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ABSTRACT

Several methods for mode shape expansion are investigated. In the first, the
dynamic equations of motions are used to obtain direct solutions to the
expanded eigenvectors. It is shown that these methods can be interpreted as
constrained optimization problems. Previously developed methods using
orthogonal projections can also be formulated through constrained
optimization. To account for uncertainties in the measurements and in the
prediction, new expansion techniques based on least squares minimization
technigues with quadratic inequality constraints (LSQ!} are proposed. These
techniques are evaluated withthe full set of experimental data obtained on
the MicroPrecision Interferometer testbed, using both the pretest and
updated analytical models. The robustness of these methods is verified with
respect to measurement noise, model deficiency, number of measured dofs and
accelerometer location. It is shown that the proposed LSQIimethod has the
best performance and can reliably predict mode shapes, even in very adverse
situations.

NOTATION
a - measured dofs - ¢set dofs
0 - non-measured dofs - oset dofs
f -a+0 - full set of dofs
2} - number of modes
~ - notation used for actual test data
: - notation used for expanded test data

- no superscript used for analytical model data
w,, W, - # analytical 1 test modal frequencies
@, P =(ax1) I analytical | 1asq eigeavector at measured dofs
@ @, 0. 1) analyticalltest eigenvector at non-measured dofs
P, O, - /fxp) matrix of p analyticalitest eigenvectors at full set
6, — strain energy for mode i in element s
K,y -(fxf/ full set stiffness matrix
M, -/ f.f) full set mass matrix
b, , = faxfy partitioning matrix to select measured dofs from the full set
A, - (¢ ¢ / unconstrained least-squares projection matrix
P, - fpx»/ orthogonal Procrustes transformation matrix
1.0 INTRODUCTION

Physical and financial constraints typically limit the number of degrees of
freedom {dofs) monitored during a dynamic structural test. These limitations
include laboratory or field restrictions, such as available number of
accelerometers andfor data channels, structural constraints, such as

inaccessibility of certain parts of the structure, or flight project constraints
for on-orhit identification. However, it is often desired to assess the modal
response of the full structure at all its dofs. The most common and least
demanding reason is for mode shape visualization. Other reasons include
correlation of test and analysis results at all the dofs represented in the full
Finite Element Method (FEM) model of the structure. Model updating
techniques would benefit from the added information provided by mode shape
at all dofs. The full mode shape is also useful in predicting the response at
unmeasured dofs for structural integrity and reliability assessments to
dynamic loads such as earthquakes, impacts or explosions. Control needs
include computation of the strain energy distributions for optimal damper and
active member placement in vibration attenuation problems. In addition, the
tuning of Multiple Input/ Multiple Output (MIMO) control parameters and gains
also requires an accurate model at all dofs.

A study is conducted to evaluate the robustness and reliability of several
mode shape expansion methods. This includes previously reported, as well as
newly proposed methods, among which five methods are retained for
comparison of mathematical end structural performance metrics. Sensitivity
studies are performed, using actual experimental data. The studies involve
taking a subset of the actual set of instrumented dofs, and verifying the
accuracy of the axpanded prediction. The methods are evaluated as to their
sensitivity to combinations of measurement error, distributed andfor localized
modelling errors. Sensitivity to modelling error is evaluated by using both the
approximate pra-test finite element model and reconciled updated model. The
performance of the modal expansion techniques i8 also estimated with respect
to sensor location and quantity. It is shown that a new method based on
least-squares minimization techniques with quadratic inequality constraints
provides by far the most relishle mode shape estimates, aven in adverse
situations.

