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Abstract

Analysis of 24 years of lunar laser ranging data has been used to test the Principle of
Kquivalence, geodetic precession, the PPN parameters £ and «, and G /. Recent data can
be fit with an rrns scatter of 3 cm. (a) Using the Nordtvedt effect to test the Principle of
Equivalence, it is found that the Moon and Iarth accelerate aike in the Sun's field. The
relative accelerations match to within 5 x 18 ‘Jhis limnit, combined with a 7 limit from
planctary time delay, gives B. Including the uncertainty due to compositional diflerences,
the parameter g differs from unity by no more than 0.0014 ; and, if the weak equivalence
principle is satisfied, the difference is no more than 0.0006. (b) Geodetic precession matches
its expected 19.2 milliarcseconds/yr rate within 0.7%.T'his corresponds to a 1 % test of 7.
(c) Apart from the Nordtvedt effect, 8 and v can be tested from their influence on the lunar
orbit. Theoretically it is argued that the linear combination 0.88+ 1.47 can be tested at the
1% level of accuracy. During solutions using numerically derived partial derivatives, higher
sensitivity is found. Both g and v match the values of general relativity to within 0.005,
and the linear combination g8 -i 7 matches to within 0.003, but caution is advised due to
the lack of theoretical understanding of t'hese sensitivities. (d) No evidence for a changing
gravitational constant is found, with |G/G|< 0.9x 10, ‘There is significant sensitivity
to (;‘/G through solar perturbations on the lunar orbit.

I ntroduction

in July, 1969, the Apollo 11 lunar mission placed an array of 100 silica corner-cube laser
retroreflectors on the Sca of Tranquility. Within a fcw weeks the 2.7 rn telescope at the
McDonald Observatory on Mt. Locke, Texas, succeeded in detecting photons returned from
alascr pulse sent to the reflector. By 1970, the observatory was routinely obtaining ranges
with approximate uncertainties of 20--30 cm.

Two more reflector arrays were landed by Apollo missions in 1971: onc at the crater
Fra Mauro and one at Hadley Rille. A French-bui]t reflector aboard the Russian space-
craft LunakhodIl was placed near the crater .. Monnicr in early 1973. These events
provided an opportunity for testing relativity.

The Data Set

The data set used in this analysis consists of r anging observations from three sites covering
the time from March, 1970 to Jaunary, 1994. Between 1970 and 1984 the only data used arc
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those from the McDonald Observatory. Then in 1984 two other stations began acquiring
ranges. one on Mt. Haleakala on the island of Maui; the other at the CERGA station in
Grasse, France. (In 1985 the 2.7 m McDonald instrument ceased laser ranging operation
and was replaced by the McDonald Laser Ranging System, a dedicated 60 cm telescope,
The Halcakala facility terminated lunar ranging operations in August, 1990.)

The lasers currently used in the ranging operate at 10 Hz, with a pulse width of about
200 picosecond; each pulse contains ~10'® photons. Under favorable observing conditions
a single reflected photon is detected once every few seconds. For data processing, the
ranges rcpresented by the returned photons are statistically cornbincd into normal points,
each normal point comprising anywhere from 1 to~1 00 photons. There arc 8427 normal

points used in this investigation, spanning the period from March, 1970 through January,
1994,

The ranges of the early 1970s had uncertainties of approximately 25 cm. By 1976 the
uncertainties of the ranges had decreased to about 15 cm. Accuracies improved further in
the mid-1980s; by 1987 they were 4 cm, and the present uncertainties arc 2-3 cm.

Estimated Parameters

Onc immediate result of lunar ranging was the great increase in the accuracy of the lunar
cphemeris. Within six years, the fitting of lunar range data reduced the range error from
approximately one kilometer to a fcw decimeters. Mcasurcments at the highest level of
precision also provide commensurate determination of the lunar physical libations (rota-
tion), reflector coordinates, elastic deformation, rotational dissipation, moments of inertia,
low-degree gravity field, and Y.ove numbers, as well as the mass of the Barth-Moon system,
and Farth station locations, precession and nutation of the equator, and rotation (UT1 and
polar motion). Also estimated is the secular acceleration of the geocentric lunar longitude,
arising principaly from the interaction of the Moon with the terrestrial ocean tides.

The Mathematical Model

The simultaneous numerical integration of the Moon and planets uscs the solar-systemn
barycenter. ‘I"his approach establishes the coordinate frame used for the computation of
the observable time delay or “range.” Each transmit and receive time at the ranging
observatory is transformed to the coordinate time for the solar-system barycenter using
the vector formulation of Moyer [I]. Geocentric observatory coordinates and seclenocentric
reflector coordinates are modified with a Lorentz transformation. The gravity fields of the
Sun and Earth delay the signal. Given a transmit time, the cornputcd rececive and reflect
times arc derived from a ‘Jight-time iteration .

