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Abstract
This abstract cfcscribcs  work in developing knowledge
base editing and debugging tools for the Multimission
VICAR Planner (MVP) system. MVP uses Artificial
Intelligence (Al) Planning techniques to automatically
construct executable complex image processing
procedures (using models of the smaller constituent
image processing subprograms) in response to image
processing requests made to the JPL Mrrltimission
lmagc Processing laboratory (Ml]’].).

I.Introduction
A major factor in determining the feasibility of applying Al
planning techniques to a real-world problem is the amount
of effort required to construct, debug, and update (maintain)
the planning knowledge base. Yet despite the criticality of
this task, relatively little effort has been devoted to
clcvcloping  an integrated set of tools to facilitate
constructing, debugging, and updating specialized
know]cdgc  structures used by planning systems.

This paper describes two types of tools developed to
assist in developing planning knowledge bases - static
analysis tools anclcompletio nanalysi stools. Static analysis
tools analyz.c the domain knowledge rulcsand  operators to
scc if certain goals can or cannot be inferred (clearly such
checks must be incomplete for reasons of tractability).
Static analysis tools arc useful in detecting situations in
which a faulty knowledge base causes a top-level goal or
operator precondition to be unachievable - frequently due to
omission of an operator effect or a typographical error.
Completion analysis tools operate at planning time and
allow theplanner to complete plans which can achieve all
butafcw focussed subgoals ortop-leve]  goals. Completion
analysis tools areusefu]  incascs where afaultyknowlcdge
base does not allow a plan to be constructed for a problem
that the domain expert believes is solvable. la the case
where the completion analysis tool allows a plan to be
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formed by assuming goals true, the domain expert can then
be focussed on these goals as preventing the plan from
being generated.

The static analysis and completion analysis tools have
been developed in response to our experiences in
developing and refining the knowledge base for the
Multimission VICAR Planner (MVP) (Chicn 1994a, 1994b)
system, which automatically generates VICAR image
processing scripts from specifications of image processing
goals.

Section 2 dcscribcs  the application area, automated
image processing in the VICAR image  processing
language. Section 3 describes the Multinlission  VICAR
Planner (MVP) system for automating image processing,
and describes the types of knowlc.dge representations used
by MVP. Section 4 describes two types of tools we have
dcve]opcd  to assist in developing and debugging planning
knowledge bases developed for MVP: static analysis tools
and completion analysis tools.

2. VICAR Image Processing
Currently, a group of human experts, called analysts,
receive written requests from scientists for image data
processed and formatted in a certain manner. These
analysts then determine the relevant data and appropriate
image processing steps required to produce the requested
data and write an image processing program in a
programming language called VICAR (for Video image
Communication and Retrieval } ) (1.aVoie et al 1989).

Unfortunately, this current mode of operations is
extremely labor and knowledge intensive. This task is labor
intensive in that constructing the image processing
procedures is a complex, tedious process which can take up
to several months of effort. There arc currently tens of
analysts at MI PI. alone whose primary task is to construct
these VICAR programs. Many other users at JPI. and other
sites also write VICAR scripts, with the total user group
numbering in the hundreds.
-.

] This name is somewhat misleading as VICAR is used to process
considerable non-video image data such as MAGI:  I,LAN
synthetic aperture radar data.



The VICAR  procedure generation problem is a
know] cclge intensive-task, Constructing VICAR procedures
requires diverse types of knowledge such as knowledge of

1. image processing in general and VICAR image
processing programs (as of 1/93 there were approximately
so frequently used programs, some having as many as 100
options)

2. database organization and database label
information to understand the state of relevant data

3. . the VICAR programming language to produce
and store relevant information.

Because of the significant amount of knowledge
required to perform this task, it takes several years for an
analyst to become expert in a VICAR image processing
area.