20 MICRO-PRECISION INTERFEROMETER (MPI) TESTBED

The Micro- Precision Interferometer (MPi) testbed at the Jet Propulsion
laboratory (JPL) is a lightly-damped truss-structure comprised of two booms
and a vertical tower with dimensions of 7m x 6.3m x5.5m, and wesghing 210
kg (Fig. 1). It is composed of 250 aluminum struts connected to 60 node
balls. The careful design of the strut to node assembly ensures kneantyin the
response [6]. The primary objective of the MPlis to perform system
integration of Control-Structure Interaction (CSI) technologies to demonstrate
the end-to-end operation of a space-based optical interferometsr (14| The high
imaging resolution of future spacemissions will require a 15»m RMS control
of the optical pathlength ovar the 7m baseline of the structure. Accurate




modelling and response prediction are essential for the successful
implementation of these control methodologies. Detailed modal testing and
model updating were performed on the MPI and a high fidelity model was
achieved for the first fifteen structural modes up to 60 Hz{6.7). For the
purpose of this analysis, only the first nine structural modes up to 50 Hz will
be considered

gure 1 The MicroPrecision Interferometer Testbed.

The accuracy of the experimental procedures is substantiated by two
independent sets of modal tests, carried out with distinct equipment,
processors and personnel. The accuracy of the identified modal frequencies is
of the order of 0.5% and the Modal Assurance Criteria (MAC, Eq.18)
between the two sets of mode shapes greater than 0.98 for most of the
modes. However, the accuracy of the identified mode shapes is only of the
order of 15% (Eq. 16). This infers that a high degree of uncertainty is
associated with mode shape values, even with precise test procedures,
excellent frequency repeatability, and better than average MACs.

Compared to the experimental data, the analytical pretest model has
frequency errors of the order of 5%, and mode shape errors of the order of
25%, with the largest errors in the higher modes. The model was later
improved by a combination of sub-component testing and full model Bayesian
estimation {7]. The modal frequencies and mode shape errors was reduced to
approximately 1 % and 10% respectively, and are within the accuracy
expected from the experimental procedure.

Because of the rather large uncertainties in the mode shapes, itis
unreasonable to assume that there is an exact closed-form expansion solution.
New optimal methods are proposed which use constraint equations to that
take mto account existing uncertainties in the measured mode shapes. In the
process, M will be shown that most expansion methods can be mathematically
formulated in terms of a constrained optimization problem.

3.0 DESCRIPTION OF MODE sHAPE ExPANSION METHODS
3.1. Guyan Static Expansion

This method is based on the assumption that the inertial forces acting on the
non-measured dofs can be neglected with respect to the elastic forces (2.
This leads to an exact analytical relationship between the mode shapes at the

measured and unmeasured dofs.Using the experimental mode shape data
obtained attheinstrumented dofs, @,. the predicted mode shapes at the full
set of dofs, ¢,. can thus be inferred from:
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where 4, is the partitioning matrix between measured and unmeasured dofs
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An alternate and equivalent formulation results in solving the following
constrained minimization problem,
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Eqg. 3 can be interpreted as finding the expanded mode shape 43,, which
minimizes the total strain energy of mode / such that the predicted mode
shape equals the test values at the measured dofs. The solution to kg. 3 can
be shown to be:
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It is demonstrated that Eq. 1 and Eqg4 yield equivalent solutions [15].
However, Eqg. 1 only requires one matrix inversion, where as Eq. 4 requires
two. £q. 1 is thus preferred for its computational efficiency.

3.2. Kidder Dynamic Expansion
This method was proposed by Kidder (3], and later used by Berman [5] to
update structural models. The inertial forces are no longer assumed to be
negligible, leading to an exact solution of the mode shapes at the unmeasured
dofs.¢-o, as a function of the test modal frequency, w, , and the test mode
shapes at the measured dofs, ¢, .
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Again, the Kidder dynamic reduction can be reformulated in terms of a
constrained optimization problem expressed as:
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Physically, Eq. 6 finds the expanded mode shape ¢, which minimizes the
difference between the strain energy and kinetic energy for mode / such that
the predicted mode shape equals the test values at the measured dofs.
Equivalently, Eq. 6 is the minimization of the loss of modal energy resulting
from damging. The solution to Eq. 6 can be shown to be:

b, =(Ky - 02My)" b (b, (Ky - OFf M) 61)] " 6, 07

Again the direct sokution irr Eq. 5 ¢8n be demonstrated to be equivalent to the
solution m Eq. 7. However, Eq. 5 is preferred since it only involves one
inverse and avoids the ill.conditioning problem associated with inverting near-
singular matrices for w,=w,.

