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Abstract - In this paper a new algorithm, designated as Fast Invariant Imbedding algo-
rithm, for solution of Poisson cquation on vector and massively parallel MIMD archi tee-
tures is presented. This algorithm achicves the same optimal computational cflicien cy as
ot her Fast Poisson Solvers while offering a much bet t er st ruct urc for vector and parallel
implementation. Our implementation on the Intel Delta and Paragon shows that a speedup
of over two orders of magnitude can be achicved even for modcrate size problems, For a
512 X 511x 5113D problem, a speedup of 340 has been achicved by using 512 processors.
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I. Introduction

The solution of Poisson equation is at the heart of many scientific applications. Most
practical applications rcquire repeated solution of the same equation with different bound-
ary conditions and/or different forcing terms, resulting in a subst antial computation time
[1,2]. Examples arc the time-clcpecndent problems in which one or more solutions may be
required at each time step [1], The Direct Poisson Solvers, also called Fast Poisson Solvers
(FI’Ss) [3]-[6], arc known to be optimal for implementation on conventional scquential ar-
chitectures. With the availability of massively parallel architectures, there is an ongoing
research effort on parallel implementation of FPSS [2,7,8].

However, as in other application domains, inorder to fully exploit the computing
power of these ncw architectures, the existing algorithms need to be reexamined with
cmphasis on their cfficiency for parallel implementation. Eventually, ncw algorithms may
have to be developed that, from the onset, take a greater advant age of the available massive
parallelism. In fact, it has become clear that in parallel implementation of a given algorithm
on a given architecture the communication cost may be even greater than the computation
cost. Hill is [9] argues that a major drawback of the current theory of parallel comput at ion
complexity is the lack of a formalism to include the communication cost while evaluating
the performance of parallel algorithms,

Swarztrauber and Sweet [1] have presented an extensive comparative study of efficiency
of various FPSS for implementation on vector and parallel architect urcs. A unique feature
of [1] is that, to some degree, it also includes an analysis of the communication complexity
of various FPSs. As concluded in [1], the Matrix Decomposition (MD) algorithm [3,5,10] is
the most cfficient for coarsc grain parallel implementation by using a number of processors
on the order of problem size, that is, on the order of hundreds for most practical problems.
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However, practical implementation of the MD algorithm on MIMD Hypercube parallel
architect urcs for 2D [2] and 3D [7] problems has shown that the resulting’ communi cation
cost can significantly reduce the achievable spccdup. A detailed analysis of the communi-
cation complexity of the MD algorithm on various architectures is presented in [11] (scc
also §4.2 for a brief discussiong. Obviously, the performance of the MD algorithm will
further degrade on parallel architectures with a coarser grain size and/or with a simpler
interconnection topology, This suggests that novel algorithms need to bc developed which,
while preserving the computational cfficiency of the MD algorithm, offer a much simpler
communication structure and hence a much reduced communication cost in parallel im-
plementation.

In this paper wc arc concerned with the solution of Poisson equation on the Intel
Touchstone Delta and Paragon (scc also [12]). Delta and Paragon arc two representatives
of a class of emerging massively parallel MIMD architectures which also includes CRAY
T-3D. These architectures employ a large number of powerful vector processors to achicve
an impressive computational throughput. They allow the exploitation of concurrency
at two levels: at a high level, coarse grain parallelism can bc exploited in an MIMD
fashion while, at low lcvel, the vector processing capability of the node processors can be
used to further enhance the speed of the computation. However, the main limitation of
these architectures is their simple communication structure, i.e., simple mesh structure
for Delta and Paragon. Thus, these architectures arc most suitable for parallcl algorithms
which posses a high degree of coarse grain parallelism with limited communicant ion and
synchronization requirements, and involve basic operation (or algorithmic processes) that
can be cfficiently vectorized.

The development of efficient algorithm for solving Poisson equation on these MIMD
architectures is a rather challenging task. In fact, although with respect to the earlier
generation of MIMD architectures (such as H ypercube architectures usedin [2,7]), the
communication latency is notably rcaced, nonctheless the grain size or the balance factor,
i .c., the ratio of communication time over the computation time, has been drastically
increased. This is duc to the significant increase in the computation power of the nodec
processors. Further, the performance of the node vector processors may vary by as much
as an order of magnitude, depending on the degree to which the node computation can
bc vectorized (sce §4.1 .). This implies that the balance factor can also vary by an order
of magnitude. As a result, the better the computation vectorizes the greater the balance
factor will become and hence less speedup will be achievable unless the communication is
kept to a minimum and/or is overlapped with the computation.

In this paper, wc pesent the implementation of a novel algorithm, designated as Fast
Invariant Imbedding FII) algorithm [11], for solution of Poisson equation on this class of
massively parallel MIMD architectures. The FII algorithm achicves the same computa-
tional efficiency of other FPSS while having a very simple communication structure and
highly vectorizable basic operations. Our current implementation, though being prelimi-
nary, shows that a massive spcedup of over two orders of magnitude can bc achicved even
for moderate size problems.

The FII algorithm is originated from the Invariant Imbedding Algorithm of Angel and
Bellman [13]-[15}. The Invariant Imbedding Algorithm was one the earliest method for
direct solution of Poisson equation. However, since the development of FP° Ss with a much
greater cfficiency, less attention has been paid to this algorithm. We have devcloped [11] a
novel variant of this algorithm, the FII algorithm, which achieves the same computational
efficiency as the best FPSs. However, the main advantage of the FII algorithm over
other FPSS and particularly the MD algorithm is that it is significantly more cfficient for
vector and parallel computation. In fact, the simple communication and synchronization
requirements of the FII algorithm allows its cflicient implementation on a variety of parallel
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architectures [11].

