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Abstract. The magnetic fields Incasurwl by the (Tlysses spacecraft. are used to study

solar ~villd turbulence in tile fast solar wind fron] tile south polar hole. The spacecraft. was at

about 46 degrees south latitude and 3.9 A[J. For a magnetic field with a Gaussian distribution

the power spectrum (second order structure function) is sufficient to completely characterize

the turbulence. However if the distribution is non-Gaussian the effects of intermittence must

be taken into account. We show that our data sets are non-Gaussian. Thus the observed

spectral exponents include effects of intermittence and can not be directly compared with the

standard second- order spectral theories such as the Kolmogorov and Kraichnan theories.

To permit a better comparison of the observations with the theoretical models, we

study the structure characteristics of the data. We find the exponents of the second order

structure functions (power spectra) and the higher-order normalized structure functions for the

components of the magnetic fields. We show that these sets of exponents can be approximately

described by two basic numbers: the spectral exponent, and the intermittence exponent. The

intermittence exponent characterizes correlation properties of the energy cascade from large

to small scales. Before comparing the observations to the theoretically expected values a

reduction must be made to the observed spectral exponent. The amount of the reduction

depends on both the intermittence exponent and on the model of the energy cascade assumed

in the turbulence theory.

We reduce the measured spectral indices according to a simple model for Alfv&

turbulence that is developed here. We then compare our reduced spectral indices with second

order spectral theory. The reduced spectral indices for the period range of 1 min. to about

an hour are remarkably constant and in excellent agreement with the value of 3/2. Thus our

treatment is self consistent. Our tentative conclusion is that the high frequency turbulence

appears to agree with the model of random phased Alfv t% waves. This tentative conclusion

must he tested by further theoretical and observational work.



Introduction

“~lIe Inafg}etic and \’clocitjr fields in tlIe solar tvind arc composed of mean I“alues

and superposed fluctuations of a complicated nature. The fluctuations are essentially

random i.e. they have a broad continuous power spectrum. These spectra can be

characterized by their slopes and have been studied for many years [for reviews see

Barnes, 19’79; Roberts and Goldstein, 1991; Marsch, 1991]. These studies emphasized

the differences in the properties of the solar wind depending on the wind velocity, and

it was found that the variations in the slow solar wind were different from those in the

fast wind from coronal holes. It was also found that the form of the spectrum varied

with heliocentric distance.

If the turbulence is Gaussian

second-order correlation function)

the power spectrum (i.e. the spectrum of the

would completely determine the statistics of the

fluctuations. However, direct study of the distributions of observational data of the solar

wind magnet ic field shows that the statistics of the solar wind fluctuations is typically

non-Gaussian and non-log-normal [see Feynman and Ruzmaikin, 1994 and references

in that paper]. The velocity fluctuations have also been shown to be non-Gaussian

[Burlaga, 1991,1993; Marsch et al., 1992; Mamch and Lui, 1993]. Thus higher-order

statistical moments are needed for a more complete characterization of solar wind

turbulence.

In this paper we study the spectral slopes and high-order spectral slopes of magnetic

fields observed by the Ulysses spacecraft as it was immersed in the wind from the south

polar hole. We address the question of the relation of the measured spectral indices to

the indices expected on the basis of the second-order statistical approach.

We use the approach of intermittent turbulence. This approach to solar

wind turbulence has been previously used in several studies. Burlaga, [1991,1993]

demonstrated the existence of intermittence in the solar wind velocity field at 1 AU in

the range from 8 hours to 2.7 days and at 8..5 AIJ (l~oyager data) in the range from



0.S.1 hour to 13.6 lIours. !1/({/3’(://(/ {1/., [1992]; :Ilal.sch a71d Lrfi. [l!)!):\] used Ilclios

data i~] t,lIe ti~r]e dol~lain lxIt}v~Y~II-!()..5SYconds arid 24 lIours to pro~’idc evidence for

the intermittent nature of tcInpwature, flow \’elocity and .41f\6n velocity in the inner

solar wind between 0.3 AU and 0.9 .4U. These authors compared their results with

those expected for the fluid second order Kolmogorov turbulence. In this study we will

compare our observational results with an MHD model developed below.

