with the action. RI:ACT internally simulates the execution of the plan by selecting the appropriate action operators, verifying its preconditions are satisfied, repairing any unsatisfied preconditions, and verifying that the actions' postconditions are satisfied. To repair an unsatisfied precondition may involve, recursively selecting and applying other actions in the same manner. RI:ACT follows this process until the plan's goals are achieved. In the process of solving the problem, RI:ACT generates an explanation for tutoring the student about the impasse.

 Note that the steps just described for resolving a goal failure impasse are graphically portrayed in Figure 4 as a hierarchy of problem spaces, beginning with the operator called labeled resolve-goal-failure-impasse, which subgoals into the plan problem space. It is in the plan problem space that the individual plan operators are checked. If an operator is suspected as the cause for the goal failure, it is selected and subgoals are formed for the operator and subsequently to verify its preconditions and so on. As in the other cases where there is subgoaling, chunks are formed that save the results of the analysis for use in future situations where the same goal failure occurs.

- **Resolve an action constraint impasse**: RI:ACT handles this type of impasse in much the same way as a goal failure impasse. The main difference is that it focuses on how to correctly apply a single operator within the plan rather than on the achievement of the goals of the whole plan. Hence, the resolve-action-constraint-impasse operators subgoals into the plan containing the suspect operator, and immediately subgoals into the plan-operator's problem space. As with the case of a goal failure impasse, subgoals are also formed to verify the operator's preconditions, repair unsatisfied preconditions, and verify its postconditions.
The problem solving in REACT bears a resemblance to the approach in CHIP (Hammond, 1990): the general strategy is to notice a failure, build an explanation for it, use the explanation to determine a repair strategy, and so on. REACT’s repair strategy emphasizes treating failures related to unsatisfied preconditions, which is similar to CHIP, but REACT generates repairs on the fly rather than using a case-based approach. In addition, certain types of repairs done by CHIP are not appropriate in REACT because they would imply intervening before the impasse was clear to the student. REACT permits the student to fix problems; the tutor only intervenes when it is clear that the student has reached an impasse in problem solving.

Example revisited

To illustrate how REACT works, we will revisit the previously used example shown in Figure 3, focusing on the action constraint impasse that occurred on lines 3 and 4, where the student issued the NRM1 :D1.D0 command and it was subsequently rejected. The command-response pair on lines 3 and 4 is detected by the analyze action-response operator (Figure 4), which subgoals into the analyze action-response problemspace where the NRM1:D0 command is matched to the active plan called Configure-DSP (Figure 2). Since the command was rejected by the simulator, the operator sets a flag indicating an action constraint impasse, and the subgoal terminates. Then the resolve action-constraint-impasse operator is selected and a subgoal into the Configure-DSP Plan problem space is formed. The operator corresponding to the NRM1:D0 command called select-recording-device is selected and its subgoals into the select-recording-device problem space (shown as PlanOperator Problem Space in Figure 4.) A subgoal into the verify-preconditions problem space is made for each of the select-recording-device operator’s preconditions. As it turns out, the precondition that says that the recording device being selected must be in the ONI.MNi: mock is unsatisfied. This is where the first part of the explanation on line 4 in Figure 3 is generated. Next, REACT subgoals into the repair-UNSAT-precondition problem space, where it is determined that issuing the 1.110 E: (enable recording device 1 . D0) command will satisfy the precondition. This information is also put into the explanation on line 4 of the example. Finally, once the precondition is satisfied, the select-recording-device problem space simulates sending the NRM1111.110 command (select the recording device named 1 . D0), and this is also added to the explanation and this subgoal terminates. Since REACT has determined how to resolve the impasse, all of the subgoals in the hierarchy terminate and the impasse recognition operators resume their work with the next action-response pair.
Tutor Improves with Experience

RI:ACT was implemented to take advantage of Soar's learning capability. One consequence of having a tutor that learns is that its efficiency improves with experience. Since it is desirable to interact with the student as closely to the impasse point as possible, (Hill & Johnson, 1993a), a highly efficient problem solving scheme is desirable. As the tutor gains experience with different student impasses, the knowledge of how to recognize and interpret these impasses is summarized in new Soar productions called chunks. The chunks improve the tutor's performance significantly, since they limit the amount of search required to solve a similar problem again.

