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Abstract

A diagonal equation v+ C(0,12)= € for robot dynamics is developed by combining recent
1ass matriz factorization results [I- 7] with classical Lagrangian mechanies. Diagonalization im-
plics that at each fired time instant the cquation at cach joint is decoupled from all of the other
joint cquations. The cquation involves two important variables: a veetor v of total joint rotational
rates and a corresponding vector € of working joint moments. The nonlinear Coriolis tcrn C(0,v)
depends on the joint angles 0 and the rates v. The total joint rates v = m*(0)0 arc rclated to the
relative joint-angle rates 8 by a lincar spatial opcrator 1’ (0) ncchanized by a base-1o-tip spatially
recursive algorithm, The total rate v(k) al a given joint k veflccts, in a very unique sense made
precise in the paper, the total rotational velocity about the joint, including the combincd cffccts due
to all the links between joint k and the manipulator base. This differs from the morce traditional
joint-angle rates 0 which only reflect the relative, as opposcd to total, rotation about the joints.
Similarly, the working moments € = £1' arc rclated to the applicd moments T' by the spatial opera-
tor £(0)= m~ (@) mechanized by a tip-to-base spatially recursive algorithm. The working moment
c(k) at a given joint k is that part of the applicd moment T'(k) which docs actual mechanical work,
while its other part affects only the non-working intcrnal constraint forces. The diagonal cquations
are obtained by using the recently developed [1] mass matriz factorization A(0): m(0)m”(8) in
the system Lagrangian. The diagonalizalion is achicved in velocity space. 1his mceans that only the
vclocity variables 0 are replaced with the new variables v, while the original configuration variables
0 are rctained. The new joint vclocity variables v can be vicwed as time-derivatives of Lagrangian
quasi-coordinales, similar to those of classical mcchanics. The vclocity transformations are shown
to always crist for tree-like, articulated multibody systems, and they can be readily implemented
using the spatially rccursive filtering and smoothing mcthods (1, ], 7] advanced by the authors in
rceent years.

1 Mass Matrix Factors Diagonalize Lagrange’s Iquations

The main new result in this paper is the development of diagonalized equations of motion v 4 €(8,v)= ¢,
which embody in a simple, elegant, diagonal cquation the complete dynamical behavior of the
robotic manipulator systems, while simultanconsly exploiting the computational efficiency of the
spatially recursive filtering and smoothing alearitions of [1.7] to conduct necessary velocity coordi-
nate transformations. The diagonal equations of motion result by combining Lagrangian mechanics

with the mass matrix factorization
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in which H,¢,D and K are spatial operators mechanized recursively by suitably defined [4,7)
spatial filtering and smoothing algorithms. Use of this inthe system kinetic energy K(0,0)=
10 M(0)0 results in

K(0,8) = 1w (1.2)

where v = [1(1), .0, v(n)] is a new set of variables related to the joint-angle rates 8 by

v=D3I+ H$K]O (1.3)

in these new variables, the kinetic energy is diagonalizedin the sense that it is a simple suin
of the squares of the tota joint rates ¥(k)over al of the n joints. This is in contrast to the original
expression K(0, 0)=. 10 M (0)0 which involves the mass matrix AM(0) as a weighting matrix.

The diagonal equations of motion ir4C(0,r)= c are obtained in this paper by applying
classical l.agrangian mechanics methods to the above diagonalized kinetic energy. in addition to
being diagonalized, the kinetic energy can also be thought of as being normalized. This means
that the coefficient multiplying each of theterms in the kinetic. energy expression Fq.(1.2) is
identically equal to%. An aternative set of diagonal equations of motion arc aso derived in which
this coeflicient is not normalized.

The Total Joint Rates Are Time Derivatives of Lagrangian Quasi- Coordinates

Thenew variables 2 have a physical interprctation as time-derivatives of Lagrangian quasi-coordinates,
similar to those typically encountered [8,9] in analytical dynamics. Thesenew variables arc related
to the origina joint-angle velocities 0 by means of the configuration- dependent linear transforma-
tion m*= D? (I 4H@K)* in v=m"0. Thismeans that when the new joint velocity variables
v are integrated with respect to time, they do not directly result in the joint-angle configuration
variables 8. in order to determine the joint angles, it is first necessary to computethe joint-angle
velocities 0. This requires that the linear transformationm* abave be inverted inorder to ob-
tain @ = (m” )1y, At first, inversion of the transformation m.* looks difficult. However, recent
factorization r-mulls [1, 6] make it trivial to perform this inversion. The inverse transformation is
given explicitly by (m”)!'=[I - Htj;K]‘I)-% where I, 4p, K, and D are spatial operators also
mechanized by efficient spatialy recursive algorithms [4, 7].

There is a similarity between the variables v and the angular velocity’ vector w typically
uscd to describe the rotational velocity of asingle rigid body withrespectto an inertial cootdinate
frame. This similarity can beused to gain insight about the physicalimeaning of the total joillt-late
variables v, The dynamics of a single rigid body is governed tyy the equation 7w 4w X Jw =T,
in which 7 is the inertia tensor, and 7' is the vector of applied moments. This equation of motion
is considerably simpler and elegant than that which would he obtained by using the system config-
uration variables, which for a rigid body wouldbe typically the three Fuler angles 6 :[0,, 05, 03]
describing the orientation of thebody. However, although the dynamics equations are simpler,
thereisa drawback: direct integration of theangular velocity w doesnot produce the body orien-
tation. Theangular velocity variables are therefore time-derivatives of quasi-coordinates. They are
related to the time derivatives 0 of the configuration variables @ by means of alinear, configuration
dependent transformation m* (), which is a trigonometric function of the configuration variables.
This means that w = m*(0)0and 0= [m.”(0)]'w. Thus,use of the angular velocity w lcads to




very simple equations of motion. Thereisaprice paid for this, in that the corresponding kinematic
equation @ =[m*(0))"'w requires inversion of the transformation m*(8). In the case of a single
rigid body, itis possible to do this analytically. This means that the penalty is manageable. In the
case of multiple,linked rigid bodies considered in this paper, the factorization results of [4,7] enable
a similar conversion from the time-derivatives of quasi-coordinatesv to the joint-angle velocities
0. Integrating the joint-angle rates @ with respect to time results in the system configuration.

While there is the above similarity with single-rigid-body dynamics, there are aso differ-
ences. One important difference is that, in themultibody systems of this paper, the transforination
m* relating the new rate coordinates v to the joint-angle rates 0 depends on quantities, such as link
masses and inertias, typically associated with rigid-body dyniamics. Inthesingle-rigid-body case, in
contrast, the relationship ¥ = m*@ between the configuration-angle rates @ and the time-derivatives
of quasi-coordinates v is purely kinematical and no masses or inertias are involved.

The New Forcing Term Reflects the Working Moments

Another key term in the new equations of motion is theforcing “input” €= cole(k)} appearing
011 the right side of the equation. Thisterm is related to the applied moments T by means of the
configuration dependent relationship

c= m O = D I — HpI)T (1.4)

The operators H ,1p, K and D arc mechanized by an inward filtering operation {4]. The inputs
¢ aso have a physical interpretation. Theinpute(k) at the k™ joint can be thought of as being
that part of the applied moment I'(k) that does mechanical work at this joint. This is discussed
in more detall later in this paper.

The New Coriolis Term is Computed Both in Closed-Form and Recursively

The Coriolis term C(O u) in the diagonalized equations of motion depends quadratically on the new
velocity variables v. A closed-forln expression for this term is derived in this paper and explicitly
shows this quadratic dependence. The Coriolis tesm can be computed by means of an inward
spatial recursion from the tip to the manipulator to its base. This inward recursion is O(N) in
that the number of mathematical operationsincreases only linearly with the number of degrees of
freedom. Furthermore, the detailed stepsintheinward recursion are similar to those required to
factor and diagonalize the manipulator mass matrix. Consequently, the eflects of the Coriolis term
can be casily accounted in the recursions that diagonalize the equations of motion, with very little

extra computational cost.