The “Kidder Dynamic Expansion’ method described herein, is not to be
confused with the "Dynamic Expansion Method” proposed by
0’Callaghan(10). The latter adds a dynamic force correction term to the
Guyan expanded result (EqQ. 1), expressed in terms of both the full FEM model
and the statically reduced FEM model for the observed dofs, m, and k, :
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The dynamic expansion method has been shown to produce reasonable results
on actual test cases [1 1]. However, it is based on a series of equation
manipulation which cannot be directly traced back to an actual physical
interpretation. Hence, it cannot be viewed in the perspective of a minimization
algorithm, and will not be considered herein. The same remark applies to the
“Hybrid Expansion” method proposed by Kammer [131.

33 LeastSquares Projection
33.a. Unconstrained least. Squares Expansion Mathod
Both the Guyan and Kidder expansion methods require an a-priori knowledge
of the FEM mass and stiffness matrices to predict mode shapes at
unmeasured dofs. Kammer [B], and later 0’Callaghan [9] and Lallement [121,
have proposed methods which only require a-priori knowledge of the analytical
mode shapes. These methods identify the least-squares projection 4,, that
minimizes the Frobenius norm or quadratic error between the experimental and
analytical mode shapes at the measured dofs. The method is also known as
the “Modal Expansion” method. It is expressed as the unconstrained
minimization problem:

min ' O, - Oy 4, Iz ©)
Eg. 9 has a unique solution”only if the number of measured dofs exceeds the
number of modes, and (D,, has full column rank 2. Under those conditions, the
projection matrix A,, is obtained from the least squares solution of the Moore-
Penrose pseudo-inverse, and is then used to compute the expanded mode
shapes from the p measured modes and paired analytical modes. A variation
of this method is also possible, where the expanded dof are constrained to
match the experimental values at the measured dofs {12].

3.3.b. Procrustes Expansion Method

Smith proposes an expansion method expressed as a constrained least-squares
minimization problem [4]. This method expands the mode shapes by orthogonal
Procrustes transformation of the experimental eigenvectors into the space
spanned by the predicted analytical eigenvectors at the measured dofs:

prp_=1(10)

min [¢ap ' ‘bap ‘PP I subject to pp Lpp
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The Procrustes transformation is a mathematical technique which rotates two
sets of same dimension into each other. The orthogonal transformation matrix
P~ is computed for the p experimental and paired analytical mode shapes at
the & measured dofs through a singular value decomposition [4]. The
Procrustes transformation preserves mass orthogonality and is numerically
efficient. However, it requires correct pairing between the analytical and
experimental eigenvectors, end selection of a set of measurement locations
which fully spans the space of the p modes used for the expansion.
Furthermore, the expanded mods shepes at the instrumented dofs no longer
equal the measured values. Smith has attempted a variation of the Procrustes
orthogonal expansion method by retaining the measured dof values and
transforming only the unmeasured dofs. This medification was not
recommended since it resulted in a loss of orthogonalityin the eigenvectors,
and a more jagged appearance in the mode shapes (8.g., “fess of smoothing”).

3.4. Least. Squares with Quadratic Inequality Constraints
The constrained minimization versions of the Guyan end Kidder expansion
methods impose that the value of the expanded mode shape at the measured

dofs, @, identically equals tha _measured values 4;. (Egs.1.5). Existing

errors in the experimental values ¢, propagate errors in the estimates of the

mods shape at the unmeasured dofs tht Furthermore, ordinary experimental

errors may impede optimization problems with equality constraints; when the
equality between the measured data and the optimized data cannot be met

individually at every dofs, the constrained optimization problem may either

have an impossible solution or the wrong solution. Although penalty methods
or generalized feast-squares methods could be formulated to incorporate

uncertainties resulting from experimental or analytical errors, the solution is
dependent on the value of the relative weighting parameter I". While I" is

theoretically related to the covariance of the measurement and model errors,

its correct value is difficult to assess.