3. Automated Image Processing Using MVP
The overall architecture for the MVP system is shown in
lligurc  1. The user inputs a problem specification
consisting of processing goals and certain image
information using a menu-based graphical user interface.
These goals and problcm context are then passed to the
decomposition-based planner. The decomposition-based
planner uses image processing know]cdgc to classify the
overall problem type which the user has specified using
skeletal  platlrtitzg  techniques (Iwasaki  & Friedland 1985).
This classification is then used to decompose the problem
into smaller subproblems  using hierarchical planning
techniques (Stefik  1981). During this decomposition
process, MVP determines which information on the
database state is needed by the planner to solve the
subproblcms. The subproblems  produced by the
ctccomposition process are then solved using traditional
operator-based planning techniques (Pembcrthy & Weld
1992), in which a planner uses a description of possible
actions (in this case image processing steps) to determine
how to achieve subproblem  goals as indicated by the
problenl decomposition. The resulting plan segments are
then assembled using constraints derived in the
decomposition process. The resulting plan is then used to
generate an actual executable VICAR PDF using
conventional code-generation techniques.

MVP uses both decomposition and operator-based
plimning paradigms for two reasons: search control and user
understandability. Plans in the MVP domain can be of
considerable length (up to 100 steps) and each step (or
VICAT{  program) can involve reasoning about numerous
complex effects (many operators have tens of effects). Due
to the large search space caused by this complexity,
conventional operator-based planning approaches arc not
able to tractably construct plans in the VICAR domain
without significant control knowledge. By using the
ciecomposition planning paradigm, MVP breaks up the
large search space planning problems caused by the
complexity of the image processing problems in to multiple
smaller problems, thus reducing the search problems
encountered during operator-based planning. Indeed, the
problcm  decotnposition  rules used in MVP can be

considered a very important form of search control
knowledge essential to MVPS image processing capability.
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I~igure  1: MVP Architecture

MVP also uses decomposition-based planning for
reasons of user-understandability. Even if a purely
operator-based planning approach were able to generate
plans to solve the VICAR problems, these plans would be
difficult for MlPI,  analysts to understand because MlPI,
analysts do not consider an entire image  processing
problem all at once. Typically, analysts begin by
classifying the general problem being addressed into one of
a general class of problems, such as mosaicking, color triple
processing, etc. They then usc this classification and the
problcm context to decompose the plan into several abstract
steps, such as ]ocal correction, navigation, registration,
touch-ups, etc. Because MVP uses decomposition-based
planning to reduce the original image processing problem, it
can easily produce an annotated trace of how the overall
problem was classified and decomposed, simplifying
analyst understanding of the plan generation process.

MVP uses decomposition-based (1.ansky 1993)
planning techniclues to in~plcment  skeletal and hierarchical
planning and traditional operator-based (Pembcrthy  & Weld
1992) planning paradigms to construct VICAR image
processing scripts. Consequently, MVP uses two main
types of knowledge to construct image processing plans
(scripts):

1. decomposition rules - to specify how problems are
to bc decomposed into lower level subproblcms;  and

2. operators - these specify how VICAR programs can
bc used to achicvc  lower level image processing goals
(produced by 1 above). These also specify how VICAR
programs interact.

These two types of knowledge structures are dcscribcd
in further detail below.

3.1 Skeletal and }Iicrarchical  Planning in MVP
MVP uses a decomposition-based approach (1.ansky  1993)
to pcrfortn  Skeletal (Iwasaki  & Jricdland 1985) and



IIicrarchical  planning (Stefik 1981), In a dccon~position-
based approach, decomposition rules dictate how in plan-
space planning, one plan can be legally transformed into
another plan, The planner then searches the space plans
defined by these decompositions. Decomposition-basecl
approaches are extremely powerful in that many other
paradigms (such as modal truth criterion planning can be
implemented in a decomposition-based approach (J.ansky
1993). Syntactically, aclecol~lposition rule isoftheforl~~:

1.11s RHS
GI = initial goal set/actions GR. = reduced goal
scthlclioas
Q = constraints ==> Cl = constraints
C2 = context N = notes on clccomposi[ion

This rule states that a set of goals or actions G1 can be
reduced to a new set of goals or actions GR. if the set of
constraints CO is satisfied in the current plan and the
context C2 is satisfied in the current plan provided the
additional constraints Cl are added to the plan,

Skeletal planning in MVP is implemented in by
cncocling  decomposition rules which allow for classitlcation
aocl initial decomposition of a set of goals corresponding to
a VICAR problem class. The I.HS of a skeletal
decomposition rule in MVP corresponds to a set of
conditions specifying a problem class, ancl the R}IS
specifics an initial problem decomposition for that problem
class. For example, the following rule represents a
decomposition for the problem class mosaicking  with
absolute navigation.