Relationship to Globally Diagonalized Equations

The search’ for global coordinate transformations that diagonalize the equations of motion isan
active area of dynamics research [10- 12]. The goa thereisto find global, as opposed to local, coor-
dinate transformations in which both the configuration variables 8 and the corresponding velocity
variables 0 arc replaced by a new set of transformed coordinates. When written in the transformed
coordinates, the equations of motion are completely decoupled from each other. Conditions for
the existence of such a global transformation are well-established in the theory of non- Fuclidean
geometry. The globally diagonalizing transformation exists when the metric defined by the mnass
matrixis free of curvature [13]. Thetransformationexists if andonly if the mass matrix is equiva-
lent to one with constant coeflicients inthe new coordinate system. Unfortunately, as pointed out
in [10-12], this is rarely the case for most practicalmultibody systems.




in contrast, the present paper shows that the goa of diagonalizingin velocity space is aways
achievable for tree topology systems. The diagonalizing transformations advanced here are applied
on the tangent space [13] of the configuration manifold instead of the configuration coordinates.
The velocity-space transformations operate On Velocities and time derivatives of configuration vari-
ables. The goals arc therefore more modest than in the search for global transformations. However,
in contrast with the globaltransformation approach, diagonal ization in velocity space is shown to
mist for very general classes of joint-connected multibody systems. Furthermore, explicit spa-
tially recursive filtering and simoothing algorithms are set forth to compute efficiently the required
velocity-space transformations.

Relationship to The Innovations Approach of Linear letcrmg ‘Theory

The quasi-coordinates ¥ appearing in the diagonalized equations of motion are closely analogous to
the innovations process extensively investigated [14- ]6] in thearca of linear filtering and estimation
for state space systems. The innovations process [14] is a central ingredient in factoring, diago-
nalizing, and inverting state-space system covariance matrices by means of Kalman filtering and
smoothing algorithms. The innovations process plays asimilarrole in the dynamics of mechanical
systems [1, 4, 6]. The analogy between estimation theory androbot dynamics has been one of the
cent rat t hemes investigated by the authors [4, 7]. This paper provides an additional chapter inthis
still unfolding story.

2 Globally Diagonalized Dynamics Are Elegant But Rarely EXist

Fora manipulator system with A7 degrees of freedom, the traditional lagrangian equations of
motion are

M0 1 C(0,0=T;  ¢(0,0) M()-—%O'MOO (2.1)

where by definition 0 M, 0= CO]{O‘MOIO} and Me, is the derivative of theinassmatrix M

with respect to the hinge coordinate O(i). The global diagonalization approach seeks toreplace
the configuration coordinates @ and their time-derivatives @ with anew set of variables (9, 9)in
whichthe equations of motion are decoupled. The approach is based on the following assumption,
which imposes the very stringent condition that the massmatrix factor m(0) must be the gradient
of a global coordinate transformation. Thisassumption is very rarely satisfied in practice [10 12].
Nonetheless, it is of interest to examine the globally diagonalized equations as anintroduction to
the locally diagonalized equations advancedin the present paper.

Assumption 2.1 Therc exists a global coordinate transformation 9 = f(0) € RN such that
Ve = Vof =m*(0) ¢ RV (2.2)
and the matriz function m(0) is the “square root” of the mass matriz
m(0)m™(0) == M(0) (2.3)

forall 0.




Theabove assumption requires that the mass matrix factor m(6)be the gradient of some
function f(8). The requirement that f be aglobal coordinate transformation implies by definition
that fandm must be both differentiable and invertible. It follows from Eq. (2.2) that the new
goncrah?ed velocny vector is 9 =m*(0)0.Interms of this velocity vector 9, the kinetic energy is

K(9,9) = 19°9.

Lemma 2.1: When Assumption 2.1 holds, the equations of motion in the ncw coordinates
(9,9) arc

9= € where € == £0)T € RY (2.9)
with €(0) 2m-1 (0),

Proof: Sinced = m*0 4 m*0, then @ = €'[9 — m°0). Use of thisin Eq. (2. 1) and pre- mulliplicaiion
by £ lcadq o9 4 (19 19)~~ €, where C(19 19)-7 £C(0, 0)— m*0. However, C(9, 19) = 0, since 0 M0
= Vo [979] = 2[Ved ] 9= 2[d(Ve9")/dl) T = 211 and LA =: £ 4 1" 0. |

The new equations of motioninliq. (2.4) are very simple. The mass matrix is the identity
matrix, and there are no Coriolis forces. The component degrees of freedomn arc completely decou -
pledand governed by independent second-order linear differential equations. ‘Jbus, the coordinate
transformation f(0) provides globally diagonalizing coordinates (9,49) which replace the earlier
(0,0) coordinates. Since 7'is the vector of generalized forces corresponding to the generalized
velocities vector @, the principle of virtual work implies that ¢ is the vector of generalized forces
corresponding to the generalized velocities 9. Note thatIlq. (2.4) can be obtained alternatively
by deriving the Lagrangian equations of motionin the 9 coordinate system using the diagonalized
expression lq. (1 .2) for the kinetic energy.

Now that the simplicity resulting fromthe global coordinate transformation f(0)is appar-
ent, we examine conditions under which Assumption2.1 is satisfied by multibody systems. The
answer is based on a well-established result from non- Buclidean geometry. It is known [1 3] that
the mmass matrix M defines a metric tensor on the configuration manifold. Since tensor quantities
are invariant under coordinate transforinations, a globally diagonalizing transformation exists if
and only if the metric tensor is a Euclidean metric tensor, i.e. one with constaut coeflicients. A
manifold with a FEuclidean metricis said to be “flat” and the curvature tensor associated with it is
identically zero. ‘I'he precise conditions for themetric tensor associated with M to be abuclidean
metricare summarized in the following lemma[11- 13].

Lemma 2.2: Assumption 2.1 holds if and only if the curvature tensor It of M vanishes. For
R to vanish, cack of the N(N +1)/2 Riemannian symbols of the first kind Ry, defined below must
vanish,
OQMM ()?M,'j O?M)j (r)QM'k -~ 1 ! . .
i P R P I SRRV AN 2.5
Fniji [00 90; " 90,90, 90,00, aa,,ao,‘} oo G aa) o @9)

where the quantities [if, k] and {fJ} are known (9] as Christoffcl symbols of the first and sccond
kind respectively and arc compuled from appropriaie combinations of first derivatives of the mass
matriz with respect to the joint angles. |




In practice, the conditions in this lemma are very restrictive, and arc rarely satisfied by
practical multibody systems [11, 12]. Even when they are satisfied, the conditions are extremely
diflicult to verify, as first and second derivatives of themass matrix must be computed with respect
to the configuration variables 0. The next section describes an alternative approach to diagonalizing
the equations of motion that is broadly applicable to complex multibody systems,

3 Diagonalization in Velocity Space is Kasier

instead of diagonalizing globally in configuration space, we look at a diagonalizing transformation
inthe velocity space. This transformation replaces the joint-angle velocities 0 with a new set of
velocities v, without replacing the configuration variables 6. Thesearch for this transformation
begins with the following factorization of the mass matrix.

Assumption 3.1 ~'here erxists a smooth, differentiable and invertible function m(0), withinverse
denoted by £(0), which factors the mass matriz as M(0)= m(0)m*(0) for all configurations. Un-
like the previous Assumption 2.1,the function m(0) here nced not be the gradient of any function.

The differentiability of m insures that the vector v =m(0)8 is differentiable. Invertibility
of m (@) insures that time derivatives 8 of the configuration variables can berecovered fromw.
Under these conditions v is a valid choice as a new generalized velocity vector.

Assumption 3.1 is much weaker than Assumption 2.1. One consequence of the fact that m
is not the gradient, of a function is that the transformed velocity vector v is not the time derivative
of any vector of configuration variables either. Its components arc referred to [8] as time derivatives
of quasi-coordinates. integration of the vector v with respect to time does not typically leadto the
system con figuration variables. Nonectheless, finding the system configuration from the transformed
velocitieswisa relatively easy problem. This is done by solving the kinematic equation - £0)
for the time derivatives of the configuration variables,together with the dynamic equations satisfied
by the acceleration variables . These dynamic and kinematic equations are sumn marized in tile
following result.

Lemma 3.1 The equations of motionusing the (O, 1) coordinates are
v CO, 1) =€ (3.
with the new Coriolis force vector
_ 1.. .
C(U, v) :Eznu - ;2-0 Mg()) (3.2
where e= I( O)'I'. The kinematic cquation to obtainthe joini-angle rates 0 is
00w

Proof: Similar to that of Lemma 2.1. Replace Fq. (2.4) by Fq. (3.1), where C(v,0) = £C(0, 9)-—7h'0.
Use C(0,0) = 4 man*0- {,O‘MOO. B
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These equations of motion are considerably simpler than the original ones in kq. (2.]).
They are quite similar to the globally diagonalized equations in Eq. ('2.4). The mass matrix here
is once again constant and equal to the identity matrix. The main difference is that the Coriolis
force terin is no longer zero. However, it will be shown later that this Coriolis vector is orthogonal
to the generalized velocity vector v. This implies that the Coriolis term does no mechanical work.