A dctailed description of the FII algorithm is presented in [11]. In this paper, for the
sake of completeness and space, we only briefly discuss the algorithm for solution of 2D and
3D problems with Dirichlet boundary condition. This paper is organized as follows. The
original Invariant Imbedding Algorithm and the FII algorithm for 2D and 3D problems
arc presented in §2 and §3. In §4, the performance of the FII and MD algorithms on two
vector architecturcs, CRAY Y-MP and a single Intel 1860 processor, is compared. Also,
the results of practical implementation of the FII algorithm on Delta and Paragon arc
prcscntcd. Finally, some concluding remarks are made in §5.

2. Fast Invariant Imbedding Algorithm for 2D Poisson Equation
2.1. 2D Poisson Equation
Wec consider the Dirichlet problem for 2D Poisson equation in a unit square domain
with boundary 62 as
Viu(z,y) = f(2,y) (2,9)e0 (2.1)

u(z,y) = g(z,y) (X, y)ed

Superimposing a uniform mesh of size Az=Ay=h=1/(N +1) and using the five-point
finite-difference approximation, the problem is reduced to solution of a linear systcm

MU =w (2.2)
for U where
MRN*xN? is a block tridiagonal matrix given by M = Tridiag[—1I, B3, ~1J;
1eRN*%N? is the identity matrix;
BARV*N is a tridiagonal matrix given by B = Tridiag[-1,4, -I],

U = Col{Ui}w¥’,i =110 N, and U; =Col{U;;}eRY,j=1to N, is the vector rcpresenting
the approximate solution for u(z, y);

W = Col{W;}e®N*i=1to N, and W,= Col{ W; ; }e®¥,j=1to N, is the vector resulting from
the discretization of f(z,y) and g(z, y).

Alternatively, wc present vectors of dimension N%by N x N matrices. To this end, the
matrix representation of u and W arc denoted by U and W where U = {U;; } and W =
{Wi ;3 RNXN i and j=1to N.

2.2. The Invariant Imbedding Algorithm

The Invariant Imbedding Algorithm [13]- [15] is based on the observation that the
solution of (2.2) is equivalent to that of a discrete two-point boundary-value problem:

—Ui_1 + BU.' - U.'+1 - W,' i=1to N (23)

with specified boundary values Uo and Un, 1. Note that, Up and Un4 1 are given through
specification of boundary conditions in (2,1). A solution to (2,3) is then sought as

U= A|U|+R' (24)
where matrices Aand vectors R;are independent of U. From (2.3)-(2.4), it follows that
Ui=(B—A;) Wiy + (B=A) (R + Wy) (2.5)
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from which the recurrences for comput at ion of 4; and # are derived as

Air = (B~ A)7? (2.6)

Rioy= (B = A)7 (i + Wi) = Aia(Jt + W5) (27)

The initial conditions for (2.6) and (2.7) are obtained by considering (2,4) for i = N which
implies that Ay = O and RN = Un4i. As shown in [13], from positive definiteness of B it
follows that the matrices (13— A) arc also positive definite and hence nonsingular. The
computation of the Invariant Imbedding algorithm is performed as follows.

Step 1: Compute A;-1 from (2.6) for i = N to 1 with Ay = O.
Step 2: Compute HRi-1 from (2.7) for i = N to 1 with RN = Unyi.
Step 3: Compute Uit1 from (2.4) for i = O to N -1 with Up given.

The computational complexity of Step 1 is of O(N*) while that of Steps 2 and 3 is
of O(N?). This leads to an overall complexit y of O(N?%) for the algorithm. Howcver, the
matrices Aarc only function of problem’s size (i.c., N), the type of finite-diffcrence scheme
employed, and the type of boundary condition. Thus, for cases wherein a same problem
is solved many times for different f(z,y) and/or g(z,y) these matrices can be prccomputed.
With this prccomputation, the complexity of the algorithm is reduced to O(N3) which
indicates that the algorithm is still less cfficicnt than the O(N?Log N) FPSs.

2.3. A Fast Invariant Imbedding Algorithm

The inefficiency of the Invariant Imbedding Algorithm results from the fact that it
requires the inversion of dense matrices (13- A) and multiplication of dense matrices A;
by some vectors. However, as shown below, matrices 4; have fast cigenvalue-cigenvector
decomposition which allows the diagonalization of (2.4), (2.6)-(2.7). This diagonalization
results in an algorithm that not only it is competitive for sequential implementation but
also it is highly cfficient for parallel and vector comput at ion. The diagonalization procedure
is based on the fact that matrices Aarc simult ancously diagonalizable, i .c., they have
a same set of cigenvectors but different sets of cigenvalues. This is established by the
following theorems.

Theorem 1. The Eigenvalue-Eigenvector (E-E) decomposition of a symmetric tridiagonal
toeplitz matrix S = Tridiag[b, a, b]eRV*N is given by

s = fhgl (2.8)

where the matrix O = '{Oi’j}(mNXN,i and j=1to N, is the set of normalized cigenvectors of S
with 0; ; = (Niﬁ)ﬁ sin 345 The diagonal matrix As = Diag{)s;}eR"‘N is the set of cigenvalucs
of S with Asi = a + 26 cos j7 being the ith cigenvalue.