1.11s RIIS
GI mosaicking goal present GR = 1. local correction,
co= Ilull 2. navigation
C2= an initial classification 3. registration

has not yet been made 4. mosaicking
5. touch-ups

C I = these subtasks be
performed in order
1.2 .3 .4 .5 .
protect local correction
until mosaicking

N = the problem class is mosaicking

This simplified decomposition rule states that if
mosaicking is a goal of the problem and an initial problem
ciccomposition has not yet been made, then the initial
problem decomposition should be into the subproblems
local correction, navigation, etc. and that these steps must
be performed in a cerlain order. This decomposition also
specifics that the local correction goals must be protected
during the navigation and registration processes,

la general, MVP permits goals and abstract steps to be
specified in the G] & GR fields. The constraints CO & C]
may be ordering and codesignation  constraints and the
context may specify the presence or absence of attributes

over the plan or goals (such as a certain goal not being
present, etc.).

MVP also uses decomposition rules to implement
hierarchical planning. Hierarchical planning (Stefik  1981)
is an approach to planning where abstract goals or
procedures are incrementally refined into more and more
specific goals or procedures as dictated by goal or
procedure decompositions, MVP uses this approach of
hierarchical decomposition to refine the initial skeletal plan
into a more specific plan specialized based on the specific
current goals and situation. This allows the overall problem
decomposition to be influenced by factors such as the
presence or absence of certain image calibration files or the
type of instrument and spacecraft used to record the image.
For example, geometric correction uses a model of the
target object to correct for variable distance from the
instrument to the target. For VOYAGER images,
geometric correction is performed as part of the local
correction process, as geometric distortion is significant
enough to require immediate correction before other image
processing steps can be performed, However, for
GAI .11.10 images, geometric correction is postponed until
the registration step, where it can be performed more
efficiently.

This decomposition-based approach to skeletal and
hierarchical planning in MVP has several strengths. First,
the decomposition rules very naturally represent the manner
in which the analysts attack the procedure generation
problem. Thus, it was a relatively straightforward process
to get the analysts to articulate ancl accept classification and
decomposition rules for the subareas which we have
implemented thus far. Second, the notes from the
decomposition rules used to decompose the problem can be
used to annotate the resulting PDF to make the VICAR
programs more understandable to the analysm. Third,
relatively few problem decomposition rules are easily able
to cover a wide range of problems and decompose them
into much smaller subproblems,

3.2  Opcralor-based Planning in MW’
MVP represents lower level procedural information in
terms of classical planning operators. These are typical
classical planning operators with preconditions, effects,
conditional effects, universal and existential quantification
allowed, and with codesignation  constraints allowed to
appear in operator preconditions and effect conditional
preconditions. For reasons of space constraints the operator
representations are not described here (for a gooci
description of a classical planning operator representation
similar to ours scc (1’cmberthy  & Weld 1992)).

3.3 Chrrcnt Status of MW’
The current version of MVP is in use in the JPI.
Multimission  lmagc  l’recessing laboratory (MJPL) and
covers the image processing areas of radiometric correction,
mosaicking  with absolute navigation, and color triplet
reconstruction. An expert analyst estimated that MVP
reduces the effort for these tasks for an expert analyst from



1/2 a day to 15 minutes and for a novice analyst from
scvcral clays to 1 hour.