The most critical element leading to the above diagonalized equations is the mass matrix
factor m(0). Clearly, a numerical (e.g. Cholesky-like) factorization of the mass matrix at cach
configuration can be used to obtain a candidate factor m(@).HHowever, it may not he easy to
physically interpret the corresponding transformed variables. Also, the factors may not smoothly
depend on the configuration coordinates and thus might not be differentiable. More problemnatically,
numerical factorization procedures provide no systematic way to compute the Coriolis force term
C(8, v), since the derivatives of m arc required for this purpose.

Important aternatives to numerical factorization arc the, model-based operator factoriza-
tions of the manipulator mass matrix advancedin [1]. These factorization are reviewed in the next
section. The factors arc constructed using the spatially recursive filtering and smoothing meth-
odsof [4, 7], and provide closed-form expressions for m(0) and its inverse £(8). The algorithins
required to do this arc eflicient, as the number of arithmetical operations increases only linearly
with the number of degrees of freedom. in addition, wc later derive closccl form expressions and
computational algorithms for the new Coriolis terin C(0,v) as well.

The diagonal equations of motion inkq. (3.1) represent amiddle ground between the

globally decoupled equations of motion inl.emma 2.1 and the standard equations of mnotionin
Fq. (2.1). While they are not quite assimple as the globally diagonalized equations of Lemima 2.1,

they always exist for the broad class of tree topology systems.

4 Operator Factorization and 1 nversion of the Mass Matrix

Recent results [1, 6] have established that the mass matrix can be factored and inverted using
methods widely used in linear filtering and estimation theory. These results arc summarized by the
following identities, whose proof can befoundin [1, 6].

Identity 4.1

M = HoMe 1I* (4.1a)

M = [I4 H¢KID[I4 HPK] (1.1b)

I+ H¢K)' = I- HyYK (4.1c)
MY (T- HYK]"D I - HYK) (4.1d)

The factorization in Iq.(4.1a) is referred to here as the Newton-Fuler operator I actorization,
because it is known [1] to be equivalent to the traditional [li’] recursive Newton-Euler equations
of motion for a serial manipulator. The ree.)rsive algorithmscimbedded in this factorization, while
quite useful [1 7] for inverse dynamics computations, are not by themselves very useful for the
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diagonalized equations developed in this paper. The primary limitation [1] is that the factors H ¢
and @" H* are neither square nor invertible. Nevertheless, Yiq.(4.1a) is pivota for the development
of the alternative factorization in}kq.(4.1b). This alternative has been referred to [1] as the
Innovations Operator Factorization, because of its relationship to the innovations approach {14] of
linear filtering theory. This Innovations Factorization is essential to developing the diagonalized
equations of motion.

The factorization in 4. (4.1b)isa closed- form, symbolic, model- based (lower-triangular)-
(diagonal) -(upper-triangular) LD L* factorization of the mass matrix M. The factorization is
model-based [1] in the sense that the manipulator model itself is usedto prescribe each of the
computations required. Because of this, every computational step has animmediate physical in-
terpretation. This adds substantial physical insight to the factorization. The factors [I 4 H ¢ K]
and D are square with the former being lower triangular and the latter diagonal.Since the mass
matrix is positive-dcfinite, both factors(l +- H¢ K] and DD are invertible. In particular, since I7
is diagonal, each of its diagonal elements ID(k) is invertible and positive definite. A closed-form
operator expression for the inverse of thefactor[I4{H¢K] is provided by ¥q. (4. 1c). The fac-
torization in Eq.(4.1d) is a closed- forin 1. D1 factorizationof M'. These operator factorization
and inversion results for the mass matrix closely parallel similar results for covariance factorization
in estimation theory [1,6]. The operator expression for M* ' aso formsthe foundation for O(N)
articulated body forwarddynamicsalgorithins [4, 7, 1 8). All of the operators involved in the above
mass matrix factorization and inversion are synthesized by spatially recursive algorithins.

The aim of this subsection is to summarize briefly the essential ideas leading to the Newton-tuler
Operator Factorization of the mass matrix given by

M(0) == HpM@*H ¢ RVV (4.2)

While this is done for a serial chain manipulator, the factorization results apply to a much more
general class of complex joint-connected mechanical systems, including tree-collfigtllatioll manipu-
lators with flexible links and joints [7].

Consider a serial manipulator with n rigid links as showninligure 1.  Thelinks are
numbered in increasing order fromn tip to base. The outer-most link is link 1 and the inner-most
link is link n. The overall number of degrees-of-freedom for the manipulat or is A/, There are two
joints attached to the k*® link. A coordinate frame %k is attached to the inboard joint, and another
frame (Of_, is attached to the outboard joint. I'rame (3 is also the body frame for the k" link.
The k™ joint connects the (k + 1)* and k™ links and its motion is defined as the motion of frame
O with respect to frame OF . Whenapplicable, the free-sl)ace motion of amanipulator is modeled
by attaching a 6 degree-of-freedom joint Letweenthe baselink and the inertia] frame about which
the free-space motion occurs. However, in this paper, without loss of generality and for the sake of
notational simplicity, all joints are assumed to besingle rotational degree-of-freedoin hinges with
the k** hinge coordinate given by O(K). I'or this case the totalnumber of degrees of freedom A = n.
Ixtensiontomore rotational andtranslational degrees-of-freedom is easy {3].

The spatial velocity of the A™ body frame Oy is V(k) = [w™(k),v*(F)]* € RE, where w(k)
and v(k) are the angular and lincar velocities of (. With h(k) € R?® denoting the k'™ hinge
axis vector, n'(k) ( Q(OL) ) ¢ IR® denotes the joint map matrix for the hinge and the relative
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Figure i Illustration of the links and hinges in a serial manipulator

spatial velocity across the k' joint is FI*(k)O(k). The spatial force of interaction f(k) across the kh
joint is f(k)={[N"*(k), F*(k)])" € R®, where N(k) and F'(k) are the moment and force components
respectively. The G x 6 spatial inertia matrix M (k) of the k' linkin the coordinate frame Ok is

. Tk m(k)p(k)
M((k) = ( -m(R)p(k)  m(k)Is )

where m(k) is the mass, p(k)€ R? is the vector from O to the &** link center of mass, and
J(k)cR?*2 is the rotational inertia of the &' link about O.

Inthe above notation, the recursive Newton- Fuler equations are [1, 17]

( V(nd 1)= 0; a(n- 1)=0
for k == n...1
VEY = ¢ (k4 1L,EW (kA 1) H*(£)0k)
a(k) = (4 1 RYalk 4 V4 H()0(K) a(k)
end loop
(4.3)
J(0)=0
fork = 1..-mn
) = Uk 1)fCk- )4 M(E)a(k)4b(k)
Ty = H(R)Yf(k)
[ end loop

where 7'(k) is the applied momenta jointk. The nonlinear, velocity dependent terms a(k)andb(k)
are respectively the Coriolis acceleration and the gyroscopic force. The transformnation operator

9




¢(k,k — 1) between the O _, and O, framnes is

bk k- 1) = (’03 k- ”)emm
3

where I(k,k — 1) is the vector from frame Qg to frame O(k — 1), and i(k,k - 1) € R¥*3 js the
skew- symmetric matrix associated with the cross-product operation.