Proof. Sec for example [16, p.349].

Note that,  is a symmetric orthonormal matrix and hence O = 01 = ¢' where t denotes the
transpose.

Theorem 2. The E-E decomposition of matrix Ai is given by
A= 0xai0 (2.9
where Aai = Diag{i;}®¥ XN, j=1to N, is given bclow.
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Proof. The proof follows by induction. First, from Theorem 1 the E-E decomposition of
B is given by B = 8Ag0 where

An = Diag{dp ) RV*N  i=1to N, and Ap; =4 — 2cos szzr—l

From (2.6) and for i = N, wc have
An_y = B~ = (02p0)"' = 0230
which implies that Aan-1=2A5'. Now, let Aiy1= 024i410. From (2.6) it follows that
Ai= (B = A1) = (0Ap0 — 0X 4i310)7 = 0(Ap — Aaig1)™10
The set of cigenvalues of matrices Aarc then given by
Aai = (Ap— Aaigr)™! (2.10)
for i=N~1to 0 with Ay =0. Q.E.D.
Substituting the E-E decomposition of Ainto (2.4) and (2.7), and defining
Ui = oU;, R = 0R;, and Wi = 0W;
the Fast invariant Imbcdding (FII) algorithm is then given by
Ricy = Aaica(J +W5), i= N to 1, with Ry = Unp (2.11)

Uis1= 2aili + i, i =0 to N -1, With given Uo (2.12)

where Aa; arc computed from (2,10). The cfficiency of the algorithm can be further in-
creased by avoiding the explicit computation of Uo and Un+1,1.c., by avoiding explicit
transformation of Uoand Un41. To this end, wc rewrite (2.11) for i== N as

Rn_1 = dan-1(Rn + Wr) = Aan-1(Un41 4+ Wr) = dan1 Wi
where WY = 0W4 and Wy = Uny1 4+ Wy. Similarly, we rewrite (2.12) for i = 0 as
Ui = AaoUo + Ro = AaoUo + Aao(Ry + Wh) = Aao(Ry 4+ W)
where W/ = oW{and W/=Uo -1 W.

Let us define a matrix © = Diag]s, 0,...,0, 0)RN’*N* | From its definition, it follows that
© is a symmetric orthonormal matrix and hence © = ' = 6-'. The computation of the
Fast Invariant Imbedding algorithm is performed as follows.

Step 1: Compute Aai from (2.10).
Step 2:
1. Compute W{=Us+W;,WhN=Uns1+ W, and sct W/ =W;,i=2to N 1.

2. Compute W'=0W’, or N
W} = 0W{ i=1toN (2<13)

Step 3: Compute Ri—y with Ry_y = A, 1 W§ from
Ricy = daimi (B + W) i=N-1to1l (2.14)




Step 4: Compute Uiyy with Uy = Aso(iy + W) from

Uigr = AaiUi + I i=1toN-1 (2.15)
Step 5: Compute U= U, or

U; = 0U; i=1toN (2.106)

The matrix 0 is the operator of ID Discrete Sine Transform (DST). Thus, by using fast
techniques [17], the matrix-vector multiplication in (2. 13) and (2. 16) can be performed
in O(NLog N). This leads to a computational cost O( N2?Log N) for Steps 2 and 5. The
computational cost of Steps 1, 3, and 4 is of O(N?). Except for the computation of W{ and
W}, the computations in Step 2 and in Step 5 arc exactly the same as the Steps 1 and 5
of the MD algorithm (sce Appendix). It follows that the FII algorithm is asymptotically
as fast as the MD algorithm with the same cocfficicnts for N*Log N-dependent term. Note
that, similar to matrices A4;, the diagonal matrices Aaiare only function of problem’s size,
the type of finite-difference scheme and boundary conditions, and hence for many practical
cases they can be precomputed.

2.4. Numerical Properties of Fast Invariant Imbedding Algorithm

Both the original and Fast Invariant Imbedding algorithms have cxcellent numerical
properties. Angel [14,15] has shown that the recurrence in (2.6) is stable in the sense that
an error introduced atany stage of the calculation clocs not cause larger errors in the
preceding stages and, asymptotically, it will be reduced to zero. It then follows that the
recurrence in (2.10) is also stable since it is obtained from (2.6) through an orthogonal
transformation. Equation (2. 10) can be written as a set of N scalar first-order nonlinear
recurrences as

L i=N-1tooandj=N to 1, with Asn, =0 (2.17)

AA!’]’ = —
Apj ~ Aaitj

which represents a set of Continued Fractions (CFs). The two vector rccurrences in (2.14)-
(2.15) can be written as two sets of N scalar First-Order Linear Recurrences (FOLRs):

R 1j= /\Ai--l,j(ﬁi,j+wj',i)»i= N-1Itoland j =1 to N (2.18)

Uit1 j = AaijUis+ Riji=1toN-1and j = 1 to N (2.19)

Since Ap;>2for all j = 1 to N, it can be then easily shown that1 > A4 ;> 0. This implies
that the two sets of recurrences in (2,18)-(2.19) arc stable in the sense that an error
introduced at any stage of the calculation docs not cause larger errors in the preceding
stages and, asymptotically, it will be reduced to zero.