Two Number Approximation

In 1941 Kolmogorov conjectured that, in the inertial interval of scales (between the

energy input scale and the energy dissipation scale), the spectrum of incompressible

homogeneous hydrodynamic turbulence has a power-law form, i.e. can be characterized

by one number, the power-law exponent a’. The value of CY’depends on the mechanism

of nonlinear interaction by which the energy cascades from larger structures to smaller

structures. In classical fluid turbulence it is a resonant type of interaction which breaks

whorls of fluid at every step of the cascade into pieces half the size (offspring), each

receiving an equal fraction of the kinetic energy from the larger scales. The exponent

found by Kolmogorov and Obukhov is CY’= 5/3 % 1.67 [kfonin ,and Yag/om, 1975]. For

incompressible magnetohydrodynamic turbulence the cascading process was described

by Kraichnarz, [1967] as being made up of random-phased Alfv6n waves with different

wavelengths propagating through the fluid at speeds determined by the magnetic field at

the energy input scale. The energy cascade results from scattering between oppositely

directed waves with almost equal wavelengths. The resultant spectral exponent was

found to be d = 3/2 = 1.5.

This fascinating “one number approximation “ is based on the assumpticm that

the rate of energy transfer from the input to the dissipation scales, e, is a fixed,

scale-independent quantity. This means, in particular, that the energy is equally

distributed between offspring before the next step of the cascade takes place. The time



scale for this c’(luil

size dii:ided bjr a t

I>ratioll is, hoivt’vel. of tile salr]e ordt’r as tlIe cascade time (tile scale

/pical velocity at ~hat scale) arid e\”ideIltly only a certain cIegrceof

such equilibration is possible. Thus c is, in fact, not a COIHtMlt, but a random spatial

variable. Its mean value can still be used as the rate of energy transfer in the inertial

interval [Monin and l’hglom, 1975]. It has been discovered

variable has long-range spatial correlations extending over

[Ansebnet et al., 19S4; Meneveau and Sreenivasa7z, 1991] .

that in hydrodynamics this

the whole inertial interval

Physically, this suggests a

picture in which structures in the form of ropes, sheets or more complicated fractal forms

appear. It follows also that the dissipation of the turbulent energy is inhomogeneous

and has the same type of structuring. Mathematically, this means that the correlation

function of e has the form of a power law, (c(x) &(x + r)) cx r-”. The new exPonent P

was related to the dimension D of the structures in the limit of zero dissipation in that

P= 3 – D [lkfandel~rot, 1975; Frisch et a/.,l978; see also the original @-model in IVovikov

and Stewart, 1964]. For example, dimension 2 corresponds to sheet-like structures. The

dimension can be fractal. In the framework of the cascade picture described above this

exponent determines the degree of energy equilibrate ion between the offspring.

The exponent & and the intermittence exponent p define what maybe called a “two

number approximation” to the turbulence. An important effect of the intermittence is

to change the spectral exponent a’ expected from the second-order theories to some

value o. This value is determined directly from the observation. The problem then is

to find the “reduced’ spectral exponent d = cr – 6a which has to be compared with

exponent given by the second-order theories such as the Kolmogorov or Kraichnan

exponents. The value Ja = p/3 was found for the fluid turbulence [Frisch et a/.,l978].

Other effects of intermittence can be found by using statistics of higher-order.

The simplest way to study high-order statistics is to use high-order structure

functions, for example (Il?a(x + r) – 13i(X)[p), p = 1,2, . ... i = x, y, z. [.Monin

and }a,q/om, 1975]. For a Gaussian distribution of turbulent fields, the structure



fuIlctioIls of aIIj” order CaILbe cxprcsscd through the sczolld- order structure fuI1ctiori:

(l~]i(i + ~) - ~?i(f)lp) = (l~t(~ + ~) - ~Ji(~)12)p/2. IIoJvever, internlitteIlt fields are

csserltially noxl-(; aussiarl so that tl)e structure function of ei’ery order has its own

exponent. In the “two number approximation” these exponents are functions of p and

the order of the structure function p. This gives an opportunity to find the intermittence

exponent experimentally. In, conjunction with the experimentally determined spectral

exponent, one can then give a more complete description of the turbulence using this

approximation than was possible using the original Kolmogorov approach.

In the present paper we present a new model for estimating the spectral index

reduction 6a and report on the results of analysis of several l-rein. averaged time series

for the magnetic field. Three time series are taken from the data obtained by Ulysses in

the fast solar wind from the south polar hole. We will find CY, p , 6a and also exponents

for normalized structure functions up to the order 10 from the observational data . Our

results for the magnetic field data at large heliospheric latitudes, deep in the southern

solar polar hole wind, show a remarkably good agreement with the Kraichnan model of

Alfv6n turbulence.