‘The formulation of the JPI, planetary ephemeris programs is used to estimate the relativity
parameters. The principal gravitational force on the nine planets, the Sun, and the Moon is
modeled by considering those bodies to be point masses in the isotropic, Parametrized Post-
Ncwtonian (PPN) n-body metric [2]. A thorough description of the equations of motion for
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the planets and Moon is given in [3]. The portion of the model used in relativity analysis
is the point-mass acceleration for each of the bodies:
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where ry, ¥i, and ¥i are the solar-systemn barycentric position, velocity, and acceleration
vectors of body f;pu;=:Gmy;, where G is the gravitational constant and mj; is the mass of
body 7;r:;=|r;- r:|; B is the PPN parameter measuring the nonlinearity in superposition
of gravity; 7 is the PPN parameter measuring space curvature produced by unit rest mass;
vi = [*[; and ¢ is the speed of light. (The remaining part of the equations of motion
accounts for tides, gravitational harmonics, and the effects of the major asteroids.)

The parameter 7 also directly affects the measured range. ¥rom a geometrical point of view
the Sun, Karth, and Moon each curve space in their vicinity to varying degrees. The effect
of this curvature is to increase the round-trip travel time of a laser pulse. The complete
relativistic light-time expression was derived in heliocentric form by Shapiro [4] in 1964
and independently by Holdridge [5] in 1967. It was formulated in expanded solar-system
barycentric form by Moyer [6] in 1977. The portion of Moyer's form due to the Sun and
EKarth is )
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The first term on the right is the geometric travel time duc to coordinate separation; the
remaining two terms represent the curvature effects duc to the Sun and Earth. The complete
equation gives the elapsed coordinate time between two photon events, where an event is
indicated by the subscript i or 7.Event 1 is transmission, event 2 is reflection, and event 3
iS reception. A roman superscript denotes the origin of a vector: B is the solar-system
barycenter, S is the Sun, and E is the Earth. In the convention used here, the subscript ¢
represents the earlier of two photon events, j the later of the two. For the “up-leg” light
time, 1= 1 (transmission) and j=:2 (reflection); the “down-leg” values are ¢ =- 2 (reflection)
and 5= 3 (reception). In each case, 7=1-1.

The usc of the symbols in the equation is:




r$ = |r|,the magnitude of the vector from the Sun to photon event i (transmission or
reflection) at coordinate time ;- rJS. has the corresponding meaning for photon event j

(reflection or reception). Superscripts B and E have the meanings stated above.

rfj = ]r? —Arf |, the magnitude of the difference between the vector from the Sun to photon
event j at time t; and the vector from the Sun to photon event i at time .

7 = the PPN parameter measuring the amount of space curvature produced by unit rest
mass; s = G Msun; fr == G Mgarn; and ¢ == the speed of light.

When converted to units of lunar range, the dominant effect of space curvature is duc to

the Sun and averages 7.6 m; the contribution from the Karthis about 4 cm. The ignored
effect of the Moon amounts to only 0.6- 0.7 mm.

LLR and Relativity

The Moon orbits the Earth at a mean distance of 385,000 km. Solar perturbations distort
the orbit from an idealized geocentric ellipse a about 1% of that figure.Since the earliest
development of the classical theory of gravitation, the Moon has been an important test of
that theory. Now that laser range observations to the Moon have accuracies of 3 cm, tests
of relativistic gravitational theory arc practical. This paper presents the results of tests
of the principle of equivalence, geodetic precession, the PPN quantities 8 and +, and the
time-rate of change of the gravitational constant G.

In the analysis and results which follow, the standard errors given for the estimated rela-
tivistic parameters are ‘(realistic” rather than the formal values derived from the estimation
process. The reasons arc (1) for a large nunber of data points, systematic errors can corrupt
solutions by more than the formal error (which assumes random errors) without producing
obvious signatures in post-fit residuals. There arc known dynamical systematic effects, such
as solar radiation pressure and internal lunar viscous dissipation, that arc not modeled; and
(2) both the density and orbital sample space of the data arc non-uniform. Most of the
lunar range data arc obtained near the first and last quarter phases of the Moon; such
preferential distribution is of concern.

This paper presents the results of the determination of relativity parameters using LIRR
data. During the solution process, however, approximately 140 additional paramecters are
estimated, including the ephemerides of al the planets and the masses of selected asteroids.
Reliable estimation of the planetary orbits and asteroid masses requires the inclusion of more
than 64000 planetary observations. ‘1 hose data do indeed provide a strong determination of
the aforementioned parameters, but their presence is not directly used to estimate relativity
parameters. This paper is intended as a lunar test of relativity.