3. Fast Invariant Imbedding Algorithm for 3D Poisson Equation
3.1. 3D Poisson Equation

For the 3D problem, wc consider Poisson equation on a unit cube domain £ with
boundary 4% as
Vu(z, ¥, z) = F(z,y,2) (2,Y, 2)e (3.1)

u(z,y,2)=G(x,y, 2) (z,V, 2)c0Q

Superimposing a uniform grid of size Ax = Ay = Az=1/(N + 1) and using the seven-point
finite-diffcrcncc  approximation, the problem is reduced to the solution of

Mid =W (32)
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for I/ Where

MRN**N® s a block tridiagonal matrix given by M = Tridiag[-7, C, ~7J;
7 is the N°x N’identity matrix;

CRN'*N? is a block tridiagonal matrix given by € = Tridiag[-7, D, -1];
DRNXN js a tridiagonal matrix given by D = Tridiag[- 1,6, —];

U = Col{U;}eN* with Ui = Col{U; ;3R and Ui = Col{U; ;4 }e®N,4,j and k=1 to N, is the
vector representing the approximate solution for u(z,y, 2);

W = Col{Wi}e®M* with Wi = Col{W; ; }e®™° and {Wi,;j} = {Wi;jx}e®N,i,5 and k =1 to N, is
the vector resulting from the discretization of F(z,y, z) and G(z, y, 2).

3.2. Invariant Imbedding Algorithm

For the 3D case, wc seek the solution to ‘a discrete t we-point bounda,ry-value problem
given by
~Uiz1 + CU; ~Uips = W; (3.3)

with given boundary values Uo and Un+i- Using a procedure similar to that in §2.2, the
Invariant Imbcedding algorithm is given by

Aii=(C—A) Li=Ntol, with Ay=0 (3.4)
Rici=Aisa(Ri + W), i=Nto 1, With Ry = Unya (3.5)
Uiy1= AU+ It;,i = O to N -1, with Up given (3.6)

The computational cost of (3.4) is of O(N®) and that of(3.8) and (3.9) is of O(~N*). Thercfore,
for 3D problems, the algorithm is significantly less dlicient than the FPSs with the cost
of O(N3L og N). If the matrices Acan be precomputed then the computational complexit y
of the algorithm is reduced to O(N*). However, even with this reduction, the algorithm is
still Icss cfficient than other FISs.

3.3. Fast Invariant Imbedding Algorithm

Similar to the 2D case, the derivation of FII algorithm is based on the diagonalization
of (3,4)-(3,6) by using the E-E decomposition of matrices 4i. To this end, first consider a

permut ation matrix 2¢®N° ‘N’ that arises in 2D Discrete Fourier Transform (DFT). If two
vectors X and Y of dimension N?are defined as X = Col{X;;} and Y = Col{¥;;}, i and
j=1to N then X = py implies that Xi; = ¥j:. Or, using the matrix represent ation Of X
and v, wc have

X=PY=X=Y!

That is, P is the operator for matrix transposition. We also have P~!= Pt since P’ is a
permutation matrix and hence it is orthogonal, and P = Pt*= P~1, since P> is symmetric.
The E-E decomposition of matrices Ais derived based on the following theorem.

Theorem 3. The E-E decomposition of matrix C is given by
C =QXc@Q (3.7

where Q = ©P0 is a symmetric orthonormal matrix (hence, Q = @' = Q1) and ¢ =
Diag{Ac: ;}®V’XN” iand j=1to N, is given below.
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Proof. From Theorem 1, the E-1? decomposition of D is given by D =0Apf where

Ap = Diag{Ap;}e®V*N i=1to N, and Ap; = 6 — 2cos sz— i
Using the E-E decomposition of D, the matrix C can be expressed as
C= Tl‘idi&g[-—], 0Ap0, ——]] = OAO (3.8)

where A is a block tridiagonal matrix given by A = Tridiag[- I, Ap, —I]. The block clements
of A are diagonal and hence it can be reduce to a block diagonal matrix as

A =PPAPP =P(PAP)P = PTP (3.9)
where T = Diag{7;} and T,= Tridiag[-1, Api» — 1], From Theorem 1 and the definition of
matrix 0, it follows that

75 = 0Arif and 7' = G 0 (3.10)
where Ay = Diag{/\qv,-}c%’\”x”’,i =1to N, M = Diag{dp; ;}RV*N,i=1to N, and

jm in J
/\T.-,j:/\I)i~2cos-ﬁ—+—]—~4*72cosN+] 2cosN+]

Dcfining Ac = Ap, the E-E decomposition of matrix C, given by (3.7), is then obtained by
replacing (3.10) and (3.9) into (3.8). Q.E.D.

From (3 4) and for i = N, we have Ay_;= C-1 = (@AcQ)™' = QX;'Q which implics
that Aan-1 = Az'. Using a plOCCdUlC similar to that in §2.3., it can be then shown that

A= QX4iQ where Aai = Dlag{,\A,J kel pN?xN? , for Jand k=1 N, and
AAi:(AC—AAi-{»l)— R i=N-1to 0, Wlth AAN—:O (311)

Defining Ui= QU, & = QR;, and W; = QW;, the fast variant of Invariant Imbedding algo-
rithm is given by . A
Rio1 = daici (B + W5)
Uip1 = MailUi + R
Again, asin§2.3, it is more cfficient to avoid explicit computation Of Uo and Up 1. Defining

a symmetric 01thononna1 matrix Q = Diag[Q, Q,..., Q, QRN *N" the computatlon of the
Fast Invariant Imbedding algorithm for 3D problem is then performed as follows.