To circumvent these weaknesses, the modal expansion problem can be
reformulated as a quadratic function minimization with theunderst anding that
error in the expanded mode shape exists, and that it is bounded by the
expected measurement error. Mathematically, the expansion problem could be
viewed as being a least-squares minimization problem with quadratic inequality
constraints (LSQI) of the general form:
min 1A - b
i ' ‘d’ l2 ()
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The immediate advantage of the L8@I formulation is to allow convergence
within a domain of probable solutions, while taking into account uncertainties
associated with experimental errors. Mathematical techniques for solving this
problem have been published and are easily implemented [11. Three modal
expansion methods are proposed using three different 1501 formulations.

34.a. Least- Squares Strain Energy Minimization with Quadratic
Measurement Error Inequality Constraint

The first LSQI formulation, is the counterpart of the constrained optimization
form of the Guyan method (Eq.3). It finds the expanded mode shapes which
minimize the modal strain energy, under the provision that the quadratic mode
shape error at the measured dofs is of the order of the experimental
uncertainty, Since the stiffness matrix X is a symmetric positive definite
matrix, there exists a unique upper triangular matrix 6 € R ™ with positive
coefficients m the diagonal, such that:

K=GT+¢G (12)

This is known as the Cholesky factorization. It is used to express the modal
strain energy as a quadratic function. The first formulation of the LSO
problem ¥ 88/1) is then expressed as:

min |G éy, 1,
oo ]
subject to 1, - ¢, 12 < a 1o, 12

(13)

Asa -0, LS0/1 converges to the Guyan static expansion (Eq.1). Based on
the results obtained from the two independent sets of experimental data
mentioned previously, a nominal vakie of 15% is assumed for the expected
mode shape error parameter @ used in the 1501 expansion methods.

34b. Least Squares Strain Energy Minimization with Quadratic
Expansion Error Inequality Constraint

A second LSQI formulation {{ $Q/2) is proposed which minimizes the modal
strain energy, subject to the constraint that the quadratic error between the
optimally alrmded mode shape, @5 and the mode shape obtained from direct

expansion @'y, is less than the expected experimental error. Direct expansion




methods are those that have a closed-form solution, such as the Guyan static
and the Kidder dynamic methods (Eqs. 1,5). £8Q/2 is then formulated as:

min | Gy, 1,
ba

. 3 id i
subject to &y - &% l2 s Id, H2

(14)
Asa - O, {80/2 converges to the direct expansion solution q;',,.

34.c. least Squares Dynamic Residual Force Minimization with
Quadratic Measurement Error Inequality Constraint
An LSOl formulation could be proposed, analogous to the Kidder method which
minimizes the loss of modal energy (Eq. 6). However, when the experimental
modal frequencies are almost identical to the predicted analytical frequencies,
quasi-singularities of the objective function would create ill-conditioning of the
Choleski factorization. To circumvent this problem, the objective function is
redefined as the quadratic norm of the modal residual force, With this new
formulation, the LSQI problem is now to find the optimal ¢ that minimizes
the modal residual force such that the quadratic error between the expanded
mode shape and the experimental mode shape at the measured dofs is within
the bounds expected from experimental error.

min j(K - o, M)d, 1

&y (15}
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As a0, [8G/3 indirectly solves the eigenvalue problem for the given
experimental modal frequency and mode shape data at the measured dofs.

