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ABSTRACT

Several methods for mode shape expansion are investigated. In the f7rst,  the dynamic equations
of motions are used to obtain direct solutions to the expanded eigenvectors,  It is shown that these methods
can bc interpreted as constrained optimization problems. Previously developed methods using orthogonal
projections can also be formulated through constrained optimization. To account for uncertainties in the
tneasurements  and in the prediction, new expansion techniques based on least squares minimization
techniques with quadratic inequality constraints (LSQI) areproposed. These techniques are evaluated with
the full set of experimental data obtained on the Micro-Precision lnte~erometer testbed,  using both the
pre-test and updated analytical models. The robustness of these methods is verified with respect to
measurement noise, model deficiency, number of measured dofs and accelerometer location. It is shown
that the proposed ISQI method has the best performance and can reliably predict mode shapes, even in
vcty adverse situations.

NOTATION
a == measured dofs = aset dofs
o = non-measured dofs = oset dofs
N ==a+o = full set of dofs
p == number of modes
. == notation used for actual test data
. == notation used for expanded test data
u;, 6; = ih analytical / test modal frequencies
~o,, ~ai, & = (a x 1) i“ analytical / test / expanded eigenvector at measured dofs

60;, i.,, 4.; = (o x 1) ?’ analytical / test / expanded eigenvector at non-measured dofs

%@ 4NP, 6NP = (N x 1) matrix of p analytical / test / expanded eigenvectors at full set
0$, == strain energy for mode i in element s
K = (N x N) full stiffness matrix
M = (N x N) full mass matrix
A == (p x p) unconstrained least-squares projection matrix
P: = (p x p) orthogonal Procrustes transformation matrix
R(X) = range of matrix X
N(X) = null space of matrix X
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1.0 IN’lROI)UC’I’ION

Physical and financial constraints typically limit the number of degrees of freedom (dofs)
monitored during a dynamic structural test. These limitations include laboratory or field restrictions, such
as available number of accelerometers and/or data channels, structural constraints, such as inaccessibility
of certain parts of the structure, or flight project constraints for on-orbit identification. Ilowever,  it is
ofte}~  desired to assess the modal response of the full structure at all of its dofs, The most common and
leasl  demanding reason is for mode shape visualization. Other reasons include correlation of test and
analysis results at all the dofs represented in the full Finite Element Method (FF,M) model of the
structure. Model updating techniques would benefit from the added information provided by mode shapes
at all dofs. The full mode shape is also useful in predicting the response at unmeasured dofs for structural
integrity and reliability assessments to dynamic loads such as earthquakes, impacts or explosions. Control
needs include computation of the strain energy distributions for optimal damper and active member
placement in vibration attenuation problems. In addition, the tuning of Multiple Input/ Multiple Output
(MI MO) control parameters and gains also benefits greatly from an accurate model at all dofs.

Iixisting  mode shape expansion methods fall into three broad categories, Spatial interpolation
techniques use the FEM model geometry to infer the mode shape at unmeasured locations. These methods
are very sensitive to spatial discontinuities  and are mainly used for plate-like structures such as aircraft
wings [9]. Furthermore, the quantity and location of the measured dofs, and pairing of the predicted
analytical modes are important factors in the success of this method. The second class of interpolation
methods use the FEM moclel properties, such as mass and stiffness, to obtain a closed-form solution of
the I node shapes at unmeasured dofs. These methods include the Guyan static expansion [2], which
assumes that the inertial forces at the unmeasured dofs are negligible, and the Kidder dynamic expansion
[3] which uses the full dynamic equations to infer the mode shapes at the unmeasured dofs, The third
class of interpolation techniques use projection methods to minimize the error between the expanded mode
shape and the paired analytical mode shape. This includes the unconstrained least-squares minimization
approach proposed by Kammer [7], and the Procrustes method suggested by Smith and Fleattie  which
constrains the project ion to be orthogonal [4]. It will be shown that most of these expansion methods can
be expressed in terms of a constrained minimization problem. To relax the hard constraints imposed by
these methods, and to incorporate the uncertain ies in the measurements and in the model, two new mode
shape expansion approaches are proposed and invest igated  herein: penalty methods, and least-squares
minilnization  with quadratic inequality constraints (LSQ1).

A study is conducted to evaluate the robustness and reliability of several of these mode shape
expansion methods. The methods which are retained for comparison of rnathemat  ical and structural
performance met rics are the Guyan Stat ic expansion method, the Kidder dynamic method, the Procrustes
method, and the new penah y and LSQI methods. Spatial interpolation methods will not be included in
the following study since they are not suitable for most structures. Sensitivity studies are performed, using
actual experimental data. The studies involve taking a subset of the actual set of instrumented dofs, and
verifying the accuracy of the expanded prediction, The methods are evaluated as to their sensitivity to
combinations of measurement error, distributed and/or localized modelling  errors. Sensitivity to modelling
error is evaluated by using both the approximate pre-test  finite element model and reconciled updated
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model. The performance of the modal expansion techniques is also assessed with respect to sensor
location and quantity. It is shown that a new method derived from a least-squares minimization
formulation with quadratic inequality constraint provides by far the most reliable mode shape estimates,
even in adverse situations.

2.0 MICRO-PRECIS1ON INTJHUWROMETER (MP1) TKSTIIEI)

The Micro-Precision interferometer (M}]l)  testbed at the Jet Propulsion Laboratory (JPL) is a
lightly-damped truss-structure comprised of two booms and a vertical tower with dimensions of 7n1 x
6.3n~  x 5.5111, and weighing 210 kg (The MPI finite element model geometry is shown in Fig. 1). It is
composed of 2S0 aluminum struts connected to 80 node balls. The careful design of the strut to node
assembly ensures linearity in the response [5]. The primary objective of the MP1 is to perform system
integration of Control-Structure Interaction (CSI) technologies to demonstrate the end-to-end operation
of a space-based optical interferometer [8]. The high imaging resolution of future space missions will
require a 15nn~ RMS control of the optical pathlength  over the 7n~ baseline of the structure. Accurate
model] ing and response prediction are essential for the successful implementation of these control
methodologies. Detailed modal testing and model updating were performed on the MPI and a high fidelity
model was achieved for the first fifteen structural modes up to 60 Hz. [5,6]. For the purpose of this
analysis, only the first nine structural modes up to 50117 will be considered.

The accuracy of the experimental procedures is substantiated by two independent sets of modal
tests, carried out with distinct equipment, processors and personnel. As shown in Table 1, the accuracy
of the identified modal frequencies is of the order of 0.S % and the Modal Assurance Criteria (MAC,
(46)) between the two sets of mode shapes is greater than 0.98 for most of the modes. However, the
accuracy of the identified mode shapes is only of the order of 15%. This infers that a high degree of
uncertainty is associated with mode shape values, even with precise test procedures, excellent frequency
repeat ability, and better than average MACS.

Similarly, in Table 11 and Table 111, the pre--test and updated FEM models are compared to the
experimental frequencies and mode shapes. These tables show that the original model had frequency
errors of the order of 5%, and mode shape errors of the order of 25%, with the largest errors in the
higher modes. The model was later improved by a combination of sub-component testing and full model
Bayesian estimation [6]. The modal frequencies and mode shape errors were reduced to approximately
1 % and 10% respectively, and are within the accuracy expected from the experimental procedure.