Step 1: Compute Aai from (3.11).
Step 2:
1. Compute W{ = Uy + Wy, Wy = Un41 + Wn, and sct W/ =W,;,i=2to N -1,

2. Compute W = QW', or
= QW/ i=1to N (3.12)

Step 3: Compute ftio1 with ftn_y = dan—) W4 from
R,'_] = AA;_l(R,' -+ W’) i=N-1to]l (313)
Step 4: Compute Uiyy with U; = Aao(Jts + W{) from

Uigr = AaiUi + I i=1to N-1 (3.14)




Step 5: Compute ¥ = Qi, or

Ui = QU; i=1to N (3.15)

As can be seen, the computation for 3D case is performed in a similar fashion as for
2D case, with the cxception that the matrices and vectors involved are now of dimension
N’x N’and N? respectively. The cost of Steps 1, 3, and 4 is of O(N3). The matrix Q is the
operator of 2D DST. Thus, by using fast techniques [17], the matrix-vector multiplication
in (3.12) and (3.15) can be performed in O(N%Log N), leading to a cost of O( N3Log N) for
Steps 2 and 5. Again, except for the computation of W| and W}, the computations in Steps
2 and 5 are exactly the same as in the Steps 1 and 5 of the MD algorithm (scc Appendix).
Hence, the FII algorithm is asymptotically as fast as the MD algorithm with the same
cocflicients for N3Log N-dependent terms,

4. Performance of FIlI Algorithm om Vector and Parallel Architectures

A detailed theoretical analysis and comparison of the performance of the FII and MD
algorithms in terms of their computation and communication complexity when imple-
mented on parallel architectures with various interconnection topologies is presented in
[11]. It is also shown that both algorithms achicve the same bounds on computation time
and number of processors, i.e., time of O(Log N) with O(N?) processors, for 2D problem and
with O(N?®) processors, for 3D problem. Here, wc first present and compare the performance
of FII and MD algorithms on vector architectures. Wc then present the performance of the
FII algorithm for 3D problem on two massively parallel coarse grain parallel architcctures.
In the following a coarse grain parallel implementation is defined as the onc in which each
processor computes several (or at least one) vectors U;.

In the following, it is assumed that, as for most practical cases, the problem is solved
many times with the same size, same type of finite-difference scheme and boundary con-
ditions but for different values of g(=,y)/G(=,Y, z) and f(z,y)/F(=, Y, z). In this case, for FII
algorithm and both for 2D and 3D problems the diagonal matrices Aai can be precom-
puted. Similarly, for the MD algorithm the factorization of matrices 7; and 7;; (Step 3 in
Appendix) needs to performed once as part of precomputation. Note that, for 2D prob-
Icm as shown in (2.17), the computation of Aai can bereduced to that of a set of CFs.
By using the algorithm in [18], the set of CFS can be computed in O(Log N) with O(N?)
processors and in O(N Log N) with O(N) processors. It should be mentioned that, as shown
in [11], by using the analytical solution for Aai, the same computation time with the same
number of processors can be achicved in a fully decoupled fashion, that is, without any
commun i cat ion among processors. Similar results can also be achieved for 3D problems.

In comparing the performance of the two algorithms on vector and coarse grain parallel
architectures, note that, as emphasized before, the computations in Steps 2 and 5 of the
FH arc the same as those in Steps 1 and 5 of the MD algorithm. In a coarse grain
parallel implementation with O(N) processors, these computations can be performed in a
fully decoupled fashion, leading to a perfect linear spcedup. For vector implementation,
optimal vectorized subroutines can be used for performing 2D and 3D DSTS [1]. Thercfore,
for implementation on vector and coarse grain parallel architcctures, the performance of
the two algorithms is a function of the structure of rest of the computation, i.e., Steps
3 and 4 for FII algorithms and Steps 2, 3, and 4 for MD algorithm. Bricfly, the greater
cfficiency of the FII algorithm over the MD algorithm results from two factors:

a. The computation of Step 3 of the MD algorithm involves the solution of a set of
tridiagonal systems whereas Steps 3 and 4 of the FII algorithm require the solution of
vector FOLRS.




b. The operation in Steps 2 and 4 of the MD algorithm corresponds to matrix transposi-
tion -which requires a global data exchange among processors in parallel implementa-
tion -whereas the computation in Steps 3 and 4 of the FII algorithm has a very simple
structure: It dots not require any data movement for vector implementation and it
leads to a much Icss communication overhead for parallel implementation.

While both factors lead to a better performance of the FII algorithm on vector ar-
chitectures, the second factor, as further discussed below, significantly contributes to its
excellent performance on parallel architectures.