The Principle of Equivalence

Nordtvedt [7], [8], [9], [10] has published an analysis of the effects of a violation of the
Principle of Equivalence. (A consequence of this principle is that the gravitational mass
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Myg of any object is identical to its inertial mass M;.) The Earth and Moon are accelerated
by the gravitational field of the Sun. Failure of the Principle of Equivalence would cause a
differential acceleration between the two bodies, giving a dipole term in the expansion of the
Sun’s gravitational field at the Earth. Nordtvedt points out that a failure of the principle
would lead to an anomalous radial perturbation with the 29.53-day synodic period between
the Moon and Sun. (The synodic period is the reciprocal of the difference between between
the inverse sidereal periods: 29.53 = [1/27.32 - 1/365.24]'.) The argument (designated
D) with synodic period is the mean longitude of the Moon minus the mean longitude of the

Sun and is zero at new Moon. Any anomalous radial perturbation will be proportiona to
Cos D.

A Dbreakdown of the Principle of Equivalence gives an acceleration of the Moon with respect
to the Itarth of GM’]']r’/r'a, where G isthe gravitational constant, M’ is the is the mass of
the Sun, r' is the vector from the Sun to the Earth-Moon center of mass, r' is the magnitude

of ¥/, and E = (My/M;)garth - (My/M;)Moon is the difference between the Iarthand Moon
gravitational-to-inertial mass ratios.

The lunar mean anomaly is 1; its rate is the natural frequency for radial perturbations.
Nordtvedt’s origina first-order expression for a near-circular orbit can be written
, 1/2(214 D)

Ar=. - dE-_ "\ . ~cos . (3
D(%- D?)

In the conventional notation of lunar theory, I. is the mean longitude of the Moon, 1. is the

mean longitude of the Sun (180 degrees from the heliocentric mean longitude of the Earth-

Moon barycenter), d is the heliocentric semimajor axis of the Earth-Moon barycenter orbit,

and D=:1 -- L'. (Dots over quantities indicate rates; primes denote quantities referring to
the Sun.)

As a check of Nordtvedt’s original result a soinewhat different derivation based on pertur-
bations of orbital elements was pcrformed. It gives

ii"22i4 D
Ar= -ad'E-". ( i . ) cos ). 4
LD@i2 - D?)
When evaluated in meters, the two coeflicients are -2.08 x 10'°FE and —-2.05 x 101°K,

respectively. The difference between the two is only 1.4%. It will be noted that the de-
nominator contains the combination - IJ, which is the difference between the solar mean

motion and the lunar perigee precession I/- &. A breakdown of the equivalence principle
would also give rise to a perturbation in longitude proportional to sin ID.ForaAl , where
a is the semimajor axis, the companion to ¥q. (4) has a cocflicient --2.1 times larger.

Recently Nordtvedt [11] has demonstrated that the earlier-derived coefficients of cos 1) need
to be increased by about 40% over the values given above. This amplification arises because
of the strong solar influence on the lunar orbit. The synodic period of the perturbation

5




interacts with the 2> tidal expansion of the solar field at the Karth. With this correction
the radial perturbation in meters is

Ar =- --2.87 x 10 “FEcos D

The longitude perturbation also needs to be increased by about 40%.

The above equations apply to any breakdown of the Principle of Equivalence, A breakdown
of the Strong Equivalence Principle, where gravitational self-energy U, can influence the
gravitational interaction, is possible for bodies the size of the Karth and Moon. Nordtvedt
gives

M, ) U,

M, T M
The quantity n depends on the PPN parameters § and 7 according to

n=4-~v- 3
and is zero for General Relativity. Numerically,

E = (- 464 x 10- ‘o-1 0.19 x10™ %)y

5
- 4.45 x 10- '°y. ©)

Ioxpressed in terms of 5,the radial perturbation inmecters is Ar =-12.8ncos 1).

The above values in Eq. (5) arc the same as used in [1 2], where the Earth’s self-energy is
based on the result [13] for a structured interior, and the Moon's self-energy is based on

ahomogencous interior. Adelberger et ccl. [14] nave suggested a 10% larger value for the
Ilarth. Our own computation for theself-energies for radially structured interiors for both

bodies recovered the earlier values to the number of digits given in Eq. (5).

Apart from the Nordtvedt effect, there are other causes of cos D signatures in the lunar
distance. From the classical expansion of the lunar orbit ([1 5], [1 6]) there isa109km
cos D termn in the radial coordinate. The amplitude depends on mass ratios, mean motions,
and the mean distance to the Moon, but these are well enough known that no significant
error occurs for this coeflicient. There is also a relativistic contribution apart from the
Nordtvedt effect which has been computed by [11], [1 7], [18], [19], [20], [21], and [22]. This
relativistic contribution is given as --6 cm cos 12in (1 9]. The numerica integration of the
relativistic equations of motion should include classical and relativistic orbit signatures in
our lunar ephemeris. Williams et al. [12] mention that theinteraction between the Earth’s
gravitational second harmonic J,and the Sun gives rise to a - 5 cm cos D effect (- 7 cm with
the 40% increase). This force is included in our equations of motion. Solar radiation pressur,
also gives rise to a small signature [1 1], [23]. This effect is estimated to be --0.35 ¢m cos D.
The software contains a model for the solar gravity field but not for solar radiation pressure,
The differences between the transmit, reflect, and receive times are computed by iteration,
and the time delay of Eq. (2) is modeled, implying that there should be no anomalous
signatures due to these sources [24].