The ‘{stacked” notation 0= col{O(A‘)}GI}{N is used to simplify theabove recursive Newton-

Euler equations. This notation []] eliminates the arguments k associated with the individuallinks
by defining composite vectors, such as @, which apply to the entire manipulator system. We define

T = col{T(k)} € RV V = col{V(k)} ere
S = col{ f()} cmen a- Col a(k)} e ren
a = Col{a(k)} € R b= col{b(k)} € R®"

I this notation, the equations of motion arc [I, G]:

V=¢ H0;  a=¢ [H'0-{ d (4.4)

f=[Madb); T=Hf=MIqcC (1.5)

where the mass matrix M(0) = HeM¢PH*, and C(0,0)=: H[M @ a+ b) € RV is the Coriolis
term; H = diag{]l(k)} € R¥*%" and M = diag{M’(k)} € R and

i 0 ... 0

2,1 I e 0
d) - (I _ E¢)" - d)( : ) : ) : € RO %o (16)
¢(n, 1) ¢(n,2) ... I

with ¢(i, j) = ¢(i,i—1)---P(j 1,7) for ¢ > j. The across- link rigid transformation operator €¢
is defined as

0 0 0 0 0
#(2,1) 0 ... 0 0

84, == 0 d)(3, 2) . 0 0 ¢ H{'an(}n (47)
0 0 v P(nym-1) 0

Innovations Factorization By Spatial Kalman Filtering
e innovations factorization of the mass matrix is M= [I 1 H¢K|D[I 4 HpK}',andthat Of
its inverseis M~ = (I - HY K" D=1 - H$K). The spatial operators ¢, K and D embedded
inthese factorization are based onspatially recursive filtering and smoothing algorithms [],4,6].
The following Riccati equation for the articulated body inertia 12 is @ key part of these filtering

and smoothing algorithms.
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Algorithm 4.1 The articulated body inertia quantities P(.), D(.), G(.), K(.), 7(.),7(.), P* ()
and +(., .) are defined by the Riccali equation

PH0)y=0
fork =1... n
P(k)= gk, k~ )P4 (k - )¢ (k, k — D4 M(k)
D(k) = H(E)P(kYH (k)
G(k) =PEYH(K)D~ " (k)
Kk + 1,k) = ¢k 41,k)G(k) (4.9)
(k) = G(E)YH(k)
7(k) = I 7(k)
pPto(k) = 7(k)P(k)
y(k+1,k) =- ¢k 41,k)7(k)
end loop

This is cquivalent to the following spatial operator equalion

M=P-£,PE,= 1I'- £,PE, (4.9)

Algorithm4.1isthe by now classical [4, 14]Riccat i equation of Kalman filtering. Its solution
P(k) is the articulated body inertia [4, 18] of the part of the manipulator outboard (towardthe
tip) of joint k. The operator P> is a block-diagonal 6n x Gnmatrix with its k** diagonal clement
being P(k)e R®*C. Define also -

D HPH* ¢ RV
e PH D} ¢ RSN

K £4,G ¢ ROV (4.10)
T I- GIH ¢ R¥*

Ey Egr ¢ RO

") (I - E’J’)nl ¢ ROHx6n

The operators D,G and 7 arc al block diagonal. The operators K and € are not block-
diagonal, but their only nonzero block elementsare K(k,k-1)s and vs(k,k - 1 )'s respectively
along the first subdiagonal. The block clements of tile lower-block-t riangular operator 4 are:
W(i,7)= (1,1 - 1) P+ 1, ) fori> jiap(icj):-Ifori = j; and 4(i,7)= O fori< j. The
structure of the operatorss and £,, is identical to that of the operators¢p and €4 inliq. {:4.6) and
Eq. (4.7), except that the elements arc now (i, j)rather than ¢(1, j).

Physical Meaning of Spatial Operators

We suinmarize here the physical meaning of theimportant spatial operators involved in the inno-
vations and recursive Newt on-FEuler mass matrix factorizations,andin the corresponding spatially
recursive filtering and smoothing algorithms that synthesize the spatial operators. The operator
¢(k,k~ 1) converts a spatia force at frame(}_,andtransforms it across the k** rigid link into a
corresponding spatial force at the inboard k'™ joint frame Ok . Its transpose ¢”(k,k~ 1) transforins
spatial velocities andaccelerationsinthe opposite direction. Both transforinations are rigid inthe
sense that the body k to which the operator corresponds is by definition a rigid hotly. The operator
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£ is a shift operator whose elements are all zero, except along its lower sub- diagona as shown in
Eq. (4.7). In addition to producing a shift, it rigidly transforms al the forces in the manipulator
from the outboard to the inboard frame for cach link. Its transpose €4, produces a shift and a
velocity transfer in the outward direction. The operator H projects spatial forces at the joints into
generalized force components along the joint axes. Its transpose IH* converts the scalar rotational
rates along the joint axes into 6- dimensional relative spatial velocities across the joint,

The articulated body inertia P is thesolution to the Riccati equation. Its diagonal element
P(k) at jointk is the effective inertia [18] at frame Ok of the articulated body consisting of links
1 through k. The articulated body inertia captures the ‘(bicycle chain’ effect, that is, if a bicycle
chain is held firmly at its k** link, (k) isthe effective spatial inertia felt at that link and its
value depends upon the configuration of the outboard hinges. The articulated joint inertia D(k) at
jointk is a scalar quantity obtained by projecting the articulated body inertia P(k) along the joint
axis. The Kalinan gain G' is computed from the articulated body inertia and appears [4] as a key
element in therecursive filtering and smoothing algorithms. Its primary function is to compute the
joint articulation operator 7 whose diagonal element 7(k) at joint & is used to remove the scalar
rotational inertia about that joint, thereby rendering the resulting body outboard of this joint as
an articulated body.The operator €y is similar to €4, cexcept that it produces *(articulated” shifts
instead of “rigid” shifts. The operator ¥ isa lower-triangular matrix representing an inward spatial
Kalman filtering recursion [4]. It is used to propagate forces in an inward direction. In crossing each
joint, the articulation operator 7(k)is applicd. This is the reason for using the term articulated
force transformation to refer to the action of this operator. Its transpose " is an upper-triangular
matrix used to propagate velocities in an outward direction across articulated bodies. The operator
1 differs from the operator ¢ in that it takesinto account the articulation at the joinis which the
latter dots not.

The Reduced Manipulator A: at the A" link
While discussing the articulated body quantities and their physical meaning, one handy notion is
that of a reduced manipulator. We define a reduced manipulator A, at link k£ to bea manipulator
consisting of just links 1 through A. Clearly, associated with every link inthe manipulator is
a reduced manipulator. The reduced manipulator A;consists of just link 1, while the reduced
manipulator A, associated with the »'* link is the whole manipulator itself. in general, the reduced
manipulator Axy; consists of the reduced manipulator A with the (k 4+ 1) link added on to its
has?. The reduced manipulator Axcanbe regarded as the origina manipulator in which allthe
hinges inboard of the &** link have been locked.

5 The Innovations Factors Diagonalize The Mass Matrix
Theinnovations factorization in ldentity 4.1 leadsto a set of diagona equations of motion. To this
end, define the operators m(0) and £(0) as

m(0) 2 (I+ HKID*  £0) £ m ' (0)= D 3[I - HypK) (5.1)
we have

M(0) ¥ m(0)m (0); M (0) e (0)60) (5.2)



[ y —m'@=D'[I+ H$K]'0 _O0=fv=[I- HOKID ‘v
i Vet =o - T V(n+1)=0
fork = n ++.1 fork =n...1
VHE) = @' (k41,0)V (k4 1) VAR = ¢'(k+ LKW+ 1)
(k) = Di(k)[0(k) -i G*(k) V* (k)] O(k) = D3 (R)w(k) - G*(k)V* (k)
v(k) = V+ (k) -i H*(k)0(k) vék) = v+ (k;+- H*(1)0(k)
end loop end loop e 1

Table 1: @and v can be recursively computed from each other

€= 0T = D 3[I - HyK|T T =me=[I + HOK|D ¢
- z0)y=0 :(0) =0
fork =1 -..n fork=1 . .22
2(k) = @k k= 1)2t (k- 1) 2) = @(kyk - D2tk - 1)
k) = D i) [Tk - H(K)=(k)) T(k) = Di(k)e(k) 4 H(k)z(k)
(k) = 2(k) + G(k)e(k) (k) = z(k) 4 Gk)e(k)
end loop - end loop

Table 2: € and T canbe recursively computed from each other

The function m(0) so defined satisfies al of t he conditionsin Assumption 3.1, although verifying
the condition of differentiability requires the following more careful argument.T'he operators H
and ¢» are smooth and differentiable functions of the coordinates, so the only potential trouble-spot
isinthe differentiability of tile articulated body quantities inlq. (4.9), particularly the inverse 2!
of the diagonal operator I)= H I’H*.The diagonal matrix I is al ways positive definite, invertible
and asmoothfunction of the generalized coordinates. Consequently,J2™! is always a sinoothand
differentiable function of 8. q'bus, m =- {I 4 Hd)K]I)% is also a smooth and differentiable matrix
function. ‘Jbus, m(0) satisfies all the conditionsin Assumption 3.1.

