ACTIVE REFRIGERATION FOR SPACE ASTROPHYSICS MISSIONS

Larry Wade
Jet Propulsion Laboratory
California Institute Of Technology
4800" Oak Grove Drive
Pasadena, CA USA 91109

The use of cryogen dewars limits mission lifetime, increases sensor mass, and increases program engineering and launch costs on spacebased low-background, precision-pointing instruments, telescopes and interferometers. The recent development of long-life mechanical and sorption compressor driven J-J' coolers capable of refrigeration to temperatures below 2.5 Kelvin, combined with the innovative use of cryogenic radiators and thermally advantageous orbits, is enabling, long duration (>5 years) missions that can perform high resolution infrared and sub-mm wave astronomical observations. In addition, it is clear that the low mass and input power requirements associated with several of these long-life cooling techniques could lead to the development of a new class of small, inexpensive, space observatories.

The design, and component performance test results, of a brassboard 10 K cooler for such an application is discussed. The development of this cooler will be completed later this year. It is intended that this cooler will be integrated with a 5 to 30 micron camera being developed at JPL for astronomical observations. The resulting Long Life Infrared Observational System consists of a test bed cooler, mid-IR camera within a dewar, and power control and readout electronics. Demonstrating integrated operation through ground-based astronomical imaging will validate the compatibility of the involved technologies and alleviate concerns such as temperature stability, vibration and emi for future spaceborne applications. A cooler, based on this design can be constructed for flight missions which provides 10mW of continuous refrigeration with an input power of less than 1() watts and a mass of six kg.

Larry Wade
JPL.
M/S 233-105
4800 Oak Grove Drive
Pasadena, CA 91109

Phone: (818) 354-2275
FAX: (818)393-4206

I refer Oral Session