1 n the current vcrsicm,  MVP 2.0, there are on the order
of 40 decomposition rules (of these approximately 10
perform skeletal planning classification and 30 perform
hierarchical decomposition). These decomposition rules
cover on the order of hundreds of goal combinations ancl
problcm contexts. These decomposition rules are able to
break down the script generation problem into several
(typically 5) goal sets each of approximately 5 to 10 goals,
whcrecach  goal set is typically achievable by a subplan of
IOoperatorsor]ess. This size ofsubplan  iseasilyhandlcd
by the operator-based planner wjth search of on the order of
thousancls ofp]ans andcanbc constructed on the order of
10sof  seconds fora Sparcstation 10, The operator-based
planner for MVP version 2,0 uses approximately 45
planning operators to reason about approximately 30
VICAR progratns,  and models approximately 50 file
attributes. Many of these operators are quite complex and
contain 10-20 effects (n]anyar  econditiona leffects),

4. Knowledge Acquisition and Refinement
in MVP
In order for MVP to be able automatically generate VICAR
inla.gc processing procedures, the knowledge base for MVP
must represent large amounts of knowledge in the form of
decomposition rules and operators. Unfortunately, eliciting
and encoding this knowledge is a tedious, time-consuming
task, In order to facilitate this key process of knowledge
acquisition and refinement wc have been developing a set
of knowledge-base editing and analysis tools. These tools
can be categorized into two general types: (1 ) static
knowledge base analysis tools; and (2) completion analysis
tools. IIccause  MVP uses two types of knowledge:
decomposition rules and operator definitions, each of these
tools can be used with each of these representations. We
describe. the capabilities of these tools below.

4.1 Static Analysis Tools for MV1’
Static analysis tools are used to perform simple subgoal
analyses to detect cases where a user has made an error in
defining the preconditions or effect so as to make certain
problem goals unachievable. The knowledge engineer in
MVP is required to define a problem context, listing which
predicates (or negations) may be true jn the initial state and
which predicates (or negations) may be given as part of the
goal specification. IIy a straightforward analysis of the
operators required preconditions and effects, a static
analysis can clctect simple cases in which goals cannot bc
achieved - such as when no operator has an effect to
acbicvc a goal, when the only operator to achieve a goal has
a pr:!ondition which is not listed as an initial state
condltlon of the effect of any operator, and other similar
cases. While these cases may seem rather obvious and easy
for tbc user to catch, for domain descriptions of even
moderate size, errors such as these can be painful to
manually track down. We are currently investigating using
more sophisticated static analysis techniques to detect less

obvious cases where goals are unachievable [Etzioni to
appear, Ryu & lrani, 1992].

I~or example, a user might define a problem space
with predicates G1, Ci2, ancl G3 as goals, predicates 11, 12,
ancl 13 as initial state facts, and operator 01 wjth {effects /
preconditions)is  {Gl / F] F2 11}, operator 02 is {F] / 11
12) and operator 03 is { 172/ F3 13) and no other operators
have 172 as an effect. A straightforward static analysis
reveals that there is no way of achieving the subgoal W?.

Similar static analyses can be performed on
decomposition rule knowledge. In this case the user
declares the: high level goals, initial plan state facts, and
operational lower-level goals (to which the planner is trying
to reduce the plan) that can bc given and the system
analyzes the decomposition rules to detect cases in which
certain goals cannot bc rechrced inlo operational goals.

l~or example, a user might define a problem space with
predicates G1, G2, and G3 as input goals, predicates OGI
0G2,  0G3, and 0G4 as operational goals, and
decomposition rules {1.HS / RHS}: RI { GI G3 / OGI
G4),  R2 { G4/ 0G2 0G3),  R3 { G2 G5 / 0Ci4}. In this
case CJ2 cannot be decon~posed  because rule lU requires CJ5
to be applicable. Static analysis of this rule set can detect
this type of interaction.

4.2 Completion Analysis ‘1’ooIs  in MVJ’
The second type of knowledge base development tool used
in MVP is the completion analysis tool. In many cases, a
knowledge engineer wjll construct a domain specification
for a particular VICAR problem, test it out on known files
and goal combinations. Two possible outcomes will occur.
I?irst,  it is possible that the domain specification wjll
produce an invalid solution, in this case it is not too difficult
to use the inconsistent part of the solution indicate the
flawed portion of the domain theory. The second
possibility is that the domain specification fails to allow the
desired solution. In this case, detecting the flawed part of
the knowledge base is more difficult, because it is difficult
to determine which part of the domain spccjfication caused
the desired output plan to fail.