These case studies demonstrate that the modal frequency, the MAC and the mass
cross--orthogonalit y (MX, (49)) are quantities that are not very sensitive to experimental errors, modal
identification schemes and analytical imprecision, However, mode shape values are, and when predicting
mode shapes at unmeasured dofs, it is unreasonable to assume that there is an exact closed--form solution.
The following study will investigate methods that take into account existing uncertainties in the measured
mode shapes, and will compare these methods to those which assume a closed--form solution exists. It
wil 1 be shown that the popular closed--form solution methods (the Guyan and Kidder methods) arise from
certain variational problems with constraints, Recognizing this, new formulations are proposed and
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evaluated based upon relaxing these constraints, thereby taking into account various uncertainties.

3.0 D E S C R I P T I O N  OF nfom SHAIW  EXPANSION METHODs

In this section several mode shape expansion methods are developed. We begin by showing that
the standard Guyan ami Kidder expansion techniques are equivalent to certain optimization or variational
problems. This new perspective allows us to formulat  c new methods for mode shape expansion. An
extensive comparison of all of these methods will be given is section 5.

3.1. Guyan Static Expansion.
The Guyan static expansion method is based on the assumption that the inertial forces acting on

the non-measured dofs can be neglected with respect to the elastic forces [2]. This is accomplished by
setting A4M==Mm == O in the modal force equilibrium equation below:

(1)

Ilq. (1) leads to an exact analytical relationship between the mode shapes at the measured and unmeasured
dofs. Using the experimental mode shape data obtained at the instrumented dofs, ?.i, the predicted mode
shape at the full set of dofs, ~~, , is obtained as

(2)

An alternate and equivalent formulation results from solving the constrained minimization
problem

min ~ <$Ni, K$Ni> subjec t  to  $ai = $Oi (3)
‘i%, L

This problem can be interpreted as finding the expanded mode shape, ~~,, which minimizes the total
strain energy of mode i such that the predicted mode shape equals the test values at the measured dofs.
It can be demonstrated that the solution to the optimization problem above is given by 61W ill (2). TO see

this we first form the Lagrangian L(x, A), where the matrix E= (1 0] picks off the observed degrees of
freedom (the aset), and x is the expanded mode shape of dimension N,

L(x, A) = ;cx, Kx> + <A,$~i -Ex>, (4)

The stationary values of L are the zeros of

dL-— =< Kx, . >-< El’ A,,>,
ax

(5)

and
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i3L A= <$di-Ex,.  >
aA

((i)

‘rhus,

Kx =EIA ; $oi-Ex:o. (7)

[Jnder the assumption that there e no rigid body modes,

so that

~ai = EK-ll<l’~ , (9)

and consequently

A = (E K-’ E7)-] $~i , (10)

Substituting the expression for X above into (8) gives the expanded mode shape x as

x . K-l E7(EK”1E~-l$ai  , (11)

To show that the two mode shape expansions (2) and (11) are identical, we show that the
respect ive static forces leading to these deformations are the same. Taking the mode expansion vector in
(2) and multiplying by the partitioned stiffness matrix K (1) leads to the force vector&

(12)

We will next compare~  with the force vector, Jv, associated with the variational expansion (1 1).
P’rom (11) we find that

f, = E7’(EK-’E  ~-’ &i . (13)

Now let a = EK-’KT ,so that

f, . I Ia-l$ai (14)
o

Partitioning K-’ as

K-l .

II

UP

(3T6’

we see that
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I1cnce,

(16)

a = Kad’ [1 - KOO P7]

w = KaO1  [ 1 + KQO KOO1 K.: a]
(17)

where CY is non-singular, Therefore,

a-l = [I + KoOKO~Ko~a]-l  K ,
aa

which in turn leads to

}kom (12), (14) and (19) we see that& = ~, .
The interpretation of the static expansion method as an optimization problem serves

to motivate the development of several expansion techniques based on the same principle.

(18)

(19)

3.2. Kidder Dynamic Expansion.
This method was proposed by Kidder [3], and later used by Berman [5] to update structural

models. The method is the same as the Gu yan static expansion method except that the inertial forces at
the unmeasured degrees of freedom are no longer assumed to be negligible. An analytic expression of
the mode shapes at the unmeasured dofs, ~Oi,  as a function of the test modal frequency, tii, and the test
mode shapes at the measured dofs, Jai can again be realized:

(&/i = I $ai
( KOO - 6: MOO )“1 ( KOO -- G:MW ) ($ai 1 (20)

As with the Guyan expansion method, there is a variational principle from which to derive the
Kidder expansion above. To begin we let S denote the surface in RN ,

where ~ai denotes the
system constrained to

S={(iai, w): wE RN-~}, (21)

partially observed i’h modal vector at u dofs, We seek solutions of the dynamical
s,

for all vectors & tangent

where w E R ‘-a and

By D’Alen~bert’s principal any motion y(t) G S satisfies

<My+ Ky, ~>=O, (22)

to S. Each such ~ can be realized as

(=Fw,
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F=

At the observed resonance

o a x (t+  a)

I(N-a)  x (N-a) ! (24)

e H&ai . -
‘(t)’ d’~j “r’o’t’

where tii denotes the observed frequency. Eq. (22)--(25) then imply that

<K(j) -  #M+, Fw> :() for all w c !R~-”  ,

with

Therefore,

F7[K - C); M] ($ = O,

or equivalently

(2s)

(26)

(27)

(28)

I;rom this we obtain the expansion at the unmeasured degrees of freedom as

$Oi ‘ [KOO -  fi~MOO]’l  [O~MM  _ Kti] $ai (29)

in accordance with (20).
The “Kidder Dynamic Expansion” method described ,herein  is not to be confused with the

“I>y!~anlic Expansion Method” proposed by O’Callaghan  [10], The latter adds a dynamic force correction
term to the Guyan expanded result which is expressed in terms of both the full FEM model, M and K,
and the Guyan reduced FEM model at the observed dofs, ma and ka:

(30)

The dynamic expansion method has been shown to produce reasonable results on actual test cases
[11 ], although it is sensitive to test and analysis errors [12]. However, it is based on a series of equation
manipulations which we unfortunately could not relate to a particular physical interpretation. The same
remark applies to the “Hybrid Expansion” method proposed by Kammer [13], We will restrict our
attention to those methods that we have derived from a variational principle, and will not consider these
two particular methods any further.
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3.3 I.cast-Squares Projection Methods.
Both the Guyan and Kidder expansion methods require an {\it a priori} knowledge of the FEM

mass and stiffness matrices to predict mode shapes at unmeasured degrees of freedom. Karnmer [7], and
later O’Callaghan  [14] and 1,allement  [ 15] have proposecl  methods which onl y require a priori knowledge
of the analytical mode shapes. These methods determine a transformation APP that minimizes the quadratic
error between the experimental and analytical mode shapes at the measured dofs, The method is also
known as the “Modal &xpansion”  method. The transformation is used with the full analytical mode shapes
to infer the experimental mode shapes at the unmeasured degrees of freedom. The transformation APP is
computed from the p measured modes and paired analytical modes from the unconstrained minimization
problem:

(31)

where ~ . ~ ~, denotes the F’robenius norm of a matrix,

~x12~ = tr(x~x) ; tr = trace operator . (32)

The minimization problem (31 ) above has a unique solution only if the number of measured dofs
exceeds the number of modes, and @w has full column rank p. Under those conditions, the matrix APP
is obtainec]  via the Moore-Penrose pseudo-inverse, APP is then used to compute the expanded mode shapes
from the p measured modes and paired analytical modes. A variation of this method is also possible,
where the expanded dofs are constrained to match the experimental values at the measured dofs.