The partia derivative for M,/M; is generated by numerical integration (prior to the results
in [25] wc used the cos > formulation). The solution gives K=~ (4.3 - 4.6) X 103, This
is equivalent to --1.2 +4: 1.3 cm in the coeflicient of cos 1) or, for a violation of the Strong
Iquivalence Principle, to #=:- 0.0010+ 0.0010. The argument D is uncvenly sampled.
Ranges arc never acquired near new Moon bccausc of the bright Sun. The former 2.7 m
McDonald Observatory ranging system could acquire ranges near full Moon, but the newer,
more accurate, lower-energy-per-pulse systems have acquired full-Moon ranges only during
an eclipse. Wishing to bc cautious about uncertainties, the procedure of [26] has been used.
in a root-surn-squared sense, 1 crn has been added to the uncertainty in the coefficient of
cos D, 3.5 x 10~ % to &, and 0.0008 to #. If the unmodeled 0.3 cm effect from solar radiation
pressure is applied as a correction, then 12 = (3.2 4- 4.6)x 10"’ the cos DD coefficient is
-0.9:1 1.3 cm, and n=- -0.00073:0.0010. In the solution for E, the largest correlations of .4
OCCUr with G MEarth4Moon, lUnar semimajor axis a, and eccentricity e. These occur because
a cos 21 term is important for the G M determination and will not be independent of the
cos D term because of nonuniform sampling and of the facts that the semimajor axis is

connected to GM through Kepler's third law and that the product aeis better determined
than e

The results for £ and the cos ) coeflicient apply to the Kquivalence Principle, weak or
strong. lSarlier results for the Nordtvedt effect have been interpreted in terms of the Strong
Kquivalence Principle, the laboratory results for the Weak Equivalence Principle being able
to rule out effects duc to composition. Limits as low as those given above require considera-
ion of the Weak Equivalence Principle [20]. Adelberger et al. [14], [27] have combined their
Yotvos results with the Princeton [28] and Moscow [29] Eo6tvos experiments. For accelera-
tion in the solar field they place limits on the fractional acceleration due to composition. Su
etal. [30] have used test bodies which simulate the compositional differences of the Earth
and Moon. ~"heir compositional contribution to 2 is(-1.6 :f 2.2) x 10712, It should be
noted that the Nordtvedt test is anull result. It would bc necessary to have compensating
violations of the Strong and Weak Kquivalence Principles.

We wish to derive g from 5 and 7 using 8=(n-- 3)/4. The compositional constraints
from the preceding discussion contribute to n and 8. Combining the compositional [30]
and I.LLR results gives n= -0.00434 0,0051. The uncertainty for 7 is taken to be 0.002
from the interplanetary time delay [3]]. Including the Weak KEquivalence Principle, 8:-
0.9989:1:0.0014. Under the assumption that the Weak Kquivalence Principle is satisfied,
B = 0.9998+ 0.0006.

Previously reported results for the Nordtvedt effect are given in [1 2], [25], [26], [32], [33],
[34], [35], and [36]. The last two results have uncertainties comparable to this paper. The
uncertainty in determinations of the Nordtvedt effect has dccrcascd by a factor of 30 during
18 years.

Geodetic Precession
The geodetic precession is also caled both the geodesic precession and the de Sitter-J~okker
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precession, It contributes a 19,2 mas/yr (millarcscconds/ ear) rate to the lunar node, lon-
gitude of perigee, and mean longitude. The geodetic precession is prograde and is computed
from [37], [38], [39] tobe
(n'a’/c)*n'
P, = (V21 7)- 6
g ( ) (, . 612) ( )
where ¢ is the speed of light and, for the orbit of the Earth-Moon system about the Sun,
n' is the mean motion, @ thesemimajor axis, and € the eccentricity.

Wcreview and extend the discussion of [40], which proposes testing for the geodetic preces-
sion using LLILR data. The distance from the center of the Earth to the center of the Moon
can be represented by the series with largest terms (in kilometers):

r = 385001 - 20905 cosl - 3699 cos(2D) - 1) - 2956 cos2D) - .0 (7

The first term is the mean distance, the second results from the eccentricity of the orbit, and
the third and fourth are from solar perturbations. The lunar mean anomaly is I (27.56-day
period), and D is the mean elongation of the Moon from the Sun (29.53-day period).