4.1. Comparison of FII and MD Algorithms on Vector Architectures

Figures 1.a and 1.b show the performance of the FII and MD algorithms on the CRAY
Y-MP2E/232. Although this is a vector architecture with two processors, our implemen-
tation uses only one processor. The processor has a 6ns (166 Mhz) clock and a peak
computation power of 330 MFLOPS. The memory is arranged in 256-Word(W)- with 64-
bit W- banks with a total of 32 MW. The memory is based on the ECL technology with an
access time of 15ns. ‘I'he Fortran compiler used in our implementation is the cft 77 version
5.0. Note that, our current implementation uses automatic vectorization performed by t he
compiler,

Both for 2D and 3D problems, the FII algorithm achieves a slightly better performance
over the MD algorithm, with the performance for the 2D problem better than that for
3D problem. This better performance is duc to the fact that the solution of tridiagonal
systems in Step 3 of MD algorithm is rather scquential and does not vectorize well while
the computations in Steps 3 and 4 of the FII algorithm arc highly cfficient for vector
comput at ion. In particular, the computation in Step 4 represents a triad operation with
optimal cfficiency for vector computation. Further, the matrix transpose operation in Steps
2 and 4 of the MD algorithm requires global data movement (which is also costly on the
vector architectures) while the computation of Steps 3 and 4 of the FII algorithm can be
performed with a minimum of data movement and a maximum utilization of fast vector
registers. Note, however, that for both 2D and 3D problems the computation of the two
algorithms is dominated by the cost of DSTs. We have not yet implemented a vectorized
routine for performing DSTs. Clearly, with a more optimal implementation of DSTS the
performance of the FII algorithms over the MD algorithm would also improve.

Note that, it is possible to further vectorize the computation of both algorithms. This
can be achieved by using a Do Across Loop technique while performing multiple DSTS
[1]. Similar technique can also be used for further vectorization of the solution of multiple
tridiagonal systems in Step 3 of the MD algorithm. However, this technique involves
the operations on vectors with non unit stride which can lead to a greater cost of data
movement particularly on architectures with more limited fast memory.

Figures 2.a and 2.b show the performance of the FII and MD algorithm on a single
node of Intel Touchstone Delta, Each node of Delta is an Intel 860 vector processor with
pipeline floating-point adder and multiplier. The 2860 is a 40 MHz processor with a peak
power of 80 Mflops and a sust aincd power of 60 Mflops for fully vectorized comput at ion,
i.c., vector-dot operation. It is a cache-oriented vector processor with a 2 KW on-chip
cache and 3 MW (32-bit word) user accessible local memory.

The size of problem in our implementation on a single {860 has been constrained by the
limited size of node memory. But, as can be seen from Figs. 2a and 2b, on the 860 and
compared with the implementation on the CRAY Y-MP, the FII algorithm achieves even
a relatively bet tcr performance over the MD algorithm. This is due to the slower speed of
the main memory of the {860 which results in a greater cost of data movement. Note that,
the relative performance of the FII algorithm improves with the size of problem.
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It seems that less attention has been paid to the vector architecture of the i860. Our
practical implementation has shown that for strictly sequential computation with nonuni-
form data structure the 860 delivers a sustained computation rate of about 6 Mflops and
even less. While for the vector operation in Step 4 of the FII algorithm we have achicved
a sustained rate of more than 50 Mflops. As stated in §1, this implies that the balance
factor can vary by an order of magnitude. As a result, efficient parallelization of the com-
putations in Steps 3 and 4 of the FII algorithm is even more challenging since for these
computations the balance factor has its highest value (see also below),

4.2. Comparison of FII and MD Algorithms on Parallel Architectures

Now consider a coarse grain parallel implementation on MIMD architectures with p
processors where p< N. For the sake of simplicity let us assume that N is divisible by
p. In such an implementation each processor computes onc or fcw vectorsU;. For our
technical discussion, let us consider a parallel implementation by using N processors. In
the following, f, «, and g denote the time (cost) of onc floating-point operation, the

communication start-up or latency, and the clemental data transfix, respectively.

For 2D problem, a parallel implementation of the MD algorithm with N processors
results in a perfect linear speecdup of N in the computation. This fully parallel structure
of the MD algorithm was very early recognized and discussed by Buzbce [10]. Neglecting
the lower degree terms, the computation cost of the parallel MD algorithm is given by

Temp = (K1 NLog N)f 4.2

for some constant K; (K< 5 [17]). However, if the communication cost is also taken into
account then the speedup will significantly degrade.

The communication complexity of the matrix transposition operation in Step 2 and
4 of MD algorithm is a function of processors interconnection topology. On a parallel
architecture with N processors and with H ypcrcube or Shuffic-Exchange topology [19,20],

the cost of this operation is given by
Comp = (@ + B)NLog N (4.2)

A comparison of (4.1) and (4,2) shows that, even on fine grain architectures with o of the
same order as f, the communication cost of the MD algorithm can be much greater than
its computation cost. It also indicates that, as shown in [2], for 2D problem only a very
limited number of processors can be efficiently used.

For 3D problem and with a similar reasoning, it can be shown [11] that the parallel
implementation of the MD algorithm results in computation and communication costs of

T3mp = (K1 N%Log N)f (4.3)
Csmp = (o + NB)NlLog N (4.4)
Equations (4.3) and (4.4) represent a much improved ratio of computation cost over com-

munication cost. However, on medium and coarse grain architectures for which « can be

much greater than f even by several orders of magnitude (which is the case for Delta and
Paragon) and even for large problem sizes (i.e., large N) the communication cost of the
MD algorithm is a limiting factor in achieving a massive spcedup in the computation.

Now let us consider a similar parallel implementation of the FH algorithm for 2D
problem. With N processors, the computation of Steps 2 and 5 can be performed in a fully
decoupled fashion with a cost of KyNLog N. By using the Recursive Doubling Algorithm
(RDA) [21], the vector FOLRS in Steps 3 and 4 can be computed with a cost of K;Nlog N
where K2 = 6. The computation cost of the parallel FII algorithm is then given by

r]'zp]] :(](3N];Og N)f (45)
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where Kj is greater than Ki by almost a factor of 2. Thus, asymptotically, the computation
cost of parallel FII algorithm is almost twice that of parallel MD algorithm.