The second method, the “Procrustes  Expansion Method” is a variation of the first in which the
transformation APP is required to be orthogonal. This method expands the mode shapes by orthogonal
Procrustes transformation of the experimental eigenvectors  into the space spanned by the predicted
anal ytical  eigenvectors  at the measured dofs [4]:

min I &.=P -  @.p Ppp 1; subject to Pp: P*P = I .
“ (33)
‘PP

The orthogonality  constraint has the geometric interpretation of finding the best fitting “rotation” of the
anal ylical  to experimental data. The mode is then extrapolated to the unmeasured degrees of freedom by
this same rotation. Other variations of this technique are discussed in [4].

3.4. Penalty Methods.
In this section we will relax the equality constraints by replacing them with a penalty term. This
w i] I be done for both the Ciuyan  and Kidder expansion methods. For the Guyan method this is a pure
penalty term; for the Kidder expansion a potential energy terms that serves to drive the system trajectory
to the surface S defined in (21) is added to the Lagrangian  of the mechanical system, The introduction
of a penalty term is just one way to relax the hard constraint. A different approach to relaxing the
constraint will be discussed in the following section.

The constrained minimization version of the Guyan expansion method imposes that the value of
the expanded mode shape at the measured dofs identically equal the measured values, These measured
values are typical I y contaminated with error. Furthermore, these existing errors in the experimental values
propagate errors in the estimates of the mode shape at the unmeasured dofs. To take into account the
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unccvlaint  y in the measured mode shapes, penalty methods are applied in the Gu yan expansion case to
minimize a weighted sum of the modal strain energy and the error in the measured mode shape. ‘he
unconstrained minimization problem with measurement error penalty is

1
min – < f&i,  ~ $Ni >i.; y&ai. E& NiZ,

2
(M)

‘$tf/

where -y is a scalar that weights the contribution of the “soft constraint” E ~~, = r$ai. The solution to this
problem is easily confiuted as

$Ni  z  y[K + yEIE]-l E7&i . (35)

LJsing the partitioned form for K-l in (15), it is straightforward to verify that as y -+ m, the expanded
eigenvect  or is constrained to match the experimental values at the measured dofs, and the solution
converges to that of the Gu yan method in (2).

The analogous penalty method formulation for the Kidder method is developed by modifying the
potential energy of the I.agrangian  with an additional term V(y) in (22) of the form

V(y) = min ~y -nz~2  , (36)
mcS

where S is the manifold defined in (21). Thus we write

L=< Mj, y> + <Ky, y> + yV(y), (37)

Again assuming that y(t) = sin tilt,  and noting that V(y)  ❑ = ~ Ex- ~ai \ 2, we find using d’Alembert’s  principle
that

(38)

As with the penalty version of the Guyan method, it can be shown that as -y + w, the solution above
converges to the solution (20).

Penalty methods use the weighting variable y as a measure of the relative confidence in the
measured mode shape. This problem is analogous to that of the generalized least squares method in which
the variable y can be interpreted as the inverse covariance  due to measurement error, assuming that the
errors are uncorrelated  and identical at all measured dofs. In reality, it is difficult to quantify the variance
of such errors. The best value of ~ can be evaluated by minimizing the error between the predicted
expanded mode shape and the actual measured mode shapes at all dofs. This of course cannot be done
in practice. Depending on the mode number, the number of measured locations, and the number of
expanded locations, the best value for -y varies bet ween l(?$ and I@ for this particular data set. A typical
sensitivity plot of -y as a function of mode shape error is shown for several modes in Fig, 2 in which the
opt imurn values are marked. It is seen that acceptable values of the weighting parameters y can be
selected within an order of magnitude about the optimal values.

The ratio of the total strain energy to the weighted mode shape error is shown in Fig. 3 as a
function of the weighting parameter -y, The optimal -y’s, represented by a dot, are found to be in the slope
transit ion region between dominant strain energy and dominant mode shape error. This observation still
holds when noise is analytically added to the measured data to simulate poor quality data. In practice an
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optilnal  value of -y can never be established, and it is proposed to use the magnitude order of the slope
transition region as an approximation to the penalty weighting coefficient.

A variation of the penalty formulation is to use the mode shape obtained from one of the direct
expansion methods, instead of the measured mode ddi in the formulation (34), Direct expansion methods
are those that have a closed-form solution, such as the Guyan static and the Kidder dynamic methods (cf
(2), (20)). Denoting the Guyan expanded mode as ~~~, the resulting solution for the unconstrained
minimization of the niodal strain energy with expansion error penalty is

&I = y[~+ y]]-l  &NI. (39)

Note that ~~, + ~~,d as -y –~ co . A similar variation can be formulated for the penalty counterpart of the
Kidder method from (38).

3.4. 1,cast-Squares  with Quadratic Inequality Constraints.
‘l%e constrained minimization versions of the Guyan and Kidder expansion methods impose that

the value of the expanded mode shape at the measured dofs, ~di , identically equals the measured values
~oj. Relaxing these hard constraints can accommodate for measurement error, leading to a smoother and
more robust expansion of the modes. In the previous section we developed a penalty method approach.
In this section we pursue an alternate formulation for replacing the hard constraints by a least-squares

The immediate advantage of the LSQI formulation is to allow convergence within a domain of probable
solutions, while taking into account uncertainties associated with experimental errors. Mathematical
techniques for solving this problem have been published and are easily implemented [1]. A
computationally  efficient implementation exploiting the fact that the number of measured dofs is typically
much smaller than the number of total model dofs will be derived in section 6. Using the template defined
by (40), three different modal expansion methods are investigated hereby varying the matrix and vectc)r
parameters A, B, b, and d.

The first of these is the “Least-Squares Strain Energy Minimization with Quadratic Measurement
Error Inequality Constraint”, LSQI 1. This is the counterpart of the constrained optimization form of the
Guyan method defined in (3). It finds the expanded mode shapes which minimize the modal strain energy,
under the provision that the quadratic mode shape error at the measured dofs is of the order of the
experimental uncertainty. Using the fact that the stiffness K E R ~X~ is a symmetric positive definite
matrix, there exists a unique upper triangular matrix G E l?~’~ (e.g., Choleski factorization), such that:

K= GT*G

}]ence,  the LSQ11 problem is expressed as:

min
‘&0

Or equivalently,

1.0



As CY + O, LSQ11 converges to the Guyan static expansion in (2). Based on the results obtained from the
two independent sets of experimental data mentioned previously, a nominal value of 15% is assumed for
the expected mode shape error parameter CY used in the I.SQI expansion methods. Sensitivity of the LSQ1
methods to values of a will be discussed.