For purposes of explanation, wc can imagine that the least-squares solutions are equivalent
to determining amplitudes, phases, and phase rates of individual terms in Eq. (7). More
exactly, there arc a limited number of free parameters in a solution, so that the ampli-
tudes, phases, and phase rates arc not all independent. Typically, the amplitude of a well
sampled frequency can be measured to about 1 cmn accuracy, From th, sccond term one
expects to determine the mean anomaly to 0.1 rnas and the anomalistic mean motion I
with correspondingly high accuracy. Iimitations, which increase the uncertainty, include
the need to aso determine quadratic and long-period (18.6 yr) tidal contributions to the
mean anomaly [41], terms a nearby frequencies which require 6.0-year and 8.9-year data
spans to separate fully, and a span of the most accurate data, which is 7 years long. ¥rom
the two solar perturbation terms and the mean anomaly, onc gets 1) with sub-mas accuracy
and its rate with corresponding accuracy. It is presumed that the planctary data give 1.
Since D:L -1 =& + 1- |,', the longitude-of-peri gee rate can be determined. The
geodetic precession can be thought of as being detected through its influence on the lunar
longitude-of-perigee precession rate. in addition to the errors in [ and f,’, we must ask what
errors arc present in the longitude-of-perigee r ate.

The lunar perigee precession rate is dominated by solar perturbations. While the classical
contributions to the perigee precession rate from lunar and solar orbital parameters arc
mostly very well known, two influences merit discussion. An error in the inclination of the
lunar orbit plane to the ecliptic plane of 1 rnas would introduce a 0.18 mas/yr uncertainty
in the perigee precession rate. The orientation of the planes of the lunar orbit, ecliptic,
and the ¥arth’s equator are determined by the 1.1.LR data, but it takes 18.6 years to get a
full separation of these parameters. Thusthe uncertainty in the lunar inclination has been
decreasing strongly with time, and a good test of the geodetic precession is a benefit of
the long data arc. The error in the first LI.R tests of geodetic precession ([25], [42]) was
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dominated by the inclination uncertainty. Because the highest quality data extend over
only the past 7 years, the accuracy of the inclination should continue to improve in the
future. The inclination uncertainty is now less than | mas, and this source of error should
continue to decrease.

The second significant source of perigee precession error comes from the lunar second-degree
gravitational harmonics J,and C,,. Since the ratio is accurately known from the LLR
analyses, we will refer to the error inJz only. Until recently we have used a 0.6% uncertainty
for the lunar J2, corresponding to a precession error of 0.14 mas/yr(0.7% of the geodetic
precession). This J,uncertainty came from [33], which combined the analysis of Lunar
Orbiter Doppler data and LLR data in a single solution. It was the Lunar Orbiter data which
determined the J,in that combination. ‘I’here have been two recent developments: LIR
can now determine the second-degree lunar harmonics as accurately as the earlier Lunar
Orbiter analysis [26], and the l.unar Orbiter data have been extensively reanalyzed [43]
with an improvement in accuracy. The two results are concordant. As wc now include the
lunar J, as a solution parameter, the Juncertainty, like the inclination error, is accounted
for during the least-squares solutions.

The equations of motion for the numerical integration of the lunar and planetary ephemerides
in ¥q. (1) are those of General Relativity. ‘Jhey containthe inherent geodetic precession
effects.

Wocisolated the terms in the relativistic equations of motion which give rise to the geodetic
precession, and wc included a scale factor K, representing a possible departure fromn the
prediction of Genera Relativity:

.. . 2us . . . . e
Tpar- TR =t Kgpz;;;g*'{‘ 1 UTRE CUVERE 323 ) DA BN ¢ IR RO 1 S SRN ¢ SV Ny 1} 1
B
where the quantities rg,ras, and rp denote the solar-system barycentric positions of the
arth, Moon, and Earth-Moon barycenter, respectively, and time is referenced to the solar-
system bar ycenter.

The solution for the geodetic precession coeflicient is

Ky, = -0.0034 0.007

‘I"he uncertainty corresponds to a precession error of 0.14 mas/yr.The largest correlation
of 0.56 is with the lunar J,; this parameter is now a more important error source than the
orbit inclination. As the coeflicient of the 19.2 mas/yr geodetic precession is (1 -12+)/3,
the precession duc to 7 is 12.8 mas/yr. The above result for K, corresponds toa1% test
of 4.

Bertotltiet al. [40] did not fit data but argued that geodetic precession was being satisfied
(@ from the small size of the LLR residuals, and (b) from the agreement between LILR
and VLLBIEarth rotation rate. Direct fits to thel.l.LR data ([25], [42]) confirmed geodetic
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precession to 2%. More recently Dickey et al. [26] give a 0.9% test. The result above reduces
the uncertainty to 0.7%. All results are consistent with 7 == 1 and General Relativity.