4.0 PERFORMANCE METRICS

A first error metric is proposed to evaluate the relative quadratic point-to-point
error at each dof between the-predicted expanded mode shape éh and the
actual measured mode shape ¢, for each mode £

ML /S &1 (16)

In comparing mode shapes at each point, normalization of the eigenvectors is
achieved by least squares fit of the expanded mode shape to the reference
mode shape. Alternatively, the mean cumulative error in the mode shape as
a function of the mode # can be used to determine the modal number at
which the expansion methods start to break down :

c(n) = % i: NG )
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The orthogonality properties of eigenvectors, as inferrad in the Modal
Assurance Criteria (MAC), can also be used as a performance metric. The
MAC matrix between two eigenvectors, ¢, and ¢, € R', is defined as:

Ta (2

S el (19)
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The MAC is used hereto verify the orthogenality between the axpanded mode
shapes and tha actual mode shapes measured at all dofs. The mass cross-
orthogonality condition {MX) is also a potential performance metric. Howaver,
when applied to this case study, MX provided the same information as the
MAC, and therefore will not be used herein,

The last three performance metrics are global metrics describing the total
error throughout the whole set of dofs. Errors can also be evaluated at the
local structural element fevel by the strain energy distribution associated with
each element s and with each mods 7, Analogous to MX which measures the

accuracy of the expanded mode shape &,, with respect to the FEM mass
matrix M, the element strain energy verifies the fit of ¢ with respect to the
FEM stiffness matrix K. The elgment strain energy error between the
analytical 6, and the expanded 8, identifies the discrete dofs where the
expansion does not agree with the model. Such errors typically result from
localized modelling errors or actual structural damage.

5.0. SENSITIVITY STUDY OF EXPANSION METHODS
5.1. Performance to Nominal Data Sat and Updatad Model

The expansion methods are first investigated for their reliability
and intrinsic performance when all experimental and analytical conditions are
favorable. The expansion is executed with the updated fi.e., “ideal”] analytical
FEM model and mode shapes, from a subset of the high quality experimental
data measured on the MPL The measured data is not corrupted by additional
noise. Here, twelve locations have been retained as the “measured set”, and
are expanded to the full 240 dofs recorded during the actual test. The final
240 dofs locations represent 3 dofs at each of the 80 node balls forming the
truss structure. The location of the 12 dofs are optimally selected as to give,
for a Guyan reduced model, the best MAC with respect to the predicted
analytical modes [6). This particular set of instrument location is referred to
as "aset5". As will be demonstrated through the test cases, aset§ provides
enough information to identify tha first nine modes, with the exception of
mode 6 which is not properly represented. The expansion of missing mods 6
will thus provide a measure of the methods’ robustness to unmeasured modal
information. This survey will compare the following methods: Guyan, Kidder,
Procrustas, LSO strain energy minimization with measurement error (1 S011),
and with expansion error {LSQ12), and LSQl residual dynamic force

minimization with measurement error (LSQI3}.
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Figure 2 MAC Diagonal (measured vs expanded) - Expansion from
12 dofa (aset8) to 240 dofs with ideal model and no additional
measurement error.

The MAC of the mods shapes expanded from experimental asat§ data (12
dofs) with respect to the actual full measurements (240 dofs}is shown in
Fig. 2 for all five expansion methods. The MAC of the ideal analytical model
with respect to the full 240 dofs measurement set is also included in Fig, 2
for reference. Tha Guyan method €an only expands the first 2 modes properly,
with MAC’s greater than 0.66. LSQI1 produces mode shape estimates which
are slightly worse than the Guyan method, especially in the lower modes.The
Kidder method generates expanded mode shapes which have MAC’s greater
than 0.97 for seven of the fine modes, but could not be identify mode. LSQi2
yield the same level of accuracy as the Kidder expansion. The Procrustes
expansion method can predict mode 6, but only modes 1 and 3 are greater
than 0.95. The mediocre results are explained by the fact that all nine modes
ara axpanded simultaneously from the initial 12 dofs subset, It was observed
that the Procrustes method is vary sensitive to the number of simultaneously
expanded modes and to the set of measurement locations.