The second or these methods is the “1.east Squares Strain Energy Minimization with Quadratic
Expansion Error Inequality Constraint”, LSQ12.  Here again the modal strain energy is minimized, but
subject to the constraint that the quadratic error between the optimally expanded mode shape, ~~, , and
the mode shape obtained from direct expansion, ~~~, is less than the expected experimental error. 1,SQ12
is formulated as

m i n  < K $Ni , $Ni  > subjcctto 16Ni  -  $fii\2 s a l$ai12. (42)
‘&,

As CY + O, 1.SQ12 converges to the direct expansion solu(ion ~~~.
The third formulation is the “Least Squares IIynarnic  Residual Force Minimization with

Quadratic Measurement Error Inequality Constraint”, LSQ13.  In this formulation the objective function
is defined as the quadratic norm of the modal “residual force. The LSQ1 problem is now to find the
optimal ~~, that minimizes the modal residual force such that the quadratic error between the expanded
mode shape and the experimental mode shape at the measured dofs is within the bounds expected from
experimental error,

min  I(K - tiiM)$~i12 s u b j e c t  t o  lE4Ni  - ~ai12 s a l$ai12  . (43)
$N,

As n + O, LSQ13  indirectly solves the eigenvalue problem for the given experimental modal frequency
and mode shape data at the measured dofs.

4.0 PERFORMANCE METRICS.

Several metrics are used to evaluate the error of a predicted measure u with respect to a reference
measure u, The first error metric proposed evaluates the relative quadratic point-to-point error at each
dof between the predicted expanded mode shape ~~, and the actual measured mode shape ~~, , for each
mode i:

(44)

In comparing mode shapes at each point, normalization of the eigenvectors is achieved by a least squares
fit of the expanded mode shape to the reference mode shape via
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. () ,><  @NJi  9 Nt$ls’’” = P $NI , p.. -
~,>”< @NJj 3 Aft

Alternatively, the mean cumulative error in the mode shape as a function of the n’}’ mode can be used 10
determine the modal number at which

e

the expansion methods start to break down :

C (n )  =  :1 $ A ( i ) .
1

(45)

‘l’he orthogonality  properties of eigenvectors,  as inferred in the Modal Assurance Criteria (MAC), can
also be used as a performance metric. The MAC matrix between two eigenvectors  ~i and @j is defined
as

(46)

The MAC is used here to verify the orthogonality  between the expanded mode shapes and the actual
mode shapes measured at all dofs. From (46) we see that the ideal MAC matrix is the identity matrix.

It is relatively straightforward to establish a relationship between the MAC and normalized norm
squared difference bet ween eigenvectors  as in (44). To show this relationship, assume @ and t are two
unit vectors, By orthogonal projection we can write

}Ience,

On the other hand, we have

Thus,

1$-wl=l~l. (48)

Comparing (47) and (48) we see, for example, that a norm difference of 10% between two vectors is
equivalent of approximate y .99. Thus the norm error appears to be a significant] y more sensitive measure
of performance than the MAC.

A third performance metric uses global mass properties and is based on the mass
cross--orthogona] ity (MX) of structural eigenvectors.  The MX matrix between two eigenvectors, @, and
o, is defined as
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(49)

in this study MX is used to measure the mass cross--orlhogonality  of the expanded experimental mode
shape with respect to the full experimental mode shape. If 4, and 4, are mass orthogonal, then MX is a
diagonal matrix. Furthermore, if @i and 4, are mass normalized,  then MX is the identity matrix.

‘l’he three performance metrics discussed above are global metrics describing the total error
throughout the whole Set of dofs. Errors can also be evaluated at the local structural element level  by the
strain energy distribution associated with each elements and with each mode i. Analogous to MX which
measures the accuracy of the expanded mode shape with respect to the IiEM mass matrix M, the element
modal strain energy verifies the fit of ~ ~i with respect to the FEM stiffness matrix K. In the following
definition, k,, is the element stiffness, and ~$i is the i’” expanded mode shape at the element dofs s, and
~$i is the element modal strain energy. ~,i is normalized with respect to the total strain energy for that
mode ,

. .

($i ‘ -<  ‘=osi ‘ 4):i’ ,.
‘K@Ni  Y $Ni >

(50)

The element strain energy error between the analytical ~~, and the expanded ~,i identifies the discrete dofs
where the expansion does not agree with the mode]. Such errors typically result from localized tnodelling
errors or actual structural damage.

s.0. SENSITIVITY STUI)Y OF IUWANS1ON METHODS.

This section will compare the expansion methods outlined in Section 3 with respect to the
performance metrics defined in the previous section. Several deviations from an “ideal” data set will be
considered. These include added noise in the measurements, the use of different size data sets and
locations of measured degrees of freedom, inadequacy of the a priori model, and finally combinations
of model form error and measurement error.

S.1. Expansion performance with respect to nominal data and updated FEM model.
The expansion methods are first investigated for their reliability y and intrinsic performance when

al! experimental and anal yt ical conditions are “ideal”. The expansion is executed with the updated (i.e.,
“ideal”) FFM model and mode shapes from a subset of the high quality experimental data measured on
the MPI testbed. The measured data is not corrupted by additional noise. Here, twelve locations have
been retained as the “measured” set, and are expanded to the full 240 dofs recorded during the actual test.
The final 240 dof locations represent 3 dofs at each of the 80 node balls forming the truss structure. The
location of the 12 dofs are optimally selected to give for a Guyan reduced model the best MAC with
respect to the predicted analytical modes. This particular set of instrument locations is referred to as aset
5. As will be demonstrated through the test cases, aset 5 provides enough information to identify the first
nine modes, with the exception of mode 6, which is not exhibited at all. The expansion of missing mode
6 will thus provide a measure of each method’s robustness to unmeasured modal information.



The methods compared in this survey are: (i) Guyan (2), (ii) Kidder (20), (iii) Procrustes (33), (iv) Modal
slrain  energy minimization with measurement error or Kidder expansion error, PEN] (35) and PEN2
(39), respectively, (v) I.SQI with measurement error (1.SQI 1, (41)), LSQ1 with expansion error (LSQ12,
(42)),  andl.SQl  with resi[iual  dyna~~lic  force n~inin~izatio1l,  (LSQ13,(  43)) .
‘Ile MAC of the mode shapes expanded from experimental ase~ 5 data (12 dofs) with respect to the actual
full measurements (240 dofs) is shown in Fig. 4 for all eight expansion methods. The MAC of the ideal
analytical model with~espect  to the full 240 dofs measurement set is also included in Fig. 4 for reference,
The Guyan method expands the first 2 modes properly with MAC’s greater than .98, However, modes
3 through 5 are poorly correlated, and modes 6 through 9 are not represented at all. PEN 1 yields
expanded mode shapes which have the same level of accuracy as the Guyan expansion. LSQ11 produces
mode shape estimates which are slightly worse than the Gu yan method, especially in the lower modes.
The Kidder method generates expanded mode shapes which have MAC’s greater than .97 for seven of
the nine modes. Mode 9 has a MAC of .90, and mode 6 could not be identified at all since it was not
represented in the measurement set. Again, the PEN2 and LSQ12 yield the same level of accuracy as the
Kidder expansion.
The Procrustes  expansion method can predict mode 6, and produces MAC’s greater than .85 for all nine
modes. Ilowever, only modes 1 and 3 are greater than .95. The mediocre results are explained by the
fact that all nine modes are expanded simultaneously from the initial 12 dof subset. In Section 5.2 it is
shown that the Procrustes method is very sensitive to the number of simultaneously expanded modes and
to the set of measurement locations.
Of all the expansion methc)ds, 1.SQ13 is the one that performs the best across all modes. It is capable of
predict ing unmeasured mc)de 6 better than the Procrustes method. Foremost, it is the only expansion
method investigated so far which results in better MAC diagonals with respect to the measured data than
the anal yt ical model used to expand the modes.
The observations made on the performance of the expansion methods with respect to the MAC also hold
for the mode shape Frobenius  norm error (Fig. 5) and for the mass cross--orthogonality condition (Fig.
6).

