Open Solutions to Distributed Control in Ground Tracking Stations

by

Wm. Randy Heuser
Member of the 1 ethnical Staff
Jet Propulsion 1aboratory
California Institute of 1echnology
Mail Stop 301-235
4800 Oak Grove Drive
Pasadena, California 91109
Office phone (818) 354-0956, Fax (818) 354-9068
email: rheuser@binky.jpl.nasa.gov

Abstract

The advent of high speed local area networks has made it possible to interconnect small, powerful computers to function together as a single large computer. Today, distributed computer systems are the new paradigm for large scale computing systems. However, the local area network is only one part of the solution. The services and protocols required by the application programmer to link individual elements of a large scale system together are as indispensable as the local area network. And the selection of services and protocols that do not match system requirements will limit the capabilities, performance and expansion of the system. Proprietary solutions are available but are usually limited to a select set of equipment. However, there are two solutions based on "open" standards. The question that must be answered is "which one is the best one for my job?"

This paper examines a model for Deep Space Network (DSN) tracking stations and their requirements for interprocessor communications in the next century. The model and requirements are matched with the model and services provided by the Open Software Foundation's Distributed Computing Environment (OSF/DCE) and the International Standards Organization's Manufacturing Message Specification (ISO/MMS). Several key services are examined in detail to determine which services and protocols most closely match the requirements for the tracking station environment. The study reveals that the protocols are tailored to the problem domains for which they were originally designed. Further, the study reveals that the process control model is the closest match to the tracking station model. Finally, the approaches taken by two other groups are discussed providing additional insight to the problems of distributed computing systems for space tracking stations.

Submitted to: Donald D. Wilson
Code 500,
Goddard Space Flight Center
Greenbelt, Maryland 20771
Phone: (301) 286-7550; Fax (301) 286-1765;
e-mail: dwilson@gsfcmgsf.nasa.gov

This abstract is submitted for a full-length paper to SpaceOPS 1994.