LSQI3 is the expansion method that performs the best across all modes. It
is capable of predicting unmeasured mods 6 better than the Procrustes



method. Foremost, it is the only expansion method investigated so far which
results in better MAC diagonals with respect to the measured data at all
dofs than the analytical model used to expand the modes. These observations
are consistent with the Performance demonstrated in Fig. 3 through the mean
cumulative mode shape “error of the first nine modes (e.g., €{9}Eq. 17).
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Figure 3 Mean cumulative mode shape error . Expansion trom12
dofs (ss8¢5/ to 240 dofs with updated FEM model and no additional
measurement noise.

5.2. Sensitivity to Mode Shape Measurement Error

There are many sources of noise in the processing of mode shapes:
accelerometer accuracy, wire mass and damping, shaker coupling, method of
excitation... An additional error can be introduced by the modal identification
method. It suffices to say that the measured mode is never pristine. It could
be desirable, therefore, to have a mode shape extrapolation procedure thatis
not only insensitive to noise, but that can also filter it out too.

A sensitivity analysis is performed herein to evaluate the performance of the
mode shape extrapolation methods with respect to distributed measurement
noise. For lack of a better model, the noise is represented as an additive
random error superimposed upon the true mode shape. Future work should
investigate the effect of non-Gaussian measurement errors representative of
a defective sensor or a consistent operator error. Spatially localized errors will
be considered later in the context of isolated medelling errors and damage.

The quadratic difference bet ween the mode shapes obtained from the two
independent tests were of the order of 15%. This level serves es a basis for
the following error analysis, and effects of additive mode shape errors of the
order 15%, 25% and 50% are investigated. To infer the mean prediction,
Monte Carlo simulations are performed with 30 averages. The analysis reveals
that LSQI11and LSQI2 methods which are based on strain energy minimization
provide, at a very high computational cost, only a minor improvementin the
predicted expansion compared to the Guyan or Kidder methods. The following
evaluation is thus limited to the Guyan, Kidder, Procrustes and LS0I3
methods.

The mean quadratic error between the expanded and fully measured modes
shapes is compared for the first nine modes of the MPl as a function of noise
level for each of the expansion methods (Fig. 4). The expansion is from #set§
with 12 dofs up to the full 240 dofs, and is achieved with the updated
“ideal” FEM model and eigenproperties. The error between the "ideal®
analytical mode shapes and the measured mods shapes at all dofs with and
without added measurement noise are also included for comparison.

As expected, the performance of the expansien methods grows worse as the
noise in the measured data increases. As before, the Guyan method has the
overall worse performance, followed by the Kidder and the Procrustes
methods. The Kidder method is the most sensitive, for which the error in the

mode shape increases linearly with the measurement error. The Guyan.
Procrustes and LSQI methods are equally sensitive to measurement noise.
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gure 4 Mean mode shape error as a function of
measurement noise - Expansion of nine modes from 12 dofs
(aset5) t0 240 dofs with updated FEM model.

As in the ideal situation, the error in the modes expanded with the Guyan,
Kidder, and Procrustes method are greater or equal than the error in the
measurement. Only the LSQI3 method is capable of expanding mode shapes
to a greater level of accuracy than the measured data, even when the original
data is corrupted by significant amounts of noise. In fact, for moderate
amounts of measurement noise, &.g., less than 25%, the first nine modes
expanded with the LSO 3 method from only 12 instrument locations are
almost as accurate as the noise-free mode shapes measured at all dofs.

5.3. Sensitivity to Selection of DOF Location and Quantity.
Five different sets of instrument locations and quantities are considered, ie.,
aset’s, as summarized iN Table i. The data measured at the 8sé! location is
expanded to the full 240 dofs, representing an expansion ratio 1 to 80 for
aset], 1 to 40 for aset 2 and 3, and 1 to 20 for &set 4 and 5. The
instrument location is selected either according to engineering judgement at
the dofs of highest deformation, r%., the tip of the booms, or according to
optimal criteria such as best MAC fit from a static reduction or best mode
shape fit over multiple modes.