5.2. Sensitivity to Mode Shape Measurement Errors.
Noise in the measured mode data can become an important factor, especially when the expanded mode
is used in strain energy computations for active member placement. Mode shape noise is still important,
but to a lesser degree, when the extrapolated mode is used for computing elastic forces as is done in
sat is fying the modal force equilibrium equation to update FEM models. There are many sources of noise
in the processing of mode shapes. Accelerometers, wires, and the method of data acquisition (i. e.,
number of averages, etc.). When transfer functions are processed to identify the mode shapes, an
additional error can be introduced by the method of eigenvector computation (curvefitting,  least
squares,,.. ). It suffices to say that the measured mode is never pristine, It is desirable, therefore, to have
a mode shape extrapolation procedure that is not only insensitive to noise, but that can filter it out as
well,
A sensitivity analysis is performed herein to evaluate the performance of the mode shape extrapolation
methods with respect to distributed measurement noise. For these invest igat ions the noise is represented
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as all additive Gaussian random error superimposed upon the true mode shape. Spatially localized errors
will be considered later in the context of isolated modeling errors and damage.

The Frobcnius  norm difference between the mode shapes obtained from the two independent tests
were of the order of 15$%. This level serves as a basis for the following error analysis. The performance
of the expansion methods consider the effect of mode shape errors of the order 15%, 25%, and 50%7.
Hrrors of the order of 50% are considered representative of gross experimental error, such as noisy or
malfunctioning inst rumentat  ion, poor experimental procedures, or deficient modal est imat ion schemes.
To infer the mean prediction, Monte Carlo simulations are performed with 30 averages. The analysis
reveals t}~at  the penalty methods and the LSQI methods with strain energy minimization provide at a very
high computational cost only a minor improvement in the predicted expansion compared to the Guyan
or Kidder methods. The following performance evaluation will thus be limited to the Guyan, Kidder,
Procrustcs and LSQ13  methods.

The Probenius  norm error between the expanded and fully measured mode shapes is compared
for the first nine modes of the M}]l. The expansion is from aset 5 with 12 dofs up to the full 240 dof’s,
and is achieved with the updated “ideal” FFM model and eigenproperties.  The results are summarized
in Figure 7, where the mean expansion error over the first nine mode shapes is plotted as a function of
noise level  for each of the expansion methods. The error between the “ideal” analytical mode shapes and
the measured mode shapes at all dofs with and without added measurement noise are included for
comparison.

As expected the performance of the expansion methods grows worse as the noise in the measured
data increases. As before, the Guyan method has the overall worst performance, followed by the Kidder
and the Procrustes rnethocls. The Kidder method is the most sensitive and exhibits linear growth in the
mode shape error as a function of measurement error. The Guyan, Procrustes and LSQ13 methods are

equally sensitive to measurement noise, and a 15% noise level does not significantly increase the error
in the expanded mode shape for any of these methods. Only when the noise level reaches 25% do
differences start to appear. As in the ideal situation, the error in the modes expanded with the Guyan,
Kidder, and Procrustes methods are greater or equal than the error in the measurement. Only the LSQ13
method is capable of expanding mode shapes to a greater level of accuracy than the measured data, even
when the original data is corrupted by significant amounts of noise. In fact, for moderate amounts of
measurement noise, e.g., less than 25%, the first nine modes expanded with the LSQ13 method from 12
instrument locations to the full 240 dofs are almost as accurate as the noise--free mode shapes measured
at all dofs. These remarks are consistent with other performance metrics, as shown in Fig. 8 representing
the matrix norm error of the MAC for the first nine modes. The error is a measure of the projection of
the set of expanded eigenvectors  into the space of measured eigenvectors, and includes both the diagonal
and off--diagonal terms. Although the Procrustes  method constructs the mode shape through an orthogonal
project ion, the LSQ13  method achieves better orthogonality  with respect to the actual data set.

s.3. Sensitivity to seleetion  of number of dofs and their location.
Five different sets of instrument locations and number of dofs are considered, i.e., aset ‘s, as

summarized in Table V. The data measured at the a set location are expanded to the full 240 dofs,
representing an expansion ratio of 1 to 80 for user 1, 1 to 40 for aset 2 and asel 3, and 1 to 20 for aset
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4 and met 5, The instrument location is selected either according to engineering judgement at the dofs
of highest deformation, i.e. the tip of the booms, or according to optimality criteria such as best MAC
fit from a static reduction or best mode shape fit over multiple modes.

The mean mode shape errors of the first nine modes (~ from (45)) are summarized in Fig, 9 for
each expansion method as a function of the aset selection. As expected the expansion error decreases as
the number of instrumented locations increase. Again, the Gu yan method has the worst performance over
all cases, Procrustes h the most sensitive to the aset selection, as shown by the 75% decrease in error
from asel 1 to met 5. The large errors for aset 1, aser  2, and uset 3 are to be expected, since the
Procrustes method requires at least as many measured dofs as modes to uniquely accomplish the
orthc)gona] projection. Expansion with the Kidder method only benefits slightly by an increase in the
number of dofs. As before only the LSQ13 method is capable of expanding the mode shape to the same
degree of accuracy as the measured data, regardless of the selected user. Fig. 9 also shows the sensitivity
of the expansion error to dof location, Ase/  2 and ase/ 3 include the same number of dofs, but located
at dilferent points on the structure. Whereas the perforinance  of the Kidder method improved from aset
2 to met 3, the Procrustes  method worsened. This implies that for optimal performance, each expansion
method should have its own set of dof selection criteria.

A separate analysis demonstrates that the Proc.rustes method is not only sensitive to the aset
selection, but also to the number of modes used in the simultaneous expansion and to the pairing between
the analytical and experimental modes. This is a disadvantage compared to the Guyan, Kidder and 1.SQ13
methods which expand the modes individually without the need for mode pairing. In these latter methods
the mode pairing is indirec(  1 y accomplished through the I;EM mode] and does not require any user input
or engineering judgement. For the purpose of this analysis, the error in the expanded mode shapes are
invest igated for two alternate implemental ions of the Procrustes  method. In the first method modes 1

through 9 are expanded simultaneously using the first nine analytical modes, irrespective of the number
of dofs. in the second approach, the n’h mode is expanded from the set formed by the first n analytical
modes, disregarding the higher modes. This is referred to as the incremental form of the Procrustes
method. Fig. 10 shows the mean cumulative mode shape error for each of the methods from aset 3 (6
dofs) to the full 240 dofs using the first nine modes. It is seen how, as expected, the Simultaneous
Procrustes  has a poor performance, especially at the lower modes, since the number of expanded modes
(i. e., 9) exceeds the number of measured dofs ( i. e., 6). Whereas the Incremental Procrustes  has a good
performance similar to the Kidder and the LSQI methods up to mode 5. However, beyond mode 5 the
performance of the Incremental Procrustes deteriorates rapidly since the number of modes exceeds the
number of measured dofs. Thus, for this particular met selection the Procrustes method can only
simultaneous y expand the first five modes with accuracy from the six measured dofs to the full 240 dofs.