Measure of Intermittence

Spacecraft data are obtained as

reflect the spatial distribution of the

time series at a given spatial point. However they

fields in so far as fluctuations can be considered as

being frozen into the supersonic solar wind i.e. the Taylor hypothesis holds [Matthaew

and Goldstein 1982]. The Taylor hypothesis can be valid for time intervals that

are small compared with a characteristic time of variation of the solar wind speed,

lv;~/(dK~/8t)~. In particular, in the sheared region between the fast and S1OWspeed

wind, the hypothesis will be satisfied only for time intervals shorter than l~V,w/dgl-l

where y is a coordinate across the shear.

and the frequency interval considered in

The Taylor hypothesis holds for the data used

the present paper so that we can substitute



tir[]e scales ~,, Lj spat id scales in = \ ~,fl~~.

The traditiolla,l apljroacl] to these tilne series is based on calculations of spectra

and cross- spectra for the second-order correlations. Thus,

where the averaging is taken over all t of the data set, represent a second-order structure

function (tensor) for the magnetic field @, i = x, y, z. This function is evidently related

to the frequently used correlation function. Note that S(0) = O and S(m) = 2(113~\z)

because (Eii(t + ~)13i(t)) -+ O as ~ ~ m. For isotropic and homogeneous turbulence of a

divergence free field, this tensor is fully defined by one scalar, the longitudinal structure

function SL(~) = ([lilL(t + ~) – 13L(t)[2) [Monin and YagZom, 1975]. In the inertial

interval this function scales as SL (~ ) cx ~St21. The exponent is directly related to the

spectral exponent CY= 1 +s (2). In general, the p-order structure functions scale as ~s(p).

For the velocity field in the solar wind the longitudinal direction can be naturally

identified with the heliospheric radial direction, which we will denote as x-direction.

The acquisition of data by spacecraft is also going along this direction. However the

mean magnetic field has a spiral form which is close to a radial field only near the Sun.

Thus for MHD turbulence in our study the longitude direction is different from the

radial. In principle, we can always find this direction at every heliospheric distance but

this would not help much because the data are taken along the radial direction. To

avoid unnecessary assumptions we will study both the longitudinal and the latitudinal

structure functions determined correspondingly by the Z-, y- and z-components of

the magnet ic field. (Because structure functions are nonlinear functions of the field

components there is not much meaning in calculating the structure functions for the

absolute values of the field. ) .It is convenient to define the normalized structure function

for the magnetic field as

lJT, p) = (1)



similar to the defi]lition used in ll~”droclyrlar[lies [Fri<sch t.1 al., 197S]. IIere 2’= z. y, :.

13y definition li(~: 2) = 1. There are tww adlantagcs in using ( 1) instead of the standard

high-order structure function. First (technical), we avoid very big or very small jlumbers

appearing after taking the large powers of the fields. Second (physical), in the case

of the Gaussian distribution the normalized structure function is independent of ~ for

every p, so that any change of 1 with ~ indicates intermit tency, which is why we denote

this function by 1. Note that in order to calculate 1 we first need to calculate the

second-order structure function which will also be used to find the spectral exponent cr.

For ~ small compared to the time scale of variations of the global parameters, the

intermittence measure is expected to be a self-similar (power-law) function

The form of the function ~(p) = s(p) – s(2)p/2 depends on the distribution function of

the turbulence. This dependence is known for two theoretical models of fluid turbulence

[see for example Frisch et al.,1978]:

s(p) =/%+(1 –/$

<=(1 - P/2)/J (3)

for the so-called @-model with a fixed share of space occupied by offspring having the

energy ~ = 2–P at every step of cascade, and

s(p) = (2 +P); – p~,

c = -P(3 - p)p/18 (4)

for the log-normal distribution of ~. From s(p) one can find that the intermittence

correction to the second-order spectral exponent of a turbulent fluid is p/3 for the

~-model and p/9 for the log-normal model. The fit to either of these models gives an

estimate for the irltermittency expoxlexlt p in a turbulent non-magnetic fluid.



Reduced Spectral Exponent in Random-Phased A1fv6n

Ilkbulence

‘The models described above were cle~’eloped for fluid turbulence. IIere we develop

a model for ,41fv6n turbulence.