The Relative and Total Joint Rates Are Easily Computed From Each Other

T'lie total joint ratesy are computed from the relative joint rates 0 by means of the transformation
v - m*0. This transformation is mechanized by means of anoutward recursion fromthe base of
the manipulator to its tip. This outward recursion is specified by the algorithm on the left column
of Table 1. The inverse transformation &= €'v is also mechanized by an outward recursion. The
right column of Table 1shows this algorithm.

Similarly, the “new” input variables € appearingin the diagonalized equation &4 C(v,0)=¢
are obtained from the ‘(old” inputs 7" by the transformation e == £7'. This is mechanized by the
inward, tip-to-base recursion specified on the left column of Table 2. T'he inverse operation 7' = me
from the new variables ¢ to the old variables T is also performed recursivelyin an outward direction,
as specified by the algorithm inthe right column of Table 2.
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It is relatively easy therefore to go back and forth from the “old” variables @ and T in
traditional robot dynamics and the “new” variables v and e€in the diagonalized equations of this
paper. The two mutually reciprocal outward recursions in ‘I’able 1 govern the relationships between
the new and old velocities. Two mutualy reciprocal inward recursions in the Table 2 govern the
relationships between the new and old inputs. Each of the above four recursions represents an
O(N') computational algorithm, in the sense that the number of required computations increases
only linearly with the number A of degrees of freedom.

Physical Interpretation of the Total Joint Velocities
The total joint velocities v can be obtained from the joint-angle velocities by means of the recursion
on theleft column of ‘I’able 1. Thereisa physica interpretation to this. Observe from ‘I’able 1 that

DY(R)w(k)= O(k) 46(k), where 8(k) £ G (k) V*(k) (5.3)

in which Vi (k) is the spatial velocity of frame Of which is immediately adjacent to and on the
inboard side of the k'* hinge. 1'his spatial velocity is due to the relative velocities 8(j) at al of the
joints inboard of joint k. The spatial velocity V'(k) represents the spatial velocity of the “base
body” of the k** reduced manipulator A:. The quantity I23(k) is a normaizing factor which is
used SO that the kinetic energy is not only diagonalized but normalized as in kq.(1 .2).

Iq. (5.3) states that the total joint rate 1% (k) (k) at joint k is the sum of two angular
rates. One of these is the relative joint velocity (k) at joint £ between link & and the next link k4 1,
which is the hinge velocity at the base link of the reduced manipulator Ax.The second angular
rate given by é(k) represents an additional term due to the non- zero spatial velocity V(k+ 1)
of the “base- body” of Ax. When link (K + 1) is at rest, the additional term é(k) is zero, and
I)%(k)u(k) equals the commonly used hinge relative rate O(k). The correction term é(k) depends
on the articulated body inertia quantities P(k) and D(k). It compensates for the joint motion
inducedin all the outboard hinges by the motion of the “base body”.

Physical interpretation of the New Generalized Forces

The input variables € in the new equations of motion also have a uice physical interpretation. This
can beseen from the relationship

T(k) = DY(RYe(k) -i H(k)z(k) (5.4)

One way to interpret this relationship is to observe that the applied moment 7°(k) at joint & is
the sum of two terms. The first term 13 (k)e(k) is a working joint moment in the scnse that it
directly enters the diagonalized equation & 4 C(0, )= ¢ and causes the “acceleration” term v to
either increase or decrease. The second component I/ (k)z(k)depends only upon and compensates
for all the outboard applied moments 2'(1),... ,7'(k - 1). A point worth noting here is that e(k)
depends only on quantities associated withthe reduced manipulator Ay alone.

Extension of the Cross Product Operations to Spatial Vectors
It is well known that the cross- product z X y of a pair of 3- dimensional vectors z and y can also
be written as zy where € R®*? is the appropriate skew- symmetric matrix. We introduce here a
(L

new “cross- product” operator for 6- dimcusionalspatial quantities as follows.Let X z- b and
(")
Y - ( 2 ) bespatial vectors wherea,b, ¢, d are 3- dimensional vectors. Then, the ‘(cross- product”
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operation X x Y, is defined as

Xx)’:(Z)x(;),--Z Y = (LC:C(M)‘ where X 2
. 4 (

The spatial cross- product operation is anti-symmetric, i.e. X XY = Y X X and satisfies the
Jacobi identity. (Indeed, this cross- product operation is in fact the Lie bracket operation for the
Lic algebra associated with the Lie group consisting of the ¢(.,.) transformation operators). Wc
also have the identity X*(7 x }') = -- Z*(X x }'). As in the 3-dimensional case, X represents
the matrix corresponding to the spatial cross- product operation. However, while the operation
“X” is anti- symmetric for spatial vectors, the matrix X isnot skew- symmetric., i.e X ¥ - X",
except in the case where the lower half of X iszcro. Given spatial vectors X (k),and tile vector

X :COI{X(k)}:-Ie R", we define

€ R®*® (5.5)

= R
¥

X £ diag{X (W} RO wthar XY = o XY (R} CRe (5.6)

6 Mass Matrix Derivatives in The Coriolis Term

The Coriolis term C(O, v)= Z(vilu——%O*MGO) isone of the key elements in the diagonalized cqua-
tions of motion v +4 C(O, v)=e. It is apparent that there arc two key computations in this term:

« Theinertial time derivative 1w Of the mass matrix factor m intheinnovations factorization
M o= mm' .

. The first-order derivative or “sensit vity” Me of the mass matrix M with respect to the
joint angles 0.

This section summarizes key results regarding the differentiation of spatial operators which
lead to a relatively easy computation of the above mass matrix derivatives. The detailed derivation
of the results is provided in Appendix A.

Time Derivatives of Key Spatial Operators

The inertia) time derivative & of a quantity z is taken with respect to to aninertially fixed frame.
The local time derivative (k) for a quantity associated withbody k is takenwithrespect to the
k" body frame O . Frame Ok rotates with respect to inertial space at the angular velocity w(k).
The inertial time derivative (k) of an arbitrary 6-dimensionalspatial vector z(k)attached to body
kis related to its local time derivative vector z(&) asfollows:

a(k) = (k)4 Qk)x (k) (6.1)

whiere (k) is the spatia cross product matrix associated with the spatia vector (k) which is
defined as:
O ““'(0"') (6.2)
( )



 operstor () | vokal Bertvative() | fnertial perivative(y |
T T ”T'I}}'(Z)};g;?"
B M(k) | *_o - SUk) M (k) — M (k) Su(k)
D(ko):if_@{i(mﬂm H(A)P(k)u (;) ) (k)
Gy *"(~>P«k>n'(k>n~ (k) G(k) + QUK)G(k)
%%k) = [Ih C(L){](Ql ;7““»5‘_(“1:")7)11(1») 7 (k)4 Qk)7 (k) - T(kYQUk)

Table 3: Time Derivatives of Spatial Operators

Table 3 summarizes some of the key expressions for the derivatives of various operator quantities.
These expressions follow from the sensitivity expressions derived in Appendix A

The local time derivative IQ’(k), of the articulated body iuertia I’(k) is a key quantity required
to evaluate the time derivatives of the Kalman gainG(k) the articulation operator 7 (k) as well
as the termn in the Coriolis force C(V, 0)=€(mwv - 5 10 M,y0).Because of this, the local time
derivative P require special consideration, and thisis gnonmthonoxt suh.section.

l.ocal Time Derivative of the Articulated Inertia

"This section discusses the local time derivative P(k) of the articulated bodyinertia (k). A useful
quantity in this regard is A(k) which is theinertial time derivative of #2(%) with respect to the
coordinates of the reduced manipulator Ay alone. First we define the quantities §2;(k) € R®and
Q2;¢ R as follows:

Qu(k) £Qk) - Qk+ 1) = H*(k) 0(k), and Q52 col{%(k)} (6.3)

The algorithm for computing )\(k) and I’(k) is given below.