The same analysis is performed for the expansion from aset 5 (12 dofs) to 240 dofs, which
inclucles  twice as many measured locations as aset 3 (Fig. 11). The degrees of freedom in uset 5 are
located to provide the best orthogonality over the first nine modes using a Guyan reduction in the
anal ytical  model. The main effect of asel 5 is to improve the accuracy of the Guyan and Simultaneous
Procrustes methods, especially in the lower modes for which the error is reduced by 80%. With aset 5
both l’rocrustes  methods also converge towards a lower expansion error beyond the fifth mode. Again,
the aset location criteria is a major factor in the reliability of the Procrustes  method, and method specific
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criteria must be devised to improve the performance.

S.4, !jcnsitivity to Model Error.
All the modal expansion methods proposed herein use an analytical model to predict the mode

shapes at the unmeasured dofs. The FEM mode]  plays an important role in the re.gularization  of spurious
information, the filtering out of the measurement error, and the prediction in the event of insufficient
information. This is dlpecially true of the Kidder and the LSQ13 methods which rely heavily on the full
dynamic equations. in the following, both distributed ( i.e., global), and localized errors are investigated.

Distributed errors in the analytical mass or stiffness matrix, such as errors resulting from the
uniform structural properties ( e.g., mass density or modulus of elasticity), only scale the eigenvalue
problem by a multiplicative constant. Thus there is no change to the analytical eigenvectors, and
consequently, distributed property errors in the model have little influence on modal expansion
prediction,

Another form of global model error can be introduced by deficiencies in the model form, as
would typically occur in a pre-test model. To this effect the actual pre-test model of the MPI is used for
demonstration. It is composed uniquely of rod elements, and can only predict the first 4 modes. The
“ideal” updated model is constructed unique] y of bar elements, and can accurately predict the first nine
modes, As shown in Fig, 12, the mean cumulative mode shape error over nine modes is 20% for the
pre--test  model, and is only 10% for the updated model, which is below the experimental inaccuracies.
The errors in the Guyan, the Kidder, the Procrustes,  and the LSQ13 methods expanded with the pre--test
model from asel 5 to the full 240 dofs are also shown in Fig. 12. As expected, the level of error is
s] ightl y worse when the eigenvectors are expanded with the pre-test model than with the updated model,
cspeciall  y in the higher modes where the pre-test and updated model start to diverge (see Fig. 11). The

Guyan and the Procrustes  methods display little sensitivity to model form error. The Kidder method is
the most sensitive, as is shown by the sharp increase in the error beyond mode 3 resulting in a mean
error which is twice as high than that obtained with the updated model expansion, Although the
performance of LSQ13 has also worsened, it is still the best by a factor of two relative to the other
expansion methods, and it remains the only method which is capable of expanding mode shapes to a
higher degree of accuracy than the model.

Spatially localized model error, such as would occur from local errors in the mode] form or
properties, or from changes in the actual structure resulting from fatigue or damage are also expected
to affect the predictability of the expanded mode shapes. To simulate this situation the stiffness of the
longest strut in the pre-test  model, connecting the tower to the optics boom, is decreased by half. This
only changes the pre-test frequencies of modes 5 and 6 by less than 3%, while keeping all other
frequencies almost the same, However, the effect of this localized error on the analytical mode shapes
is significant, as shown in Fig. 13 where a major jump between modes 5 and 6 corresponds to a 300%
increase in the mode shape error relative to the “undamaged” pre-test model. All other mode shapes
remain virtually unchanged. Although the effect on the analytical modes is extreme, none of the expanded
mode shapes are affected, and the expansion errors for each method is almost the same as those obtained
previously with the “undamaged” pre-test model (I;ig. 12), The fact that the expansion error does not
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increase from the “undamaged” pre-test model case implies that the expansion errors are more sensitive
to global mode] form errors than to localized element errors.

The expanded mode shapes obtained here with the LSQ13 method are used to compute the element
strain energy as defined in (50). When compared to the element strain energy predicted analytically by
the “damaged” model, the largest differences occur in the “damaged” member. Thus, LSQ13 is capable
of expanding mode sllhpes to the accuracy required to identify faulty elements in the model.

5.5. Sensitivity to measurement and model error.
Finally, to assess the performance of the expansion methods to a combination of modeling and

measurement error, the last case with the model form error and the localized model error was repeated
with an additional 25% error in the measured mode shape values. The results are summarized in Fig. 14.
The solid lines represent the accuracy of the different forms of the MPI model with respect to the true

test data at all dofs, and the dashed lines represent the expanded mode shapes from user 5 to the full 240
dofs using the damaged pre--test model and noise corrupted measurements.

As expected, adding measurement noise to the damaged pre--test  model worsened the performance
of al 1 the expansion methods by approximate y 50% (Figs. 13--14). In the presence of both model error
and measurement noise, the Guyan and Kidder method perform equally poor] y, and generate mode shapes
which are worse than predicted by the damaged pre-test model, The Procrustes  method performs better
than the Gu yan and the Kidder methods, especially at the higher modes, and can predict the lower modes
to the same level of accuracy as the noise contaminated data. Once again the LSQ13  method performs
exceptional] y well. It generates mode shapes which are only off by 15%, although the data used is

contaminated by 25% noise and the model has the wrong form and a damaged member. I;urthermore,

comparison between the element strain energies of the damaged pre--test model and LSQ13  expanded
mode shapes show that the largest differences occur at the “damaged” strut location, Thus, the mocle
shapes expanded with the LSQ13 method are capable of identifying damage or localize model error, even
in the presence of measurement noise.

6. EFFICIENT LSQ13 ALGORITHM.

Standard solution techniques for the I.SQI method (43) involve a generalized singular value
decomposition of the full NxN dynamic force matrix and the ZVX 1 partitioning matrix E, which require
O(N) operations. This can become prohibitively large when expanding modes of structures with over
1000 dofs. A new LSQI algorithm is proposed, which takes advantage of the fact that the number of
measured dofs, u, is much less than the number of dofs in the model, N. The improved algorithm
requires 0(a2) operations, and is made even more efficient by using a sparse matrix formulation.