With a Shuffle-Exchange topology and for some cases with a Hypercube topology (sec
[22]), the communication cost of the RDA and hence that of parallel FIl is given by

Cernr = (a4 NB)LogN (4.6)

For 2D problems and for typical values of N on the order of hundreds, a comparison of
(4.1 )-(4.2) and (4.5)-(4.6) shows that, although the computation cost of the FII algorithm
is greater than that of MD algorithm by almost a factor of 2, its communication cost is
less than that of MD algorithm by more than two orders of magnitude.

With a similar reasoning, it can be shown [11] that the computation and communication
costs of the FII algorithm for 3D problems arc given by

Tsp1r = (KzsN%Log N)f 4.7)
Csrir = (@ + N%B)Log N (4.8)

Again, a comparison of (4.4) and (4.8) shows that the communication cast of the FII
algorithm is significantly less than that of the MD algorithm. Also, (4.7) and (4.8) indicate
a much greater ratio of comput ation cost over communicant ion cost for parallel FII algorithm
compared to that of parallel MD algorithm given by (4.3) and (4.4).

It should be mentioned that faster algrithms for performing matrix transposition
on Hypercube have been proposed, c.g., [23,24]. However, these algorithms arc based
on the assumption of additional hardware complexity, i .c., the capability of simult ancous
data transfer from one processor to many other processors [23], or additional software
complexity [24].

The above discussion was based on the implementation of both FII and MD algorithms
on parallel architect ures with rather more complex topologies, i .c., ShufHc-Exchange or
Hypercube. However, the simple communication structure of the FII algorithm allows
its cfficient implement at ion on a variet y of parallel archit cct ures with much simpler inter-
connect ion topologies. For example, as discussed in [11], on a linear array of fine grain
processors, e.g., an array of N DSP chips, it is possible to achieve a speedup of O(N) with
a communication complexity of 0(1 ) both for 2D and 3D problems. This implementation
uscs a pipeline technique for computation of vector FOLRS in Steps 3 and 4 of the FII
algorithm. By dividing these vector FOLRs into a set of scalar FOLRS and by overlapping
the computation and the communication, it is then possible to achieve a communication
complexity of 0(1). Obviously, the implementat ion of the MD algorithm on such a lin-
ear array would result in a significant communication cost, In the next section a similar
pipeline technique for implementation of the FII on Delta and Paragon is discussed.

4.3. Performance of FIlI Algorithm on Coarse Grain MIMII Architectures

In this section, wc present the results of implementation of the FII on the Intel Delta
and Paragon systems inst alled at Caltech Concurrent Supercomputing Facilities [12]. Dclt a
and Paragon arc distributed-memory message-passing MIMD architecture with a mesh
topology and 512 computing nodes organized in a 16x 32 2D array. Delta uscs onc 40 MHz
1860 as node processor and, due to the lack of a dedicated processor for performing the
communication, dots not offer the capability of overlapping the computation and commu-
nication. Each computing node of the recentl y upgraded Paragon uses two 50 MHz 860
processors: one for computation, and onc for communicant ion. Thus, it offers the capability
of overlapping the computation and communication. Although, the spced of the comput-
ing node in Paragon is increased by %20, due to the use of a. dedicated communication
processor, the communication latency is reduced by a factor 2, resulting in a better balance
factor for Paragon,
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Despite the minimum communication complexity of the FII algorithm, its computation
for 2D problem cannot efficiently be implemented on Delta and Paragon since it is too fine
grain a computation. Furthermore, the only communication in parallel implementation of
the FII algorithm occurs in computation of Steps 3 and 4 for which, as stated before, the
balance factor has its highest value. However, for 3D problem, the computation of the FII
algorithm can bc efficiently parallelized. In our current implementation for 3D problem,
both Delta and Paragon arc used as a linear array of 512 processors with a limited nearest
neighbor communication. Note that, theoretically, it is possible to implement the com-
munication structure of the RDA on both Delta and Paragon since non nearest neighbor
communication can be performed with a small additional cost for hopping. However, in
practice, this will lead to a large overhead duc to the network congestion.

Our current implementation uscs a pipeline technique for cfficient computation of Steps
3 and 4. This technique is further motivated by the fact that the computation of Steps
3 and 4 for 3D problem involves operations on large vectors of dimension NZ%. Given the
limited size of the 860 cache (2 K), an efficient technique is then to divide the vectors
into segments and perform the vector operation on the segments. This also allows the
overlapping of the computation with the communication, i .c.,the computation of the
segment i+ 1 can be overlapped with the communication of the results of the computation
of segment i. In order to precisely determine the optimal size of segments, wc have run
the computation with various segment sizes. Wc found that 600 is optima] size for Delta
while for Paragon this number is 300. Clearly, the efficiency of this pipeline technique is
a function of the ratio of the number of segments over the number of processors. That is,
with a given number of processors, a larger number of segments results in a better specdup.

Figures 3-5 show the results of the implementation of the FII algorithm on Delta and
Paragon for various problem sizes. The speedup is measured as the ratio of the computation
time of the algorithm on a single 860 over computation time of parallel implementation.
Duc to the limited node memory, it is not possible to directly mcasurc the single 860
computation time for large problem sizes. However, the recursive and local nature of the
computation in FII algorithm allows an exact measurement to be performed. To this end,
the computation in (3.12)-(3.15) arc performed exactly but memory limitation is avoided
by overwriting the data. In other words, the same amount of computation is performed
without generating the same amount of data, Note that, this represents an optimistic
computation time on a single :860 since it dots not include the overhead duc to the data
movement .