The second consequence of having a tutor that learns is that it affects the tutor's architecture. RI:ACT's architecture effectively changes as learning takes place: the tutor's knowledge becomes more procedural as it gains experience, and it becomes more integrated and less compartmentalized.

<table>
<thead>
<tr>
<th>Command</th>
<th>Recognize Impasse</th>
<th>Interpret Impasse</th>
<th>Total</th>
<th>Ratio: Before/After</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
</tr>
<tr>
<td>NLOAD</td>
<td>0.20</td>
<td>0.08</td>
<td>8.70</td>
<td>0.61</td>
</tr>
<tr>
<td>SAT</td>
<td>0.19</td>
<td>0.08</td>
<td>2.70</td>
<td>0.32</td>
</tr>
</tbody>
</table>

'Table 1: Performance (in seconds) for recognizing and interpreting an action constraint violation impasse before and after chunking.

Efficiency Improvement: Impasse Recognition Chunks

RI:ACT's ability to recognize impasses improves each time it successfully recognizes a previously unobserved student action. For example, each time the RI:ACT tutor subgoals into the analyze-act-on-response problem space (Figure 4), successfully matches an action to a plan, and determines whether there is an impasse or not, chunks are built that summarize the problem solving that occurred in that subgoal problem space. The next time that RI:ACT sees the same action under similar circumstances, it will not create a new subgoal and search for a match because there will be a set of chunks that recognize the action and know how to interpret it. The result of having chunked knowledge is that impasses can be recognized more rapidly since less search is required.

Table 1 shows the amount of time it takes to recognize an action constraint impasse involving the NLOAD and SAT commands before and after chunking. In both cases, the impasse recognition time was reduced by over fifty percent using chunks. Before chunking it took approximately 0.20 seconds to recognize an impasse and after chunking it took 0.08 seconds.
Efficiency Improvement: Impasse Interpretation Chunks

Besides using chunking to improve the impasse recognition process, R1:ACT also takes significant advantage of chunking when interpreting the impasse. After the recognizing the impasse, the next step is to explain the nature of the impasse and determine a way to resolve it. To illustrate how chunking affects impasse interpretation, refer again to the problem space hierarchy shown in Figure 4. If an action constraint impasse is detected then the resolve-action-constraint-impasse operator is selected and the problem spaces below this operator are searched until an explanation is generated. In the process of generating the explanation, chunks are created that summarize each step of the search for an explanation. For instance, in the case of the action constraint impasse involving the NRMI:D command on line 3 of Figure 3, each of the preconditions for the command are verified in the verify-preconditions problem space. In the process of verifying these preconditions, chunks are built to do this task the next time the NRMI:D command is involved in an action constraint impasse. Thus, whenever R1:ACT subsequently recognizes that a student is at an impasse with the NRMI:D command, it will automatically fire the chunks verifying the NRMI:D command preconditions without needing to subgoal through the problem space hierarchy the way it did the first time.

Architectural Impact of Chunking

As we mentioned at the beginning of this section, there are two consequences of having a tutor that improves with experience. The first of these consequences, improved efficiency, is tile driving motivation for incorporating learning into the tutor's implementation. Improved efficiency makes it possible to conduct a timely interaction with the student. There is a second consequence of learning, however, that flows out of the use of Soar's chunking mechanism in R1:ACT. The chunked version of R1:ACT that emerges over time has its tutoring knowledge compiled in a form that no longer has distinguishable modules or problem spaces. The original problem space hierarchy that generated the chunks still exists but is not used unless a novel situation occurs. Instead, R1:ACT's problem solving eventually takes place in one problem space at the top level, where it fires chunks for recognizing and interpreting student impasses.

The architectural impact of chunking, then, is that as a tutor learns, its knowledge is compiled and centralized, so to speak, into one problem space. The result is an efficient tutor that can interact in real time with a student. The resulting architecture looks different than a stereotypical intelligent tutoring system (Burns & Capps, 1988) that contains modular pieces labeled expert model, student model, tutor model, and so on. Though these are identifiable functions in R1:ACT, they cease to have relevance from an architectural point of view once the knowledge of these functions has been compiled. Our approach contrasts with the way that Warren, Goodman
& Maciorowski (1993) have proposed to engineer I'T's, whereby the traditional I'T functions are implemented in separate communicating modules. We prefer to view the intelligent tutor as an integrated agent whose architecture emerges as it learns. The functionality remains while the architecture changes.