Again let M and K denote the Nx N analytical mass and stiffness matrices of the system,
respect ivel y, and let Ui denote the i(h measured frequency. We will assume that the i’h mode of the
structure, call it 0,, is measured at the a degrees of freedom { no) }j=/, , , with a ~ N. The measured
mode is further assumed to be corrupted by the noise vector q E R“, Thus we have the measurement



model

(jai =Ea@i + q

where Ed is t}~e a xiV matrix that selects the degrees of freedom { qfi) }. We note that before we took
E. = [ 10 O] , which can always be assumed by a permutation of the physical coordinates. As we have
seen previous] y, an effective way to extrapolate the measurement Jai to the full mode is to solve the
quadratic programmiW problem

where c reflects the quality of the measurements. Typically ~ is defined as a percentage of the square c}f
the magnitude of the observed displacement ~ ~a; ~ . In this brief note we will examine this problem a little
more carefully, with an eye towards exploiting the property a ~ N.

To begin, let 0,,, E RN denote any vector such that Ea @,,, = ~~i.  (For example forming +,,, by
appending zeros to ~di will do.) Now let @ = & - ~,,,, so that (1) can be rewritten as

The solution to (51) is then realized as 4N=@ +-belt where @ is the solution to (52). It is straightforward
to verify that the objective functional and constraints are both convex in (52), so that (52) is a convex
programming problem. Because of the convexity, the Kuhn--Tucker (KT) necessary conditions for
opt imality  are then also sufficient, and furthermore any local solution is also a global solution [16],

With this in mind we will investigate the KT conditions for this problem. First we form the
Lagrangian, L(.A , #1 ), with h a real number and

L(A, (#)) =<(G+ Ala)@,(#)>  +2< G$, $,1,> -AE +  <G$,Xt,  (#)c,,>, (53)

where the NxN matrices G and I. are defined as G = [ K - W2 M ] 2, and 1. = Ed7Ea.  The K’T
conditions are:

V$L(A, $)=O, (54a)

~,ith

A>o, (54b)

and

A[c -I EO$12] = 0 . (54d)

Now (54a) is equivalent to

(G+ Ald)@=-G($ti. (5s)

Assuming G is invertible, (55) has a solution for any A > 0 since la > 0 (In fact if k > 0 it is sufficient
that N(G) n N(E,) = O; however we will assume that G is invertible. ) The KT condition (54d) implies
either A = O or c - ~Ed @ I 2 = O. If X = O, then @ = -~c,, and ~~= O. This can only happen if

12 which is an uninteresting choice of constraint. So we will assume that c < J @cl,  ~ 2. In this~ ~loc,(  I !
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case the solution to the optimization problem is

(S6)

where

(j(A) = -(G + klJIG(j,  r( (57)

satisfies
w

~Ea$(l)~*”c. (S8)

We will now show that (58) is indeed satisfied for some A > 0. Define T(A ) = ~ L’a @ (h ) [2.
Observe under the present assumptions that T(O) > c, Also note that T is a continuous function. Since
G is invertible there exists an invertible matrix X such that F = ~“GX and T = ~1~ are both diagonal
with non- rlegat  ive entries. Furthermore, since rank(]fl) =- u , it follows that T has only u non-zero entries.

By a permutation we can arrange these so that the non-zero entries occupy the first a rows of T. So now

we can write

(#)( A)=” X*(a),

where

I/et Xj denote the j’” column of X. Then we have

T(A) = <la XV(A) ,)a XI)(A)>
. <x~]ax$(~) , *(A)>

a‘q
--”””---1

T.<x. ,G40t>  2

- J . . .._J.
j. 1 Fj+A~ “

Thus it is seen that Iim ~_.., T(A ) = 0. Hence by continuity there must exist a A ~ such that T(A ~ ) since

T(o) > E . This discussion is summarized in
Theorem 1. If G is invertible, the optimization problem (51) has a unique global solution ~ai

obtained by solving equations (56)--(58) above. (57) has a unique solution of each A, and there exists a
unique X ~ that solves (8) whenever c K ~ @c,, ~ 2. If ~ > ~@ti,~2 then $~= O solves (51),

‘1’heorem 1 settles the question of existence, uniqueness, and how to obtain the sohrtion to (1).
We will next take up the question of eficienfly  solving this optimization problem. A cursory analysis of
the problem seems to require finding the transformation X, In general X is a full NX N matrix. Obtaining
X for large N is a very troublesome point. We will show how to circumvent this difficulty.

The relevant observation to make here is that simultaneously diagonalizing  G and Id is equivalent
to obtaining the eigenvalues  and eigenvectors  of the matrix Z = G “’ la. Now let R(Z) be the range of Z,
where R&) = R(G” EdF)  has dimension u. This is the fact that we shall exploit. Let U be an orthogonal
Nxa matrix whose columns span R(Z). If u is an eigenvector of Z with non-zero eigenvalue A, it is
evident that u C R(U) since AU = Zu E R(Z) == R(U). Hence there exists Y E R“ such that Uy = u.
I.et ui denote the a independent eigenvectors of G” 1. with non-zero eigenvalues, and for each i let
Uyj = u,. I/et Y be the a xu matrix with cohrrnns yi, and define X. == UY. Then it follows that
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and

are both a x a diagoqal matrices. Essentially what we have accomplished here is the simultaneous
diagonalization of G and 10 on the subspace  spanned by U. It will next be shown that this is actually
enough to solve (57)--(58).

introduce the orthogonal projections PL, = VU7 and Pv = 1- P(,, Pu is the orthogonal projection

onto R(U) and Pv is the complementary projection onto the orthogonal complement of R (U). Since G is
invertible, (55) is equivalent to

(~+~~)$(a)=  -@e,,. (s9)

Now

z = (Pu + F’V)Z(PU + l’”)
= Zp” + Zpv,

since R&?) = R(P[, ). Writing + fi) = Pu +(A) + Pv 4(A) , (59) becomes

(60)P“@ + P“+ +  Az[Pv@ +Pu$]  ‘  -Pvoa,  - F’”@ex,  .

R(PV ) n R(PU ) = O implies

p“ 4 ‘ - p“ 0,.,, . (61)

It remains to solve for Pv ~. Substituting (61) into (60) and multiplying through by G, we obtain

( G  + AIO)PU($ = -G I’UO,X, +  
AIOPV+,.,, . (62)

Because R(XJ = R(PU ), there exists a vector y E R’a such that Pu @ = X. y, Now we can reduce (62)
via die transformation X.

(63)

to obtain

Thus we obtain the final result

~(k) = Xa(Fa + A T~)-’Xo7(-GP@CX, + Ala Pv(#)fl,  ) - Pv$~,  .
(6$)

with PL, @(A) computed from (64) above.
Once the matrix X., and the vectors Fa and 70 are obtained, the computation of@@) for any A

requires O(m)  flops, while T(?J = I Ed O(A) ~ 2 is determined in just 0(a2) flops. Thus, computing T is very
cheap, and it becomes a straightforward matter to solve T(A) = c. As we saw earlier T decreases
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monotonically to zero. A simple solution method we have implemented is to increase A exponentially until
T(A) K c to obtain an initial interval containing the solution. Once this interval is determined a bisection
method is implemented.