As can bc seen, for a same problem size and with a same number of processors, the
results on Paragon show significant improvement over those on Delta. This is duc to the
better balance factor of Paragon which allows a smaller segment size and hence a larger
rat io of the number of segments over the number of processors. It should be emphasized
that wc have not yet implemented the asynchronous communication on Paragon which
allows the computation to bc overlapped with the communication and hence can lead to
an even bet t cr performance.

5. Discussion and Conclusion

We have presented the results of implementation of the FII algorithm for solution of
Poisson equation on vector and massively parallel MIMD architectures. Our results show
that the parallel FII algorithm achicves a specdup of over two orders of magnitude even for
moderate size problems. For a 512 x 511 x 511 problem, a speedup of 340 has been achicved
by using 51 2 processors. The parallel FII also achieves an optimal overall computation
time by a further exploitation of vector processing capability of node processors.

As stated before, our implementation is rather preliminary and wc arc currently work-
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ing to further improve the performance of parallel FII algorithm. Specifically, the key to
improve the performance is a better parallel implementation of the vector FOLRs in Steps
3 and 4 of the algorithm. Also, our implementation considers Delta and Paragon as linear
arrays and dots not use the mesh structure and fast non nearest neighbor communication.
On mesh-connected architectures, a FORL can bc solved in O(N %) [25]. However, even for
moderate size problems, this would lead to a poor speedup. A more promising technique
that wc are currently implementing is a hybrid RDA/pipeline technique. Recall that the
kcy issue in cfficient implementation of the pipeline technique is to increase the ratio of
the number of segments over number of processors. Also, recall that a full implementation
of the RDA is inefficient since it leads to network congestion. A hybrid RDA/pipeline
technique can bc employed as follows. First, the RDA is used to generate only partial
results. This uses non nearest neighbor communication but without network congestion.
The pipeline technique is then used to compute full solution but, now, for the same number
of segments the number of processors is reduced.

We believe that the FII algorithm can bc even more efficiently implemented on other
architecture with a smaller balance factor and/or better topology. An example is a nct-
work of Transputer which, usually, has a greater # but much slower processors. Also, as
suggested by (4.8), the implementation of the FII algorithm on architectures with Shuffle-
Exchange or Hypercube topology results in a minimum communication cost and hence
optimal performance.

ACKNOWLEDGMENT’

The research of A. Fijany and S. Gulati was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National Aeronautics and Space
Administration (NASA). This work was supported in part by U.S. Army Corps of Engi-
neers, Huntsville Division, Explosive Ordnance Engineering MCX and Design Center. The
authors gratefully acknowledge the support and encouragement of Dr. P. Messina, Director
of the Concurrent Supercomputing Consortium (CSC). Our implementation was performed
by using the Intel Touchstone Delta and Paragon Systems operated by Caltech on behalf of
the CSC. Access to this facility was provided by JPL. Thanks are also due to Dr. D. Payne
and Mr. A. Bessey from Intel Supercomputing Systems Division for insightful discussions.

Appendix: Matrix Decomposition Algorithm
Using our notation in §2 and §3, the MD algorithm for 2D and 3D problems is given below.
A. 2D Poisson Equation
The computation of the MD algorithm for 2D problem is performed as follows.
Step 1: Compute W = ©W or W= 0W; fori=1 to N.
Step 2: Form vector W = PW, i.e., set Wi; = Wji for i and j=1to N.
Step 3: Solve tridiagonal systems S;Ui = Wi,i=1to N where S; = Tridiag[-1, Asi» —I].
Step 4: Form vector U= PU, i.e., set Uij=Ujiforiand j=1to N.
Step 5: Compute U = ©U or Ui= 0U; for i = 1 to N.
B. 3D Poisson Equation

In order to dcscribc the MD algorithm for 3D problem, let us first consider a permu-
tation matrix PeR“x" that arises in 3D DFT. Note that, unlike P, the matrix P is not
symmetric. But, P~!= Ptsince P is a permut ation matrix and hence it is orthogonal. The
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computation of the MD algorithm for 3D problem is then performed as follows.

Step 1: Compute W =QW, Or Wi = QWi for i =1to N.

Step 2: Form vector W = PW, i.e., set We,j,k:Wk,i,;’, for i, j, and k=1to N.

Step 3: Solve the set of tridiagonal systems 7iUi; = Wij, i and j=1to N where Si; =
Tridiag[—1, Acij, —1).

Step 4: Form vector # = P!, i.e., set 17.-,,-,:: = ﬁj,k,i, for i,j, andk =1to N.

Step 5: Compute &4 = 7, or Ui = QUi for i = 1 to N.

Note that, the matrix P is also the operator for matrix transposition for non square

matrices.
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(a): 2D Poisson Equation (b): 3D Poisson Equation




90
80
70
60
50
40
30
20
10

Speed-up

120

100

80

60

Speed-up

40

20

-A-128'1 27*127
-@ - 128*255*255
-0-128255'511
—o— 128*51 1'511

A

__A ——
- % e B e S B
2 4 8 16 32 64 128
Number of Processors
(@)

--A 128'127'127
-~ - 128*255*255
-m --128'255'511
-4 -128'511 *51 1

1 2 4 8 16 32 64 128

Number of Processors

(b)
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