ASH' # NUMBER OF LOCATION
INSTRUMENTS CRITERIA
| 3 1 per boon':lip -
2 6 best mode 1&2
3 6 2 per boomtips
4 12 triax (@ boom tips
s 12 optimal MAC

Table V Summary of Instrument Location Cases.

As expected the expansion error decreases as the number of instrumented
location increase (Fig. 5). Agan, the Guyan method has the worst
performance over all cases.Procrustes is the most sensitive to the asef
selection, as shown by the 75% decrease in error from asel! to aset5.
Expansion with the Kidder method only benefits slightly from thsr increase in
the number of dofs. As before, onfy the LSQI3 method is capable of
expanding the mode shape to the $ame degree of accuracy as the measured
data, regardless of the selected aset.Fig.5 also shows the sensitivity of the




expansion error to dof location. Ase¢2 and aset3 include the same number of
dofs, but located at different points on the structure. Whereas, the
performance of the Kidder method improves from aset2 to aset3, the
Procrustes method worsens. This implies that for optimal performance, each
expansion method should have its own dof selection criteria.
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Figure 5 Mean mode shape error as a function of aset
selection - Expansion of nine modes to 240 dofs with updated
FEM model and no additional measurement noise.

A separate analysis demonstrated that tha Procrustes method is not only
sensitive to the aset selection, but also to the number of modes used in the
simultaneous expansion and to the pairing between the analytical and
experimental modes. This is a disadvantage compared to the Guyan, Kidder
and LSQI3 methods which expand the modes idividually without the need for
mode pairing. In these latter methods, the mode pairing is indirectly
accomplished through the FEMmodel and does not require any user input or
engineering judgement.

5.4. Sensitivity to Model Error

All the modal expansion methods proposed herein use an analytical model to
predict the mode shapes at the unmeasured dofs. The FEM model plays an
important role in the regularization of spurious information, the filtering out
of the measurement error, and the prediction in the event of insufficient
information. This is especially true of the Kidder and the LSQI3 methods
which rely heavily on the full dynamic equations. In the following, both
distributed ( i.e., global), and localized errors are investigated.

Distributed errors in the analytical mesa or stiffness matrix, such as errors
resulting from the uniform structural properties {8.9., mass density or modulus
of elasticity), only scale the eigenvalue problem by a multiplicative constant,
and have little influence on the modal expansion prediction. Another form of
global model error can be introduced by deficiencies in the model form, as
would typically occur in a pretest model. To this effect the actual pretest
model of the MPlis used for demonstration. It is composed uniquely of rod
elements, and can only predict the first 4 modes. The "ideal” updated modal
used in the previous expansion analyses is constructed uniquely of bar
elements, and can accurately predict the first nine modes. As shown in Fig. 6,
the mean cumulative mode shape error over nksa modes is 20% for the pre-
test model, and is only 10% for the updated modal. The errors in the Guyan,
the Kidder, the Procrustes, arrd the LSOI3 methods expandad with the pretest
model from aset5 to the full 240 dofs are also shown in Fig. 6. As expected,
the level of error is slightly worse when the eigenvectors are expandad with
the pre-test model than with the updated model, especially in the higher
modes where the pretest and updated modal start to diverge (Fig. 3). The
Guyan and the Procrustes methods display little sensitivity to model form
error. The Kidder method is the most sensitive, as is shown by the sharp
increase in the error beyond mode 3 resulting in a mean error which is twice

as high than that obtained with the updated model expansion. Although the
performance of the LSQI3 has also worsened, it is still the best by a factor
of two relative to the other expansion methods, and it remains the only
method which is capable of expanding mode shapes to a higher degree of
accuracy than the model, i i
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Figure 6 Mean cumulative mode shape error - Expansion
from 12 dofs (asetS) to 240 dofs with pre-test FEM model
and no additional measurement noise.

