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L Background

It has been found that the Discrete, Integral Equation (DS1) technique is a
highly effective technique for the analysis of microwave circuits and devices
[1,2], The DST is much more robust than the traditional Finite Difference Time-
Domain (FDTD) method in a number of ways. Principally, sinceit isbased on 3
volume discretization using unstructured dual grids, circuit devices with non-
separable geometries are accuratelly modeled. Furthermore, structures with fine
details can be modeled using locally refined grids, rather than having to refine the
%rld globally. A disadvantage of the DSI algorithm isthat the numerical grid and
the sparse matrices describing the field updates must be stored, However, this can
be greatly relaxed by exploiting symmetries in the model. In this paper, a
technique that exploits planar symmetries is described, namely, planar symmetry
is recognized for three-dimensional geometries which can be uniquely described
by a projection onto a two-dimensional plane. To this end, the three-dimensiontil
model is described by atwo-dimensional grid. Furthermore, due to regularity
along the third-dimension the sparse matrices used for the field updates need only
be computed for the two-dimensional grid. This resultsin a significant savingsin
storage, increasing potential problem sizes that can be solved by orders of
magnitude. Based on the planar DSI algorithm, a highly scalable parallel
agorithm is presented. The parallel algorithm is based on a spatial discretization
of the two-dimensional mesn. By treating the update matrices as a subassembly
of matrices, the matrix-vector multiplications are easily done in parallel requiring
only minimal interprocessor communication. Finally, the robustness and
efficiency of the algorithm isillustrated through a number of’ examples.

11. The Planar DSI Algorithm

The DST algorithm is based on the discretization of Ampere’s and Faraday’s
lawsin their imﬁml form [1-3]. The vector fields are projected onto the edges of
adual, staggered grid. The grid is assumed to be unstructured and irregular in a
two-dimensional plane, and regular in the third-dimension, assumed here to be the
z-direction. Therefore, the unstructured two-dimensional grid maintains its form
for all values of z. A small section of the two-dimensional grid composed of
quadrilateral cells isillustrated in Fig. 1, The solid lines represent the primary
grid edges in the plane of the grid. The dotted lines represent the secondary grid
edgfes, which joins the centers of the primary grid cells and are actually a half a
cell above or below the transverse plane, At each node of the two-dimensional
grid isa vertical edge of length dz,

Inthe plane of the two-dimensional grid, the transverse electric field vectorsé,

are assumed parallel to the primary grid edges (solid lines) and constant along
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Fig.1 Two-dimensional grid desciibing the threc-dimensional geometry.

their length. The vertical electric field vectors Ze, are assumed to be z-directed
and constant along the length of the vertical edges. These vertical edges can be
viewed as posts connecting stratified layers of the two-dimensional grid. The
normal magnetic field vectors zh, are z-directed and assumed constant along the
vertical secondary grid edges which are bisected by the center of the primary grid
cells. Finaly, the transverse magnetic field intensity vectors are assumed parallel
to the secondary grid edges (dotted lines) and are also constant along their length.

The transverse magnetic fields are actually at the center of the faces bound by two
vertical edges and two transverse edges in the two planes connected by the

vertical edges. Finally, each vector field component is assumed to be constant
over theentire support of the dual face through which it passes.

Faraday’s and Ampere's Taws are discretized based on the above approximation
of the fields. Approximating the time-derivatives using acentral difference, and
staggering, the fields in time leads to an explicit time-marching solution.
However, It IS realized that the vector fields updated are normal to the faces
bounded by the grid edges, Since the face normals are not always paralléel to the
dual grid edges prosing through the face, the normal fields must be projected onto
the dual ?nd edges prior to updating the dual field [1-3]. The updates are then
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where the subscript k refers to the discrete height along the z-direction, Dy and B,

are the flux densities, the D's are diagonal matrices, and the A's are sparse
matrices, Note that these matrices are only associated with the two-dimensiona
grid since they are the same for all values of k (Note that inhomogeneities in
material parameters can easily be built into these expressions),

111. The Parallel DSI Algorithm

~The parallel DSI agorithm is based on a spatial decomposition of - the two-
dimensional grid. To this end, the grid is decomposed into contiguous, non-
overlapping subdomains. The decomposition is currently being performed using,
two-different techniques: 1) The Recursive Inertia Partitioning (RIP) algorithm,
which is apower of two algorithm and ideal for hypercube computers, and 2) the
Greedy algorithm. Both techniques offer excellent load balance. Once the mesh
IS decomposed into subdomains, each subdomain is assigned to a different
processor. The matrices in (1)-(6) are then expressed as a subassembly of
matrices, where each submatri x represents the updates of the fields within each
subdomain. Subsequentl y, the matrix vector products are simpl y expressed as

:AX ~ z:_l z:x,-
where P is the total number of processors. Initially, each matrix-vector product is
computed for all & concurrently on each processor, Subsequently, the elements of
Xj shared by adjacent processors are fully updated wsing interprocessor
communication.  This approach maximizés the ratio of computation to

communication leading, to a highly scalable algorithm.
IV. Numerical Examples

Based on the above technique, a number numerical examples will be presented.
As an example, consider the Gysel power divider illustrated in Fig. 2. Thisisa
planar device printed on a 10 mil Alumina substrate. The device has five ports,

three are fed by 50 Q, and two by 100 €2 lines. The two 100 £ ports are

terminated through 50 €2 chip resistors connected to ground. The S-parameters
for this device areillustrated in Fig, 3. The two-dimensional grid representing, the

device was composed of roughly 20,000 quadrilaterals, and the height of the
three-dimensional grid was 25 cells. The solution was obtained on an 8-node

iPSC/860 hypercube, requiring 5000 time iterations, and was performed in
roughly 2000 seconds.
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Fig2.-  Gysel Power Divider
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Fig. 3 S-parameters Of Gysel power divider using the planar and parallel-
DST algorithm
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