Algorithm 6.1 The local time-derivative P and A(k) satisfy the following operator equations:
Ao Py QuP-PQ, and P - E4AE (6.4)

The compulational algorithm in component form is as follows:

A(0) = 0
fJork = 1...n
P(k) = gk, k- DA - Dk, k- 1) (6.5)
A(k) = PR fww( )- Pk (k)
end loop

These results are derivedin  Appendix A. The above algorithin consists of aninward
recursion from thetiptothe Last of the svstem. Itis asensitivity equation for the articulated
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body inertia Riccati equation. It provides a means to compute )\(k)and the local time derivative
P of the aticulated body inertia P, in terms of the articulated body inertia itself. The recursion

is linear, with the term €25 P — P§¥sbeing an input. For cach joint k, this term reflects the change
inthe articulated body inertia due to the the rotation $2s(k). Because the algorithmn is aninward

recursion, the time derivative >'\(k) at ajoint k depends only on the rotation at the joints of the
reduced manipulator 4. The time derivative does not depend on the joints on the inward path

toward the base of the system. ‘I’he inertial time derivative of the articulated body inertia is given
by

P(k)= P(k) + DK)'(K) - P(6) Q(k) = A(k)4 Q4D (K) - P()QKk41)  (6.6)

Time Derivative of the Mass Matrix Innovations Factor

Identity 6.1 The time derivative of the mass matriz factor m is

. . 1 . \

m 2% He Qe S DA D (6.7)
where ¢ & ¢ -l
For convenience in later developments, observe also the following additionalidentity.

Identity 6.2

. 1 - . S
mrv=H¢ | QI HP 4 é(Q(s]'gl»ﬂﬁ EpA — A8,J,)] |4 (6.8)

Proof: We have that

. (A.30)
myv =

H¢ LQSEM' 1 »;(1 4 ‘T)}\] H* D'y

GIASD b Q1 4 ;]2(1 1 "T)J\] H*G ¢ H"0

_ 1 .
(4:4) Il(f) Sléd)]’ 1 :2(] 1 .T)A] HnaG'v

- | _
“H g |QspKHP 4;2(1+'T)/\T*} 1%
Wy gels P4 (11 e AT -V
¢ |QUueKHP 4 5( 4 E)A — £)
r-. . - . .
= He (K HP %(,\-ﬁgv,,\g;,, 4 EyX- Ag;,)] 1%

|

(a27)

- 1 . R . . »
He |QUupKHP 4 o (1~ P+ E45 ,\5,,,)] 1% (6.9)




Closed-Form Mass_Matrix Sensitivity A, ant] 0 MoO

Define
N A T L il(i) 0
Il](z) = [H*(1)] = ( 0 i) ) (6.10)
Note that §25(i) = H(1)0(7). Also define the block- diagonal matrix operator 1} e R as
H(k, k) = TI(2)bk-s (6.11)

The matrix ill\ is the new quantity required to define the sensitivity of the mass matrix. This
matrix has a very simple structure. All of its elements are mm, except for asingle 6 x 6 block F(¢)
at thes'™ location on the diagonal.

ldentity 6.3

Mo, 1 MM - M 1) ¢ H* (6.12)

The above formula is closed-form, in the sense that it explicitly computes the mass matrix
sensitivity interms of the operators ¢, A4, and Il appearing in the mass matrix itself. That the
formula is closed-form is of extreme importance, because it implies that the mass matrix derivatives
can be casily computed using operations and spatially recursive algorithms similar to those used
to compute the mass matrix itself. Asdescribed later, this allows development of simple closed-
formn expressions and recursive algorithms to evaluate the Coriolis term C(0,v) in the diagonalized
equations of otion.

As discussed in Appendix A, ldentity 6.3 is establishedby use of the classical chain-rule
of differentiation, applied to the wore elementary sensitivities Heg,, ¢, and Mo, of the operators
H,¢ ancl M makingup the mass matrix M == H¢$ M¢™ H*. identity 6.3 leads to the following
expression for the term 0 M 0in the Coriolis forces,

Identity 6.4

0" Mo "7 211 [Qu(1 + GIHNP + V‘]\/I] 1% (6.13)

7 Closed-Form Coriolis Forces C(8, v)

The various sensitivity and time derivative quantitics computed above are used for the development
of aclosed form repression for the Coriolis forces term C(0,v)given below.

Identity 7.1

C(0,v) = D HHP[EA- A&l - P 2V M) 1D

N =

DAY [51,,5\ -~ AE, - QP Py - 2\7'1\4] 1% (7.1)

N =
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Proof: Combine Lemma 3.1, Eq. (6.13) andEq. (6.8). N

The explicit expression for the Coriolisterm in identity 7.1isa breakthrough, It explic-
itly evaluates in terms of relatively simple quantities, the very complicated quantity C(8,v)=
£(ﬁ1»%()‘M99) which depends on various derivatives of the systemmass matrix. Algorithm 7.1
below computes this term recursively.

Inwardly Recursive Algorithm to Compute C(0,v)

An algorithm to comnpute C(O, v)recursively is described below. It is assumed that V as well as
the various articulated body quantities have been computed using Iiq. (4.8) and are available prior
to these computations.

Algorithm 7.1
1(0) =0, yo)= O

fork==1...n
y(K) = Qu(k)P(k)
Yk, k- 1) = ok k- DA - 1)

! A(R) = Y (k- D9k k- )4 x(K)+ X° (k) 7.2)
y(K) © Wk, k- Dylk - 1) -2 [V (k) M) X (k)4 X (0)]| V()
Y(k,k-1)V(k-1)-Atk)7 (k)V (K)

c(k)y = 1D3(k)H(k)y(k)
end loop

i

"

The above algorithm proceeds from tip-to-base and is of O(N) computational complexity.

Coriolis Force Does No Work
The Coriolis term C(0,v) is orthogonal to the generalized velocities v and therefore does no me-
chanical work.

Lemma 7.1:

v C(0,v)=() (7.3)

Proof: Observe that M = mm” implics thal 0" M0 = 2co]{u‘1n;'0}. Consequently, v=C(0,v)
=0 (ﬁz.u - col{u‘m;ﬁ}) = 0 mp- 30 0(2')1/‘1:1;'0 = 0 0v-vmh=0. |

PTED

A similar orthogonality condition can be obtained using the explicit expression for the
Coriolis vector (0, 1) in Identity 7.1:

1 .. ; . -

vCOw) = LV [euh- ey Qur- Py - QV‘M] 1% (7.4)
1 .. . .

= GV Eeh = A - QP PO, V=0 (7.5)
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Since the matrix expression in the middle is skew- symmetric, the overall expression is zero.

‘I"he orthogonality of the nonlinear Coriolis forces is similar to the orthogonality condition
w [w X Jw]= 0 of the gyroscopic force termin the equations of motion for a single rigid body
rotating with angular velocity w. In contrast, the correspanding Coriolis forces term c(o, 0) in the
regular equations of inotionin Eq. (2.1) does work, i.e.,, 8 C(O, 0)7# O.

Rate of change of the kinetic energy
The non-working nature of the (orlo]m forces has aninteresting implication. Recall that the kinetic
energy of the system is K(0,v)=1v*v.

Lemma 7.2: The rate of change of the kinctic encrgy is the dot product of the generalized forces
and generalized velocities

;;11 K(0, u)::;l—u"x'/ = v [e-C(0,1)]= V'€ (7.6)

Un-normalized Diagonalized Equations of Motion
An alternative sct of diagonalized form equations of motion can be obtained by using a slightly
different generalized velocity vector defined as

~E=D iy [I4 H$K]'0O (7.7)
The kinetic. energy in these coordinates is
C 1 e .
K(&,8): 5E D(O)E (78)

The mass matrix now is the block diagonal matrix ID(0).The equations of inotioninthe new
coordinates (O, &) are given below.

Lemma 7.3:

DE4 €(0,6) & (7.9)
where
k © Dics [I- HpK]T
c0,¢) © [C(O v) - “;'(I‘I})'u ,,]

"

Hp [;\11*.5_((261)4 17‘]\4)1/] -~ H [f)n*g—»fzap* vi - 17‘MV]

The equations of motion inlq.(7.9)aresimilartothose of the previous section andcan
be derived fairly readily, They arc still diagonal, hut they differ from those inIq. (3.1) intwo
respects. First, although the mass matrix 1) is diagonal, it is configuration dependent. Moreover,
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while the Coriolis forces term C(O, £) is siinpler than C(8,v), it is not orthogonal to the generalized
velocities vector any more. An O(N) computational algorithm for the components of C(6,€) is

’ A(0) =0, y(0)= 0
fork =1...n
X(k) = SQu(k)P(k)
A(R) = ap(k,k - DK - DPp (k- 1)+ X (k)4 X (k) (7.10)
y(k) =k, k- Dy(k -- 1)+2\(k)11'(k)£(k)-f[V‘(k)M(kH a (k)] V()
c(K) =n@r)yr)

| end loop

8 Forward Dynamics and Control Applications

O(N) ¥orward Dynamics
One important application is that of forward dynamics and numerical integration to predict the
motion of the manipulator in response to appliecd moments. An algorithm based upon the un-

normalized diagonalized equations of motion in Lemma 7.3 is described here. The acceleration
term is given by:

E Dk -- €0, 6] T Hyc (8.1)
where
CEKTAAUE - (QUP AV M)V (82)

Thediagonalized equation is used to obtain the following forward dynamics algorithm.