Consider a discrete sequence of scales or wavelengths 1. = 1.2-’, k. = 1-1, n =

0,1,2, . . .. The magnetic energy, equal in this model to the kinetic energy per unit mass

in the’ scale ln, is defined as

‘.= ‘.= J~n+’E(k)dk
In stationary turbulence the energy is input at the scale 10 and cascades through the

scales 11,12,. . . until it reaches the dissipation scale. The characteristic magnetic and

velocity field fluctuations are defined by

where the factor /3 defines how much space is filled by the waves. It is convenient

to present this filling factor as ~ = 2-1’ and to use instead of /3 the exponent

p. The characteristic time for transfer of energy from the large to small scales is

~n = ~m/vA cx i./130, where l?. is the magnetic field in large scales (> l.). The rate of

magnetic (and kinetic) energy transfer is

where we substitute 6bn N (bnV)v~ . T~ cx (b~/ln)rn according to the induction equation.

When there is no intermittence, i.e. /3 = 1, the condition that c is independent of n

gives the Kraichnan spectrum b: m v: m 1:12, or M(k) CKk-312 in Fourier space. In the

intermittent case, when ~n = 2–nP = (ln/lo)U, we have

(!);K v:x /3-”/21:12Cx ly(ln/lcJ)-fi/2,



. .

or

;U(L”)= L’(k)cxk;l/m):’x k;3/~(k,Jko)-@. (5)

It follows that the reduced spec.tral index in this MIIDmodelofrandom Alfv&lwavesis

a’ = c1 – /.L/2. (6)

Let us find now the relationship between the exponents of the intermittence

f~~ctioil and p h this model. Since the turbulence in this model occupies a fraction ~

of the volume, for the sake of estimation it is enough to substitute every averaging () by

~. Thus we have from (1)

Hence

((P) = P-P;. (7)

It follows from here for the structure function exponents

4P) = ((P) + 42);P +(1– P):” (8)

It is interesting to note that the exponents s(p)’s for the fluid and MHD model, see Eqs.

(3) and (9), are different while ~’s are the same. We will calculate p as a fit to the linear

dependence (8) corresponding to random-phased Alfv6n turbulence:

((P) = /41 -;)+6, (9)

where 6 stands for the error of this fit. For comparison let us point out that

Burlaga, [1991, 1993] calculated an intermittence exponent in the framework of fluid

(non-magnetic) turbulence using p = 2 – s(6). For the model of random-phased Alfv6n

turbulence the corresponding relation has the form p = 2 – s(8). Unfortunately, p

calculated in such a way from our data. has a large error since s(8) has a large error. In



this papm we use t}le cxpressioll (!)) to calculate tile illterIllittmcy cxporm]t since it is

1(:ss subject to error.

Note that thecxponents <(p) and u = 1 +s(2), calculated from the observational

data, are model independent.

The Structure Index of Second Order; Comparison to Spectral

Analysis

Ulysses was in the ecliptic plane measuring particles and magnetic fields from

October 1990 till February 1992 as it traveled from 1 AU to 5.4 AU [Ba{ogh et aL,

1992; Bame et al., 1992]. This was during the solar maximum and decline of solar cycle

22 and more transient events were seen in the beginning of the period than towards

the end [Burton et al., 1992; Balogh et al., 1993]. T“he simplest way to characterize

the magnetic field time series is to find structure indices of first order using a simple

“length of curve” technique that had been applied earlier to solar wind data [Bwiaga

and A7ein)1986; Ruzmaikin et al,, 1993 ]. The length of the curve of the data time series

is defined similarly to the first-order structure function

Note that the sum here is taken over n = 7’/T points, where 2’ is the whole time interval

under the consideration, so that L(7) cx ~-1 [&Bil. In the definition of S(T, 1), instead of

the sum, the operation of averaging () is used which includes the normalizing factor n

so that S(T, 1) m I&Bil u L(~)~. In addition, S(~, p) can be averaged (and we actually

will do this) over T – ~ points, not just n points.

The “length of curve” technique or the calculation of the second order structure

function is actually a simple way to find a slope of the spectrum. Theoretically, the

exponent a defining the slope of the spectrum is linearly related to the exponent of the

length of curt’e s(L) [Berry: 1979], and to the exponent of the second-order structure



.-

fllllctioIl [AMo71in ulld }’uf)lorn, 197.1]:

0=3–2S(L)=1+S(2) (11)

Practically, because of somewhat diflerent approximations involved in the calculations

of the standard power spectrum, the length of curve, and the structure functions, these

met hods give somewhat different spectral indices. As an example we calculated the

spectral exponent for- s–minute averaged magnetic data obtained by Ulysses in the

interval from November 27 to December 27, 1991. The total number of experimental

points is 8352, i.e. quite large from the statistical point of view. Table 1 lists the results
.

which give a rough estimate of the accuracy inherit in these types of calculations. The

indices calculated by the three methods are equal to an accuracy of about +0.05. These

calculated spectral exponents include the effect of intermittence.