Generality of Chunking-Based Plan Recognition

There are particular features of the Deep Space Network domain, and of Rl:ACT's situated plan attribution algorithm, that are particularly conducive to chunking. These are summarized below, in order to give the reader a better sense of how chunking-based plan recognition might be applied to other domains.

Rl:ACT's tabular representation of plans facilitates recognition of ordinary plan steps, even without chunking. The tutor does not have to search through a large space of possible student actions in order to find ones which match the student's actions. Although chunking can be employed regardless of the size of the search space, having a small search space offers practical advantages. It is not necessary to train the tutor extensively ahead of time in order to obtain reasonable real-time response, since the tutor is efficient enough to analyze unfamiliar student actions as they arise. Furthermore, chunks generated from large search spaces can often be highly specific: the left hand sides of the chunks tend to grow as the amount of search increases. Therefore each chunk that Rl:ACT builds is more likely to be applicable to future student actions.

In general, chunking is most effective when the problem space being searched is free of uncertainty, and the problem solver is able to determine precisely what the conditions are that lead to the result that is saved in the chunk. Otherwise the chunks that are produced may be overly general, and apply in situations in which they should not. This poses potential problems for plan recognition, which is fundamentally abductive in nature and must make plausible inferences about what the agent being watched is doing. If the plan recognizer observes the student performing an action, and jumps to a conclusion that a particular plan or plan step is being carried out, the chunk that is produced will cause the plan recognizer to jump to the exact same conclusion every time, even in cases where there is evidence for an alternative interpretation. This problem does not arise in Rl:ACT in part because plans in the DSN domain are relatively unambiguous; the system can always tell what plan the student is working on. However, it also helps that Rl:ACT bases its analysis on observed actions and device responses, and avoids extensive reasoning about hidden mental states. Since Rl:ACT does not jump to conclusions about the student's mental state, it does not create chunks that jump to conclusions either.

17
At the same, we recognize that ambiguity and indeterminacy are inherent features of the plan recognition process, and must be accounted for. We believe that the RE:ACT approach can be extended to other plan recognition problems, where interpretation of student actions is more ambiguous. There are two possible ways of accomplishing this. One is to delay interpretation and chunk construction until enough student actions have been observed. The plans can be unambiguously recognized. Another approach is to keep track of the degree of uncertainty assigned to each interpretation of student actions, and avoid reliance on chunks that depend on assumptions with a high degree of uncertainty. These approaches are the subject of future research.

Evaluation

A pilot study was conducted to evaluate RE:ACT. We hypothesized that situated plan attribution would be able to recognize and interpret student impasses and that the resulting tutoring would help students acquire skill in the LMC domain. The study was conducted with seven students of approximately equal experience who were divided into two groups. The difference between the two groups was that Group 1's students were tutored by RE:ACT during the exercise, while the Group 1 students did not receive any tutoring. Each student was assigned a task to perform on the LMC simulator, where the assigned task was performed by the student six times under different starting conditions so that different types of action constraint and goal failure impasses would potentially occur.

| C1: Did the tutor correctly interpret all of the "correct" actions under normal circumstances?
| C2: Did the tutor correctly interpret student deviations from the default procedure when there were no situational factors requiring the deviation?
| C3: Did the tutor correctly interpret student deviations from the default procedures when they were in reaction to situational factors?
| C4: Did the tutor recognize when the student failed to achieve a goal? Was it able to explain the goal failure?
| C5: Did the tutor recognize all action constraint violations? Was it able to explain the action constraint violation? |

Table 2: Evaluation criteria for effectiveness of Situated Plan Attribution

To evaluate the effectiveness of situated plan attribution the evaluation criteria shown in Table 2 were used. The goal for this part of the evaluation was to determine how well RE:ACT was able to understand the student's behavior in making a decision of whether or not to provide tutoring. Since RE:ACT is an impasse-driven tutor, this means that it has to be able to detect impasses as they are previously defined and avoids making a false detection. Hence, C1 asks whether RE:ACT recognized all of the actions taken by the students that one would expect them
to take under nominal conditions. C2 through C5 cover each of the three impasse types (i.e., action constraint violations, plan dependency violations, and goal failures). C2 and C3 address the variations of recognizing whether a plan dependency violation has occurred or not; C2 covers the impasse case and C3 covers the case where a deviant action is warranted by the situation. C4 asks whether the tutor was able to recognize and explain when the student failed to achieve the goals of a plan, and C5 asks whether individual action constraint violations were recognized.