Algorithm 8.1 1. Compute the articulated body inertia terms and A(k) terms using Fq. (4.8)
and part of Fq. (7. 10).

2. Compute the time derivatives € of the tolal joint rates v using the algorithm:
( 7(0)=0
fOTk:]-..'n, )
(k) = K(ky k- DTk - D)4 i1 k) - [P(R) 47k MEWW(E)
v(k) = (kb= 1)) (L' - D+ (k) (83)
E(k) = D7U(k) [T(k) - H(k)y (k)]
| end loop

3. Conduct an integralion step to obtain the total joint rates € at a new time instant.

4. Compute the joint-angle rates 0 and V by mcans of the outward recursion in Table 1 and
using the fact that v = D~3¢,

5. Inlegrate the joint-angle rates 0 to obtain the Joint angles @ al the new time instant.

6. Go back to the first step and repeat as long as nceessary until a preseribed final timne has been
rcached,
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The very first time, V must be computed explicitly (from 6 or £) using one of the algorithms
in‘Jable 1. Algorithm 8.1 is similar to those typically [4, 18] associated with O(N) forward
dynamics. However, it |sa51gmﬁcant improvement because it is only a 2-sweep agorithm involving
an inward recursion to compute £ followed by an outward recursion to compute 6. The Coriolis
effects are completely accounted for in the inward sweep. Previous Q(A) algorithms typically
[1, 18] require at least1or even 2 preliminary inverse dynamics sweeps, prior to utilization of the
forward dynamics algorithm. Morcover, the computational cost of this agorithm is quite similar
to that of the conventional O(A') articulated body inertia forward dynamics agorithm. While the
coordinate transformations required in this algorithm arc not required, the latter involves additional
computations involving the residua forces and the link spatial accelerations.

Decoupled Control

The diagonal equations can also be used to design controllers that are decoupled on non-interacting.
The decoupled control approach focuses onthe dynamical behavior of the v coordinates. Satisfac-
tory performance in the original physical coordinate variables 0 follows from this. Yor example,
stability in », e coordinates is equivalent to stability in the origina 6,0 coordinates. The analysis
and control design however is simpler because the equations of notion used in this design are de-
coupled. The control problem can be stated in terms of the variable v and € in the diagonalized
equations of motion. The problem consists of finding a feedback relationship that determines the
input ein terms of the velocities v. Once ¢ is determined, it is possible to go back to physical
spaceto determine the required input moments 7' by means of the relationship 7' =-me,and to

mechanize this relationship using the inwardly recursive algorithm in Table 2.

Control 8.1 The rate feedback control
€= -cv (8.4)

in which ¢ is a positive diagonal control gain matriz renders the system stable in the sense of
)2J0])2111 ow.

This result follows by using the kinetic energy as a lLyapunov{unction and observing that its time
derivative (given in Lemma 7.2) can be guaranteed to be negative definite by the choice of the
above control approach. This algorithm involves rate feedback only. It can be referred to as a
‘[rate” control algorithm because the feedback quantityisa velocity, in fact, it is a vector of total
velocities. It does not guarantee that the manipulator willend Up in a prescribed configuration.
The following algorithm does this.

letY = col{f/o, Y1y Yau 3731 be a12-dimensional vector whose first component ¥o is the

desired linear position of the encl-effecter withrespect to an inertial reference. The remaining
vectors ¥, ¥, ¥s are 3 unit vectors which together form an orthonormal basis attached to the end-
effecter. These three vectors are used to indicate the desired orientation that the end-effecter should
reachas aresult of the control action. Similarly, the end-cffector position, in both translation and

rotation, is given by Y (0) = Col{yo(O),y,( ), Y2 (0), y‘(O)} in which the dependence 011 9 is shown

explicitly. It is easy to sce that the Jacobianmapping between the hinge rates 6 and the time
derivative of the output ¥ is givenby

B GH"0 (8.5)
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with B being a suitable linear operator [4].

The Euclidean norm |le]| of the error e £¥ _Y(0) is a measure of the distance between
the desired and the actual configuration. The following control algorithm guarantees that the
manipulator goes to the prescribed configuration Y, while simultaneously driving all the velocities
to zero.

Control 8.2 The feedback control
€= - v - e, HpRe (8.6)

in which ¢, and ¢y are positive, diagonal control gaininatrices, causes the systemto reach the
preseribed configuration Y and drives the velocities to zero.

This follows easily by taking the time-derivative of the Lyapunov function [jv]|? + ||e]|%.

The above control approaches require more analysis to include such effects as magnitude
bounds on the applied joint moments. 1'he use of diagonal equations of motion for robot control is
in its infancy. The main objective of this subscction isto introduce the approach and to provide a
few preliminary examples. More comprehensive application of diagonalized models in robot control
will require further investigation.

9 Conclusions

The diagonalized equations of motions presented here are very closely related to the body of knowl-
edge [1 ,3,6,7] recently developed by the authors on spatialy recursive algorithms for manipulator
dynamics. The present paper complements and builds upon tile previous work and explicitly de-
rives the diagonalized Lagrangian eguations of motion which are in addition mechanized by eflicient
recursive algorithms. The focus here is on the new equations of motion, on the diagonalizing trans-
formations required to obtain them, and on the physical interpretation of the transformed variables.
The results presented embed in a single diagonalized equation several of the spatially recursive algo-
rithms previously developed. This provides an additional step toward an increasingly more succinet
statement of the equations of motion for articulatedmmultibody systewms.
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Appendix A: Sensitivities of Spatial Operators

Similar to i, we define the 6n x 6n block diagonal operators H! and H* with T1(¢) along the block
diagonal as follows:

HE(k, k) = H(i)6eei, and  Hi(k, k) = H(i)bx=s (A1)
Note that
H = 1+ Hi (A.2)

We also define the 6n x 6n block- diagonal operators € = diag{fl(k)} and Q, = diag{fl(k + ])}
Note that .

Q= 3 W), Q= };Blib(i), Q= 21}12(’)(1‘) ' (A.3)
i=1 i iz

Analogous to kq. (A.2) we also have that Q=Q, 4 Q.

Operator Expression for co]{O‘MO‘O}

First we state without proof the following fairly obvious component- level sensitivity expressions:

0 for k>
[H” (k)]o, = (L(i):(k)) for k< (A.4)
0 for k>1 .
[Pk 4 1,K)], = {ny(i)d)m 1,k) - ¢k 4 1,K)H(E) for k< i (A.5)
0 for k>1
[M ()], { HEM (k) - MENGE) for k< i (A.6)

These component level sensitivities can be aggregated together to obtain the following operator-
level sensitivity expressions:

H; = WH (A7)
[Eple, = INE4- ELII (A.8)
$o, = - PlEulod: PUiP - U A 11 (A.9)
My, = I1I'M - MIU (A.10)

A useful fact in deriving the above cxpressions is that

Egp: bEg= b 17 (A1])

The following l.cinma establishes the sensitivity of ¢ M @™ with respectto Ofi).