Completion analysis tools directly address this
problem. The completion analysis tools allow the
decomposition or operator-base.d planner to construct a
proof with assumptions that an extremely limited number of
goals or subgoals can be presutnecl achievable (typically
only one or two). By seeing which goals if assumable,
make the problem solvable, the user can sometimes focus
more quickly on the flawed portion of the knowledge base.
In the operator-based planner, completion analysis is
pcrmittccl  by adding another goal achievement method
which corresponds to assuming that the goal is magically
achieved. When the planner exceeds resource bounds after
finding a number of solutions, these solutions are then
reported back to the user to assist in focussing on possible
areas of the domain theory for refinement.

l:or example, a user might define a problem space
wi[h predicates G 1, Ci2, and G3 as goals, predicates 11, 12,
anti 13 as initial state facts, and operator 01 with (effects /
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preconditions}is  {G] / 1’1172 11}, operator 02 is {1~1 -172/
11 12) and operator 03 is { F2 -F1 / IV 13} and no other
operators have l;] or P2 as an effect. In this case, operators
02 and 03 are incompatible, and thus ,cannot  be used to
achicvc the preconditions of 01. 02 undoes the needed
effect of 03 (IJ2) and 03 undocs  the needed effect of 02
(1’1 ) (a so-called double-cross). In this case the planner will
bc unable to complete a normal plan, However, with the
completion analysis tool, it is possible to find a plan which
presunles achievability of either F] or F2 (depending on the
exact search strategy used one or both will be found). In
this case, the user has been provided with the additional
information that focussing on the domain theory relevant to
the subgoals Fl and F2 will indicate the domain theory
flaw. While some of these cases could bc caught via a
static  analysis of the planning operators, our general
approach has been to keep the static analysis to a quick
process, that can be performed so quickly at operator
definition time so as to go unnoticed by the user (except in
cases where it detects inconsistencies). In cases where the
user has reason to believe there are flaws in the domain
theory which prevent construction of supposedly feasible
plans, the completion analysis tools can help to focus user
atlemtion.

In the decomposition-based planner, the ordering of
the goals is not relevant, so that the termination condition
for the decomposition is modified to allow some number of
non-operational goals to be present in the solution. For
example, with a problem space with predicates G 1, G2, and
G3 as input goals, predicates OG1 0G2, OG3, and 0G4 as
operational goals, and decomposition rules {I,HS  / RHS }:
RI { G] G3/OGl G4), R2 { G4/0G20G3),  R3 { G2
-OG3  / 0G4  }. In this case G2 cannot be decomposed
bccausc 1<3 and 1<2 are incompatible. Completion analysis
tools  would al low for  complet ion of  the plan
decomposition, but would indicate that Ci4 or G2 was
assumed to bc operational to produce the plan.

I’he main drawback of the completion analysis tools is
that they dramatically increase the size of the search space.
Thus, with the completion analysis tools, the user can
specify that only certain types of predicates can be
presumccl true, or predicates relating to certain operators.
This has been fairly effective in focussing  the search.
Unfortunately, we have as of yet not been able to determine
any goocl heuristics for controlling the use of these tools in
a more tractable way. However, in their current form, the
completion analysis tools have proved quite useful in
debugging the MVP radiometric correction and color triplet
reconstruction knowledge base.

4.3 Future Work
One area for future work is development of explanation
facilities to allow the user to introspect into the planning
process. Such a capability would allow the user to ask such
questions as “Why was this operator added to the plan?”
ancl “Why is this operator ordered after this operator?”,
which can bc answered easily from the plan dependency
structure. More difficult (but also very useful) questions

are of the form “Why wasn’t operator 02 used to achieve
this goal?” or “Why wasn’t this problem classified as
problcm class P?”. We are currently investigating using
completion analysis tools to answer this type of question.

5. l)iscussion
This paper has described two classes of knowledge

base development tools being developed for use in
constructing and maintaining image processing knowledge
bases for the MVP planning system. Static analysis tools
allow  for efficient detection of certain classes of
unachievable goals and can quickly focus user attention on
the unachievable goals. Completion analysis tools allow
the user to quickly focus on which goals (or subgoals) are
preventing the planner from acbicving a goal set believed
achievable by the knowledge base developer.
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