The Structure Indices of Solar Wind from the South Polar

Hole.

In late 1993 the spacecraft was well within the solar wind from the south polar hole

[Balogh et az., 1992; Bame et al., 1992]. The solar wind conditions have been described

by Phillips et al., 1994. The solar wind speed was consistently in the 700 to 800 km/s

Table 1. The spectral index a calculated by three different methods

power L(T) S(T, 2)

spectrum 3-2s(L) 1+s(2)

B= 1.66 1.66 1.73

By 1.86 1.80 1.90

BZ 1.85 1.7.5 1.s5

B 2.15 2.00 2.00



Iange. CoI]lpressioIls. rwcfactio[ls and shod waves llavw wmkened or disappear.

‘1’llcrc are fcl~ coronal Inass t:jectiolls. In brief ww nave a steady. fast solar wind }Vith

few disturbances. These data present a unique opportunity to study the waves and

turbulence in an undisturbed wind. In this study we use 3 data sets from the Ulysses

magnetometer (Balogh et al. 1992). The Ulysses magnetometer measures the magnetic

field vector every 2 seconds. Here we use l-rein. aveiaged series. The duration of each

time series is approximately 3 days (=4320 data points, see Figure 3). These data will

be used to characterize the high-frequency MHD regime.

We selected for our analysis three undisturbed time periods

was at large heliocentric latitudes. The first time interval starts

1993. The spacecraft was at a latitude of -45.9 degrees south and

when the spacecraft

December 6 (OOh),

a heliocentric distance

of 3.95 AU. ‘The second interval began 13 days later at December 19 (OOh), 1993 when

the spacecraft was at 47.1 degrees south and 3.89 AU. The third interval starts January

20, 1994 with the spacecraft at 50.17 degrees and 3.73 AU.

Figure 1 shows the distribution of magnetic field intensities for the x component of

the field for the first data set. (In the coordinate system used, the x component was

radial from the sun, the y component was parallel to the direction of planetary motion

and the z component completed the orthogonal set. ) The bars show the observed

distribution. The line is a Gaussian with the same mean and standard deviation. The

number of data points in the set and the first 4 moments of the distribution are given.

It is clear that the distribution is non-Gaussian. The distribution functions for the

other two intervals have the similar form and the third and fourth statistical moments

(skewness and kurtosis). This indicates that the effects of intermittence must be taken

into account in comparing the observed second oder spectral index t,o

the basis of theory.

The magnetic field data used in constructing figure 1 is shown in

top panel. The lower panel shows the second order structure function

that expected on

Figure 2, in the

of this data set.
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-Note that at small values of tile ag T the va]ues increase Iillcar]y. At larger values of

~ tlic cur[e ilattens, Tlla.t is, the index of t}le po~ver spectruln (slope of the structure

function) depends on the frequency considered. In this study we are concerned with

only the high frequency, self similar regime as determined from the 2nd order structure

functions. In making this frequency selection we were very conservative and used a

frequency cut off at high enough frequencies so that the 2nd order structure functions

was clearly self similar. It was found to be self-similar in the time domain between 1

min. and about an hour. For the spacing in Eq. (1) we used ~ = 1,2,4,8,...,32 in the

units 1 min.

The measures of intermittence ( normalized structure functions) for this data set

is shown in the top panel of figure three. Intermittence measures from 2 to 10 are

such that lower orders are below higher orders. Thus order 2 are the points along the

abscissa and order 10 is the top line. For the intermittence measures up to order p = 10

the dependence ((p) found from the Ulysses observational data can quite satisfactorily

be approximated by a straight line, For larger orders the intermittence measures

constructed from real data become more and more inaccurate and deviate more and

more from the linear dependence. The appearance of the growing uncertainties is related

with the well known fact that high- order statistical moments are sensitive to the tail of

the distribution function, especially when the distribution function is non-Gaussian. The

intermittancy exponent is constructed from the slopes of the intermittence measures

shown in the lower panel of figure 3. Thus for p=2 the slope of the intermittence

measure is zero and the slopes of the intermittence measures increase with p as shown.

The intermittence measure p is found using expression (9) above. The points in the

lower panel of figure 3 lie on a. straight line to a good approximation, suggesting that

the two number approximation is a good one.