Lemma A.1:
[(pMP™le, = [Pl 4+ W] dpM" - ¢M@ [Hid" + Y] (A.12)
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Proof:

(@M )e, = [Ple.M@™ + ¢ M|l + ¢ Mo ¢’
(4.£,4.10) [¢1}1"&s - $n1§¢] M¢* + oM 1d - ¢ Hg'] + [ M - MI']¢*
= (ol - BHJPM" - pM (i — Hig']
URED (g1 + NilpMe™ — ¢M¢'[Hig" + 1)

|
The following lemma provides an expression for the sensitivity of the mass matrix.
Lemma A.2:
Mo, = HOWipM - M¢*Ni) " 1 (A.13)
Proof:
Mo, =  He¢M@ H  HOM@ Hy 4 H[pM¢ o H'
WA Gi¢M - M Hi)¢ H*
I'rom these expressions we obtain the following expressions for co] {0‘ Mo, b}
Lemma A.3:
col{d’ M0} = 2V ¢MV (A.14a)
= 2 b+ V7| MV (A.14b)
= 2 [Q(1 4 $KINP 4+ V' M|V (A.14c)
17700j:  We have that
col{O‘Mg‘ @)} 4419 QCOI{V*I] Ifsd)MV} = Q(]iag{v-(k)n](k)}d)jwv (A.15)
Howcver,
diag{V* (RN} =- diag{IH(K)7" (1)} (- XV =Y "X VN, Y CR)

= HV”

Substituting this into Fq. (A. 15) leads to the capression in Fq. (A. 1fa). Fq. (A. 14b) follows from
the direct use of Fgq. (11.7) inFq. (4. 14a). Theuse of the capre ssion for v in Lq. (4.4) along with
Fq. (B.3)lcads to Fq. (A. 14c).
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Derivatives of articulated body inertia quantities
W c begin here by computing the sensitivities of the articulated body quantities. First we define
the quantities Ai(k) for alli and kin therange {1...n} as follows:

0 for k<1
Ai(k) == { NGYPGE) = PO for k=i (A.16)

Yk, DN (k, 0) for k> i
As wc show in the lemma below, Ai(k) is nothing but the derivative of P(k) with respect to O(i)
for k>1, i.e., it represents the derivativel of the k'* articulated body inertia with respect to the
i'* outboard hinge coordinate, We define the block diagonal matrix Aif\—*diﬂg{A,‘(k)}.lt is quite
straightforward to verify that ¥q.(A.16) can be rc-expressed at the operator level by the equation:

Ai - EgNEy = WP - PH; (A.17)
Lemma A.4:
Py, = XN- PH 4 IEP (A.18)
I)gi = IIA,II‘ (A.lg)
(D", = ~D'HNH'D! (A.20)
Go, = TNH'D'1IEG (A.21)
The component expressions for these operators are given by
0 for k<i
ANi(R) = P (R)brsi - 4.
(k) o, (k)6x> { w (k) for k> i (:4.22)
N H(:) P(k) - P(k)H(:) for k< i v
To (B - { (ki) %, (09" (k. ) for k> i (429)

Proof: Definey; as
vi & Py 4 PHE - WP (A.21)

We will show later that y; is in fact the A; defined in Fq. (A.17). The use of Fq. (4.8), I'q. (A.7)
and Fq. (A.24) leads to the following sequence of sensitivitics with respeet to 0(7).

Do, = H[P 4 PIV- 1P - Hy 1"
(DY, = -~D'DegD': - D 'Hy D!
Go, = P H'D'4PHNII"'D'- PH*'D'HyH D!
= FTyuH*D'4IIIG
To, = GoH -~ GHIW. = 7~11"D"'H 4 Nir - 711 (A.25)
To, = (7l
[Evle. = [Eglo,T+ E4[T]o,
(A.8)

(MEy — EGMT - EGlryi "D 'H 4 Hir - 71
= W€y~ EgvilI"D'H - £,11
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Differentiating Eq. (4.9) (i.e. M = P — £4,PEY) with respect to (i) we obtain

WM - M D Py ()6, PEG - E4Po ) - E4P[Eg),,
= Po, ~ [WEy — EyviII"D™'H — ELMPEY — E4Pp, £ - E4PIHLEY — E41T]
=3 0 = P, —I[E4PEL+ M|+ [EPEY + MH' — £y[Po, - VP 4 PH)E, 4 EyiT" €

@ Py - WP 4 PH - €476

. (A.2,A4.24)

fehaie Y — E,J,')’,f‘p == HIZI) - I)]}];

However, the last equation above is the same as Eq. (A. 17) and implics that ¥i = Ai. This establishes
Fq. (A. 18) thru Fq. (A. 21). The component lcvel expressions in Fq. (A .22) follow directly from
Eq. (A. 16) and Fq. (A. 18). Eq. (A .23) follows from Eq. (A. 16) together with Fq. (A. 2.2). |

Let us consider thereduced manipulator Ay, anddefine A(%) to be the articulated body
inertia P(k) at the A" link. By definition, A(k) depends only upon the coordinates {O(l),. . -0(k)}
andis independent of the coordinates {@(k + 1), . --0(n)}. Thus it, follows clearly from¥q.(A.22)
that Ai(k) is just the sensitivity of A(k) with respect to (i) for each i. Thus the inertial time
derivative A(k) is given by

A & SIA00) = 3 A0

It is easy to see that the local time derivative f’(k)::v,b(l;,k--])i\(k -1 (k,k—1). We define
the operator )\:diag{!\(k)}. Clearly from the above

A= }; Xi0(3) (A.26)

i=1

Expressions analogous to Eq. (A.16) and IXq. (A.17) are givenin the lemina below.

Lemma A.5:

A EGAE, = QuP — PGy (A.27)

A(0) =0
fork =1...mn
AR = p(k,k - PR - Dt (b k- 1) 4 SUEYP(K) - P(k) k)
end loop

(A.28)

Proof: Weobtain Fq. (A .27) by multiplying both sides of Fq. (A. 17) by 6(:) and summing over
all'i from 1ton. Fg. (A 28)ismecrelya component levcl restateinent of Eq. (A. 27). E

Operator Expression for m
From three sensitivity cxpressions we obtainthe following expression for 7.
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Lemma A.6: The sensitivity of m with respect to 6(i) 1s given by
Q- 1
my, = H¢ [ux;dm»{ 5(1 4 :r").Xg] H*D-/?
The cxpression for the time derivative of m 1s given by

.- ] .
Mmoo o= qu)[mww 5(14-7)11 -p-e

Proof: Note that

14 HeK) 2 141196 0 1- nG64 Heg Y HeaG

Therefore,
I+ H¢K)o, = (H$lo.G + HGy,
@A e (1 - NG 4 TANH D™ 4 1G]
A2AD QI | TN H DY)
GSAN - G @UEGP 4 7N H D!
Also
(D12, = %1)“%1)3_ (419 %1)*%11,\,.11' %H/\,-H'D"%

Using the above expressions it follows that

(A.29)

(A.30)

(A.31)

me, = I+ H¢Ko, D2+ (14 HPK|[D'e, = HPHGP + 1(14 7)A\]H D112

Using the above in the relationship
m = 2: me, 0(1)
iz

leadsto Eq.(4. 30)

Appendix B: Operator Identities

The following lemnmas contain some useful operator identitics used in this paper.

Lemma B.1:

(I- HpK)H¢ = Hip
SK[I - HYK) = K
M H* = [I+4¢KH|PH H
Hér - HeE,
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Proof: We have that
Pt e e, W e s W kn (B.5)
Pre-and post-multiplying this by v and ¢ respectivelyii follows that
¢ =pKHe
fromwhich Fq. (11.1) follows. Similarly, pre- and post- mult iplying Fq. (B. 5) by ¢ and ) respect fvely
I
lcads to Eq. (B. 2).
Pre- and post-multiplying Fq. (4. 9) by ¢ and @ respectively leads to

(4.8,4.11) (A.11)

pPP" — $TPP ¢PP* — PP + TP’
W PP L GKHPE - GKHP = 7P 4 I+ ¢KH|P¢'

oMop*

Post multiplying the above by 11* and noting that
i Y P and Tt = 0 (B.6)
lcads to kg (3. 3).

We have
Al

mee, "0 gy A Her - v U Her
and thus establishing Fq. (B.4).

Lemma B.2:

H{e-ov| = Heue (1.7)

Proof: in this proof, whenever it is more convenient, we use the notation A *in place of A. For
any spatial vector X ¢ R® and any 1 €¢R?® it is easy to verify that

[ (DX = ¢ (DX (1) where ¢(1) £ < 103 1[3 ) (13.8)

Reeall that )
Vi(E)= @ (k4+1,k)V(k -1 1), and V(k) = V* (k)4 H0(k)

Applying Fq.(B.8)to V(k+4 1) and V* (k) we have

VAR) = [k ALV EA 1) = ¢ (k41 BYW (kA4 1 )™ (k4 1,k)
= > VHER)G (k4 1,k) = ¢"(k 4 1, E)V(k 4 1) (B.9)

Eq. (1.9) can be re-expressed at the opcrator level in the form

ELV = Vg, =VE, - LE, (B.10)
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Thus we have
—£¢V‘ (Bi_lo)
— ¢-‘1‘~/i

==y V"

—V*Eg + E4S2

Vgl 4 £402

¢ {767+ Q)+ 2
= HV* =  H¢{V'¢ '+

—» HV*'¢ = H@V*' 4 HpSo

(411)

(A.11)

We have made use of the fact that

HESQR) =0 —» 1O Y0