Results

The results of the pilot study suggest that situated plan attribution holds promise as a method for recognizing student impasses and for explaining how to resolve them in a satisfactory manner. During the study, RI:ACT interpreted 604 different command-response pairs (actions) performed by the students. It recognized and explicated 5 plan dependency impasses (C2), 36 actions that deviated from the plan but were warranted by the situation (C3), 17 goal failure impasses (C4), and 36 action constraint impasses (C5). In analyzing the event logs, we found that RI:ACT did not make any misinterpretations, and it was able to make all of its analyses quickly enough for a timely interaction with the student (refer to Table 1 to get an idea of how the interaction times for the action constraint impasse.)

<table>
<thead>
<tr>
<th></th>
<th>Cumulative Action Total</th>
<th>(C2) Plan Dependency Impasses</th>
<th>(C3) Actions Situationally Warranted</th>
<th>(C4) Goal Failure Impasses</th>
<th>(C5) Action Constraint Impasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject 1</td>
<td>81</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Subject 2</td>
<td>91</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Subject 3</td>
<td>86</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Subject 4</td>
<td>79</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Subject 5</td>
<td>83</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Subject 6</td>
<td>99</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Subject 7</td>
<td>85</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Totals</td>
<td>604</td>
<td>5</td>
<td>36</td>
<td>17</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 3: Cumulative Results of Situated Plan Attribution

The study also suggests that the way situated plan attribution was applied (i.e., for impasse-driven tutoring) helped students to improve their skills in the LMC domain more quickly than students without tutoring. The students from both groups reached impasses while performing the task, but there was a significant difference between the two groups in the amount of time it took to resolve these impasses. While both groups acquired the same amount of skill in cases where there was an action constraint violation, the students in Group I (tutored by RI:ACT) resolved impasses and acquired the new knowledge approximately ten times faster than the students in Group II. Likewise, the students in Group I were less prone to having goal failures than the
students in Group 11. It was observed that students who did not notice a goal failure the first time they performed a task were prone to never realizing that there was one. A common but potentially serious problem that has been observed in the Deep Space Network operations domain is that the Operators may make goal-type errors that are not detected for several weeks. For instance, if an Operator does not properly perform certain calibrations on the communications equipment, the data that is acquired during a track will be adversely affected, but the poor quality of the data may not be recognized for several weeks by the scientist analyzing it. It can be extremely difficult to provide corrective feedback to an operator when there are such significant delays between the time of the error and the time it is detected, thus it is very important to correct goal-type errors during training since the feedback in the operational environment is so delayed.

Finally, though REACT was shown to be robust in the task domain described here, we suspect that it will be necessary to make some improvements to the situated plan attribution problem space to cope with larger numbers of plans and actions. In these cases we anticipate the need to deal with more ambiguity than was present in our current implementation. Ambiguity primarily will have an impact on the interpretation of plan dependency violation impasses -- REACT might have to delay offering assistance until it is clear which plan the student is attempting next.

conclusions

We have introduced a plan recognition technique called situated plan attribution that we claim avoids some of the problems of other approaches, especially as applied to intelligent tutoring. Specifically, we have shown how our method is flexible enough to recognize when a situation warrants an action that is not specified by a plan. Likewise, it recognizes when an action specified by a plan is not situationally appropriate.

Situated plan attribution also addresses the issues of underconstrained and unfocused modeling in that it concentrates on recognizing students' impasse points rather than trying to generate or understand the mental states that led to a particular action. Impasse points are natural places to tutor, and the amount of processing required to recognize and explicate the impasses we have defined is reasonable.

Acknowledgments

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. J. M. Johnson was supported in part by the Advanced Research Projects Agency and the Naval Research Laboratory under contract number NO(J) 14-92-K-2015 (via a subcontract
from the University of Michigan, and in part by a subcontract to the Jet Propulsion Laboratory. Views and conclusions contained in this paper are the authors' and should not be interpreted as representing the official opinion or policy of the U.S. Government or any agency thereof.

References