The most expensive computation involved in determining X. when N > ~ is computing the
transformation Z. For full matrices this is an 0(N3) operation. Fortunately, in structures applications this
computation can be reduced considerably by utilizing sparse matrix techniques.

e

7.0. FLJRTIIER  RMS[JLTS  AND CONCI.UDING REMARKS

Several mode shape expansion methods have been proposed and investigated, These expansion
techniques fall into three main categories. The first one uses direct solutions of the static and dynamic
equations to obtain a closed-form equation. This category includes the Guyan and the Kidder methods.
It is shown that these direcl  methods can also be written in terms of a constrained minimization problem.
The second category uses a least-squares method to minimize the error between the measured and
modeled eigenvectors. Within this category, the Procrustcs method imposes orthogonal it y of the mode
shapes. The third category formulates the expansion as a least-squares minimization problem with “soft
constraint”. One approach incorporates the soft constraint as a penalty term; a second approach uses an
inequality constraint. These constraints can depend on either the measured or an already expanded mode
shape.

The trade study demonstrated that the LSQI method based on minimization of the dynamic force
equation and subject to bounds imposed by measurement noise has the best performance. The Procrustes
method has an average performance, whereas the direct methods are the worst, The 1,SQI methods based
on strain energy minimization yield results comparable to the Guyan or Kidder methods, even in the
presence of large measurement noise, and without any computational advantage.

It was shown that the Guyan method can only properly expand the first few modes. To get a
suitable expansion with the Guyan method, a minimum ratio of 3 to 4 accelerometers per mode is
required - as common] y practiced experimental y. Lower ratios of instrumented dofs to modes and better
performance can be achieved with the Procrustes,  the Kidder and the LSQ13. Under ideal experimental
and anal yt ical conditions, the Kidder method can correct 1 y expand all modes represented in the data set.
This method is not sensitive to the aset selection, but is extremely sensitive to noise and model
deficiencies. It was shown that the LSQI methods based on strain energy minimization did not improve
on the accuracy of the direct methods, while imposing a significant computational cost.
Computat  ionally, the most efficient expansion method is the Procrustes  method. Along with the LSQ13
met hod, it is the on] y method which can properly expand mode shapes which are not complete] y
represented in the selected instrument locations. However, the Procrustes  method can only achieve this
if the analytical and experimental modes are properly paired. Pairing is automatically guaranteed in the
other methods through the FEM model and the measured modal frequencies. Furthermore, the Procrustes
method is very sensitive to measurement dof location and selection, as well as to the number of
simultaneously expanded modes, In an actual situation this is a big disadvantage as the real solution is
not known, and the variation in the error can be great,
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The LSQI expansion method with dynamic force minimization has the best all-around
performance. It is insensitive to moderate amounts of measurement error, and is capable of predicting
eigenvectors  at unmeasured dofs with greater accuracy than the noise-corrupted data measured at those
locations. I,SQ13 is the only method which is capable of regularizing global and local model errors,
resulting in mode shapes of higher accuracy than the model originally predicted, even in the presence of
experimental noise. This makes the LSQ1 expansion method with Dynamic Force Minimization ideally
suited for recursive ~~del updating, damage detection and response prediction technique. Its biggest
disadvantage is in its computational requirements, however, with improved algorithms and more powerful
computers (e. g., parallel processing), this is not a significant
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2 11.43 1,90 7.12—— 0.99 I ,00
3 12,47 1,54 6.33__.__—— 1.00 I .00

4 :!7.38 6,73.— 8.54 0.99—. 1,00

5
8

32.80 3,68 31.26 0.90 0,9s
6 34,23 8.33 36.94 0.86 0.93—.
7 38.52 8.83—— 24,47 094 0.97

8 44.59 3.14.— 30,19 0.91 0,9s
9 46.99 5,07 39.38 0.84 0.92

Table  I. MPI Pre-Test  Model: Frequency Error, Mode Shape Error, MAC (Eq.46) and MX
(Eq. 49) with Respect to Test Data.

S )
rzzJG4 (% ❑ ;: Model Test

NIAC hlX 1
1 7.67 1.00. — . 564 1.00 1.00

2 11.43 I ,90.— 7.12 0.99 I .00
3 12,47 1.54 6.33 1.00 1.00

4 27.38 6.73 8,54 0.99 1.00
5 32.80—. 3.68 31.26 0.90 0.95

6 34.23 8,33.— - 36.94 0.86 0.93

7 38.52 8.83 24.47 0.94 0.97

8 44.59 3.14 30.19 0,91 0.95

9 46.99 5.07 39.38 0.84 0.92

Table II MPI Pre-’I’est Model: Frequency Error, Mode Shape Error, MAC (Eq.46) and MX
(Eq. 49) With Respect to Test Data.
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E
E:3KZlbi ‘“ :(3 lest

(% )
Test

NIA(: NIX 11 7.82.— 0.88 5.70 1.00-— 1.00

2! 11.66.— 0.11 8.26 0.99 1.00

3 12.75 0.67 7,42 0,99. I .00

4 * 29.52 0.S6 6.71 1,00 1.00

5 34,45.— 1.16 6.04 1.00 I .00

6 37,76 1.12.— 9.82 0,99 0.99

7 42.81.— 1.32 9.61 099.— I .00

8 47.30.— 2,74 15, ]8 0,98.— 0.99

9 51.14 3.30,— 26,88 0.93 0.96—

Table 111 NW] lJpdated  Model: Frequency Errors, Mode Shape Error @q. 44), MAC (Eq. 46)
And MX (Ilq. 49) With Respect To Test Data.

E--z
:—

ASKT  # NllhlBER OF 1.OCATION
INSTRUMENTS.— [Rl”l’kXUA

1 3 1 per boomtip

2 12.— triax @ boom tips

3 12.— optimal MAC

4 6— .— best mode l&2-—

5 6,— 2 per boomtips

Table IV Summary of Instrument I.ocation  Cams.

,
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‘igure 1 The Micro-Precision Interferometer Testbed,
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igure 2 Mode Shape Error as a Function of Weighting Coefficient ~ for the

Strain Energy Expansion Method with Measuren~ent  Error Penalty.
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Figure 3 Mode Shape Error as aFunction of Weighting Coefficient ~ for the

Strain Energy Expansion Method with Measurenlent Error Penalty.
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Figure 4 MAC Diagonal (measured vs expanded) - ~;xpanslon  Irom 1A dofs (aset5

to 240 dofs with ideal model and no additional measurement error.
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Figure 5 Frobenius Norm Mode Shape Error (measured vs expanded) - Expansion
from 12 dofs (asetS) to 240 dofs with ideal model and no additional measurement

error.
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Figure 6 MX Diagonal (measured vs expanded) - Expansion from 12 dofs (aset5)

to 240 dofs with ideal model and no additional measurement error.
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Figure 9 Mean mode shape error as a function of aset selection - Mxpansion  of nine

modes to 240 dofs with updated HIM model and no additional measurement noise.
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Figure 10 Mean cumulative mode shape error - Expansion from 6 dot-s (Usetj) to 1,4[

dofs with updated FEM model and no additional measurement noise.
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igurc 11 Mean cumulative mode shape error - Expansion from 12 dofs (aset5) to 240
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‘igure 12 Mean cumulative mode shape error - Expansion from 12 dofs (aset5)  to 24~
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Figure 13 Mean cumulative mode shape error - Expansion from 12 dofs (aset5) to 240
dofs with damaged pre-test FEM model and no additional measurement noise.
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Figure 14 Mean cumulative mode shape error - Expansion from 12 dofs (aset5)  to 240
dofs with damaged pre-test FEM model and 2S% additional measurement noise.
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