The PPN Yarameters

The PPN parameters of interest are 8, measuring the non-linearity in the superposition of
gravity, and 7, measuring the amount of space curvature produced by unit rest mass. In
General Relativity both parameters arc unity. Estimates of 7 and 8 have been obtained by
other investigators. Shapiro et al. [44], Cain et al. [45], and Hellings [46] used the Viking
orbiter and lander data to determine ~.Reasenberget al. [31] estimate the uncertainty in 7
to be 0.002, using Viking lander data. The test of the geodetic precession can be taken as a
1% test of 7, but this statement ignores additional sensitivity to PPN parameters, discussed
below.

The lack of detection of Nordtvedt’s term has been used to imply a small uncertainty on

B.Tests of B using the planetary range data ([34]) yield a 8 uncertainty of 0.003. ‘Jhere is
value in attempting to test g and 7 in an alternate manner.

Distinct from the Nordtvedt term, the relativistic point mass interactions of ¥q.(1) give
sensitivity of the lunar orbit to 8 and 7. P’artial derivatives for # and 7 have been gener-
ated from Kq.(1) by numerical integration. The orbit perturbations include the geodetic
precession. ‘Jbus, one expects solutions for 7 to have accuracies comparable to, or better
than, the above 1 % test resulting from the geodetic precession.

LLR solutions for g and 7 using the sensitivity from the relativistic point mass interactions
and the gravitational time delay kEq. (2), but not the Nordivedt term, show a smaller
uncertainty for 7 than would be predicted from the geodetic precession alone, and nearly
identical accuracies for both 8 and 7. Solving for #and 7 simultaneously: both uncertainties
arc 0.005, there arc no significant deviations from 1, and the linear combination 8- 7 is
better determined with an uncertainty of 0.003. The challenge is to understand the source
of this sensitivity and whether it is valid.

The discussion of the geodetic precession presented the view that the sensitivity to that
precession comes from the solar perturbations in combination with the elliptical radial
variations. In that discussion, the determination of the rate of the angle D:-7,- 1./ :
w-11- 1" was presented as giving sensitivity to the geodetic precession, and hence 7, through
the lunar perigee rate. When the relativistic point-mass interactions arc considered, the
rate of 1> also gives sensitivity to 8 and 4 as they influence L’. In the near circular
approximation, the angular rate of the Farth-Moon system about the Sun is given by

B = [(aMy 2 A1 s (B 4 4/2)

where A’ is not the semimajor axis a’ but rather the mean distance from the Sun when
relativistic perturbations are included, G is the gravitational constant, and M’ is the solar
mass (GM'=:n'?a’®). The scale for relativistic effects is set by

S=GM'/a'¢?=(n'a’/c)*= 0.98706x 108
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with Sa’= 1.4766 km and Sn'= 12.792 mas/yr. The relativistic contribution to the angular
rate is —Sn'(8 -17/2). ‘Jhe relativistic contribution to @~ I’ is then Sn’(0.54- 8- 1,57)
when the geodetic precession is included, but is closer to S$n’(0.65-10.88- 1.47) when a
more exact expression for the perigee rate is included ([t 1], [17], [1 8)). From the experience
with the geodetic precession, the linear combination of B and 7 should be determinable to
1%, This argument assumes that the lunar mean anomaly rate is well determined by the
LLR data and the mean distance from the Sun is well determined by the planetary range
data,

The solutions include both the ILLLR and planetary ranging data. A normal set of solution
parameters is used for the initial conditions of the Moon and planets, but the relativity
solution parameters were “turnéd on’only for the L1LR data. Both data sets arc sensitive
to the heliocentric Earth-Moon orbit. in an attempt to isolate the relativistic sensitivities
of the LLILR data from those of the planetary data, a double standard is being applied to the
heliocentric orbit. ‘I’he planetary data arc included so that appropriate uncertainties in the
heliocentric orbit will be propagated into the lunar orbit during the solutions. The double
standard is not perfect, but we do not see another way to isolate the contributions of the
lunar data from the planetary data, We have done a variety of solutions, including those
with planetary relativity parameters turned on, and they do support strong sensitivity of
the LLR data to relativity.

The solution cannot be finding all of its Band 7 sensitivity through the argument D, or
the two would not separate. Other terms with smaller amplitudes give less sensitivity to
other arguments; for example, sensitivity to the mean anomaly 1’ of the orbit about the
Sun is an order of magnitude less than the mean longitude sensitivity. Sensitivity through
the amplitudes are possibilities. Brumberg and lvanova [1 7], [18] and Nordtvedt [11] have
investigated the sensitivities of the amplitudesto # and 7. When one considers observable
amplitudes, the g and 7 sensitivities are mostly at the few-centimeter level. Brumberg and
Ivanova show two notable possibilities. *J he annual cos 1' term shows a (-- 16-1 263 - 67)-cm
relativistic contribution to its amplitude, and the cos /) term has (33 --488-f 107) cm in
its amplitude. Nordtvedt dots not compute the former term; for the latter term he gets a
similar-sized sensitivity. For General Relativity (8:=7 =- 1), the Brumberg and Ivanova
solution can also be compared to the solution by l.estrade and Chapront-Touzé [19]. The
agreement is good except for a few terms involving the annual argument 1'; this discrepancy
seems to be traceable to the 1.66-msec annual term in the time transformation between
the solar-system barycenter and the Earth-Moon barycenter. ‘Jhe amplitudes might give
sensitivity to B approaching 1%.