The results of calculations in the two number approximation are presented in Table

2 for all data sets. In this Table a is the observed slope of the 2nd order structure



. .

function (power spectrum), p is tile illlcmnittcncy exponent delxmninecl from the data, 6

is the erior in the straight line fit. and a’ is the reduced spectral index, to be compared

to the theoretical spectral index. The results for the reduced spectral exponent are

remarkably constant. In figure 4 we have plotted the reduced spectral indices and

compared them

(appropriate to

3/2 and clearly

with the values of 3/2 (appropriate to a Kraichnan spectrum) and 5/3

a Kolmogorov spectrum). Our results are clearly in agreement with

not in agreement with 5/3, indicating agreement with a Kraichnan

spectrum. These results just ify the model used to derive the correction to the spectral

exponent and thus strongly indicate that the turbulence in the undisturbed solar wind

is consistent with the spectral index of 1.50 predicted for Alfv 6n turbulence.

Discussion

We have studied the solar wind as observed by the Ulysses spacecraft using a

“two number approximation” for the description of turbulence. In this approximation

the turbulence is characterized by the spectral index and the intermittence exponent.

For all our data sets we found substantial values for the intermittence exponent in the

high frequency region in which the spectra were self similar. As discussed above, in

order to compare measured values of the spectral indices with expectations based on

models of turbulent cascades, it is necessary to reduce the measured spectral indices by

an amount which depends on the intermittence exponent. Unfortunately, the amount

of reduction is model dependent. Three models have been described above and the

corrections required for any of them are significant with the values of the intermittence

measure found in this study. Two of the models were developed for to describe fluid

turbulence We have introduced a ihird model developed here for MHD turbulence.

Using this model we have determined the reduced spectral exponent for the three time

periods when the spacecraft was in a nearly constant speed undisturbed solar wind

from the south polar hole. We have analyzed the high-frequency self-similar regime.



. .

TILe reduced spectral exponwts for tile magnetic field componellts are found to be

relnarkab]y constarlt. E\’eIl more renlarkab]e is their very close agreemerlt with the value

of 3/2. Based on these result.s we can tentatively conclude that the reduced spectral

exponents in the frequency range corresponding the time range between 1 min. and

half an hour agree with the Kraichnan model of random phased Alfv 6n waves. To say

this differently, the reduced spectral exponents are consistent with the model used to

estimate the reduction. However a firm conclusion requires more determinations of the

spectral indices and intermittence measures as well as further theoretical considerations.

We explored here only a small part of the Ulysses data. Further and much more

extended studies are needed to obtain the best estimates of the spectral indices and

intermittence exponents in the framework of the two number approximation, and to

find from observations all high-order exponents needed for the complete characterization

of the solar wind MHD turbulence.

It is clear that in the relatively undisturbed high speed wind from the polar hole

we have a unique tool to study intermittent MHD turbulence by using space data.

These studies have to be compared with laboratory studies of hydrodynamic turbulence

which are currently undergoing intensive development. In some sense the experimental

conditions in the solar wind are similar to those in the fluid mechanics laboratory, in

which the flow passes the observer who measures the longitude and transverse velocities.

Space studies, however, are of special importance because there is no high magnetic

Reynolds number MHD turbulence on Earth. The Ulysses experiment is supplying us

wit h excellent data on an important and fundamental physical problem.
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Table 2. The spectral exponents, intermittence exponents, and reduced spectral

exponents of the components of magnetic field for three time intervals: 6 December,

20 December 1993, and 20 January 1994 correspondingly

CY P tla’lapta’lap JQ”

B= 1.79 0.54 -0.12 1.52 1.81 .0.58 -0.13 1.52 1.81 0.62 -0.11 1.50

Bv 1.86 0066 -0.15 1.53 1.87 0.57 -0.11 1.59 1.84 0.76 -0.16 1.46

B, 1.83 0.60 -0.11 1.53 1.86 0.68 -0.15 1.52 1.84 0.57 -0.11 1.56
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Figure Captions

Fig. 1. The distribution function of x-component of the interplanetary magnetic field at -

46 degree beyond the ecliptic plane (2O December, 1993). The first four statistical moments

are shown in the right corner of the panel.

Fig. 2. The data and the second-order structure function of Bz at -46 degree beyond the

ecliptic plane (December, 1993).

Fig. 3. The measure of intermittence l(p) and exponents of this function for p=2,3,...,lO

in the same time interval as in Figure 1.

Fig. 4. The reduced spectral exponents of the magnetic field for three time intervals of

the solar wind from the south polar hole.
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