Concerning the sensitivity of the LLR datato # and 7 through point-mass interactions,
it should be possible to determine the combination (0.88- 1.47) to |% accuracy through
an argument rate. ‘Jhere is additional sensitivity to 8 and 7 through amplitudes. There
is numerical evidence that the sensitivity may be less than 1%, for which we cannot find
theoretical support. It is clearly worthwhile to combine the relativistic solutions from both
the LLR and planetary ranging data. Since the LI.LR data have their sensitivity through
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the lunar and heliocentric orbit, while the planetary data have their main sensitivity to -y
through the time delay in the solar gravity field and their main sensitivity to £ through
the precession of Mercury’s perihelion, the combination of data types offers an interesting
possibility. A combined solution would improve the accuracy of separating # and the solar
J2, which do not separate well when using the existing planetary data alone.

Change in the Gravitational Constant

Anayses of the LLR data have the potential to determine the rate of change of the gravi-
tational constant G. Tides on the Karth dissipate energy and transfer angular momentum
from the Earth’s spin to the lunar orbit. This causes the mean distance and orbital pe-
riod to increase. A decreasing .G would also cause both distance and period to increase
(2n/n -i 8a/a= G/G), but not in the same ratio as tides. Since the tidal effect is rela-
tively large (r/n = 1.5 x 101°/yr), and since we are interested in G/G less than 10731 /yr,
accurate tidal modeling is a necessity.

Our present tidal model includes dissipation by both diurnal and semidiurnal tides on the
Iarth and dissipation in the Moon. Yromrecent solutions [26] these Contribute to the
totaltidaln or @ in the proportions 16%, 86%, and - 2%, respectively. The uncertainty
in the total is 2%. More important than the linear increase in distance, the major tidal
acceleration effect comes from the - t2 change in mean anomaly causing a - ¢% sin 1 signature
in range, The diurnal and sernidiurnal terms are separable by a small 18.6 yr term in mean
anomaly [41 }. The dissipation in the Moon is mainly observed through its influence on
the lunar rotation and not the orbit,. The influence on the orbit is inferred from the lunar
dissipation model. ‘I’here are two possible sources of dissipation in the Moon: solid-body
dissipation, and viscous dissipation at a liquid-core/solid-mantle interface [47]. The former
source is programmed in our software; the latter is not. The two sources do not give rise to
the same orbital effects, so the lunar contribution is uncertain by most of its present 1.5%
effect. Expecting that changes in the lunar model would leave the total n and @ the same,
the present tidal model should be capable of supporting tests for /G with an accuracy of
0.6 x 1011 /yr, which corresponds to 2% of the tidal effect, or better. Programming the
aternative lunar dissipation model would improve the tidal acceleration computation and
benefit future tests.

A GG rate of --10~11 /yr causes a 3.9 mm/yr increase in the lunar mean distance (a/a =
-G/G), but if the t? term in mean anomaly is indistinguishable from tidal acceleration,
then —1/3 of the radia change, or --1,3 mm/yr, would be distinct from tidal acceleration. A
change in G aso causes accelerations in the angular motion about the Sun (n!/n' = 2G/G),
and the solar perturbation terms in Eq. (7) contribute additional terms. The contribution
from the acceleration in the heliocentric orbit through the solar perturbation terms gives
coeflicients of periodic terms which are quadratic. in time. With the linear term, the G
contribution to radial distance that is distinct from tidal acceleration is

1 Gt G . .
§r»G - 2-(; n't? [3699 sin 217 -} 2956 sin(2D -- 1)+ . .] km.
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Some small linear terms from the sensitivity of the coeflicients to mean-motion changes
have been ignored.

Yor , G/G rateof -1 ()11 /yr, the major terms are

-- 1.28t + (0.46sin(2D -1)-1 0.37 sin 2D)t* mm, (8)

with ¢ in years. For data spans of more than a decade, the nonlinear terms surpass the
linear term in importance (The envelope, rms, and average signature due to lq. (8) arc
shown in Figure 1). Thus, an increasing data span has the potential to strikingly improve
the G/G determination.

The LLR data have been used to estimate G/G with a null result. A rate of 10" ! /yr
would yield signatures from the solar perturbations exceeding10cm rms in the early 1970s
and reaching 1 cm rms in 1993; the lack of such signatures demonstrates the importance
of the early data in conjunction with the more accurcate data in limiting G. 7The size
of the signature justifies an uncertainty of 0.7 x 10/yr. Including an uncertainty of
0.6 x 10~ /yr from the 2% tidal acceleration error gives 0.9 x 1071 /yrtotal uncertainty.
The LLR G/G result is (0.1 4. 0.9) x 10~ /yr. The largest correlation is .67 and is with
the semidiurnal tidal component.

As a check of the linear effect, a separate solution has estimated a rate in the mean distance
with uncertainty 3.5 mm/yr, equivalent to 2.7 x 1011 /yr for G/G.The former solution
implies a smaller G/G uncertainty, illustrating the dominance of the nonlinear solar per-
turbation terms.

The present I.LLR results for G/G do not improve significantly on the planetary ranging

results ([34], [48]). Recent results have aso been given for planctary data combined with
1.LLR data [49] and the binary pulsar [50], [51], [52], [53].

comparison

Brief references to individual tests have been given in the separate sections Of this paper.
Broad analyses of the LLR data for several relativistic effects have been given by Miiller
et a. ([35], [54], [55]). The Earth-Moon orbit about the Sun contributes uncertainty which
was not considered in the solutions given in [35] and the uncertainties given in [54] and [55]
are more redigtic (J. Miiller private communication, 1994). ‘Jhe results and uncertainties
of those later papers arc in general agrecment with this paper.

Conclusions

Solutions using 24 years of lunar laser data have been used for three tests of relativity and
.a check of the constancy of the gravitational constant. ‘Jhe LLR data have improved with
time. The data since 1987 arc particularly accurate with 1987 ranges showing a weighted

rms residual of 4 cm and 1993 residuals scattering by 3 cn.

The Nordtvedt effect gives strong sensitivity to any violation of the equivalence principle.
Using a numerically derived partial derivative for the gravitational to inertial mass ratio,
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(Mg /MDrarn - (Mg /M1)Moonl < 5 x 1019. Since any violation of the strong equiv-
alence principle depends on B and 7, and since there are good determinations of 7 from
interplanetary time delay measurements, then including the uncertainty due to comnposi-
tional differences between the Earth and Moon |8 --1| <0.0014. If it is assumed that the
weak equivalence principle is satisfied, then |8 -- 1| <0.0006.

The geodetic precession is within 0.7% of its expected value of 19.2 mas/yr. Since this
precession depends on the factor (1 4- 27)/3, this result is also a 1% test of «under the
assumption that other relativistic effects are known. The lunar J2 is the most important
correlated source of uncertainty.

Independent of the Nordtvedt effect, but including the geodetic precession, there arc orbit
perturbations depending on Band-y. The time delay gives some sensitivity to 4. The LLR
solutions usc numerically derived partial derivatives for the orbit perturbations and indicate
sensitivity to # and 4 beyond that expected from theoretical work. It is certain that the
linear combination 0.883--1.47 is tested at the 1 % level since it arises through the same
solar perturbation terms which give the geodetic precession test. The work of Brumberg
and Ivanova indicates additional sensitivity to # and 7 through annual and synodic monthly
terms, and Nordivedt’s work supports sensitivity in the latter term. Neither work would
support 8 and 7 accuracy better than 1%. ¥rom the I.LLR solutions 8 and 7 match the
values of general relativity within the uncertainty of 0.005, and the linear combination
£ -1 7 matches within 0.003. ¥or the LLR solutions it must be cautioned that usc is inade
of the planetary ranging data to determine the distance of the}arth-Moon orbit from the
Sun, without allowing those data to directly contribute to the determination of the P PN
parameters. It is important to understand this test better, since the sensitivity to 48 -- ~
from the Nordtvedt effect in combination with the sensitivity to 8-7 gives atest of v with
uncertainty 0.003, which is second in accuracy only to the interplanetary time delay, and it
can be expected to improve in the future.

On the question of a changing gravitational constant, solutions show no significant change,
with |G/G|< 0.9 x 101114 previously has been understood that G and tidal acceleration
both influence the lunar period and mean distance, but G and tidal acceleration would be
separable from a linear term in time. Here it is shown that the influence of G also causes
nonlinear time signatures, through the solar perturbations, which arc aready dominant.

‘Jhe lunar orbit is highly perturbed by the Sun. This paper’s tests of relativity and G
all depend on the solar perturbations. Reasoning from two-body theory is insufficient for
the lunar orbit. All of the tests will improve with additional data of present quality. The
geodetic precession test, depending on a secular effect, will benefit from increased data
span. The tests of B and « through orbit perturbations (apart from the Nordtvedt effect)
arc the least well understood, but hold promise. Incombination, the lunar and planetary
ranging data should be able to improve on the dynamical determination of the<ilar ),
Finally, there are lunar G terms, nonlinear in time, which should permit significanttiture
improvements in testing the constancy of G.
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Figure Caption

Effect of G/G=--1x 10~ /yr on the radial coordinate of the Moon. Thecurves are
annual samples of the observed weighted rrns range residual and four curves based on the

theoretical signature: the maximum, rms, average, and minimum. ‘lI’he reference time in
Kq. (8) is 1989.
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