Spatially localized model error, such as would occur from local ertors in the
model form or properties, or from changes m the actual structure resulting
from fatigue or damage are also expected to affect the predictability of the
expanded mode shapes. To simulate this situation the stiffness of the longest
strut in the pretest model, connecting the tower to the optics boom, is
decreased by half. This only changes the pre-test frequencies of modes 5 and
6 by less then 3%, while keeping all other frequencies almost the same.
However, the effect of this localized error on the analytical mode shapes is
significant, as shown in Fig. 7 where major jump for mode 5 and 6
correspond to a 300% increase i the mode shape error relative to the
“undamaged” pretest model. Although the effect on the analytical modes is
extreme, none of the expended mode shapes are affected, and the expansion
errors for each method is almost the same as those obtained previously with
the “undamaged” pretest model (Fig. 6). The fact that the expansion error
does not increase from the “undamaged” pretest model case implies that the
expansion errors are more sensitive to global modal form errors than to
localized element errors.

5.5 Sensitivity To Measurement And Model Error

Finally the performance of the expansion metheds is assessed for the
previous combination of global and local medelling error with an additional
25% error in the measured mode shape valuves. The results ara summarized
in Fig. 8. The solid lines represent the accuracy of the different forms of the
MPI model with respect to the tnsa test data at aff dofs, and the dashed lines
represent the expended mode shapes from asat5 to the full 240 dofs using
the damaged pre-test model end noise corrupted measurements.

As expected, adding measurement noise to the damaged pretest model
worsens the performance of all the expansion methods by approximately 50%
(Figs. 7). In the presence of both modal error and measurement noise, the
Guyan and the Kidder method perform equally poorly, and generate mode
shapes which ara worse than predicted by the darnaged pretest model. The
Procrustes method performs better than the Guyan and the Kidder methods,
especially at the higher modes, and can predict the lower modes to the same
level of accuracy as the noise contaminated data. Once again, the LSQI3
method performs exceplionally well. It generates mods shapes which are only
off by 15%, although the data used is contaminated by 25% noise and the
model has the wrong form and a damaged member. Furthermore, comparison
between the slement strain energies of the damaged pretest modal and the



LSQI3 expanded mode shapes show that the largest differences occur at the
“damaged” strut location. Thus, the mode shapes errpanded with the LSQI3
method are also capable of identifying damaged members or localized model
error, even in the presence of measurement noise.
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Figure 7 Mean cumulative mode shape error . Expansion from 12
dofs {asath) to 240 dofs with damaged pre-test FEM modal and 25%
additional measurement noise.

6.0. CONCLUSION

Several mode shape expansion methods have been proposed and investigated.
These expansion techniques fall into three main categories. The first one uses
direct solutions of the static and dynamic equations to obtain a clesed-form
equation. This category includes tha Guyan and the Kidder methods. It is
shown that these direct methods can also be written in terms of an
unconstrained minimization problem. The second category uses least-squares
method to minimize the error between the measured and modelied
eigenvectors. Within this category, the Procrustes method imposes
orthogonality of the mode shapes. The third category formulates the
expansion as a least-squares minimization problem, in which measurement or
expansion error is incorporated as a quadratic inequality constraint.

The trade study demonstrated that the 1501 method based on minimization
of the dynamic force equation and subject to bounds imposed by measurement
noise has the best performance. The Procrustes method has an average
performance, whereas the direct methods are the worst. Tha LSl methods
based on strain energy minimization yield results comparable to the Guyan or
Kidder methods, even in the presence of large measurement noise, and
without any computational advantage.

It was shown that the Guyan method can only properly expand the first faw
modes. To get suitable expansion with the Guyan method, a minimum ratio
of 3 to 4 accelerometer per mode is required . as commonly practiced
experimentally. lower ratios of instrumented dofa to modes and bettar
performance can be achieved with the Procrustes, the Kidder and the LSQI3.
Under ideal experimental and analytical conditions, the Kidder method cars
correctly expand all modes rapresented in the data sat. This method i$ not
sensitive to the asaf selection, but is extremely sensitive to noise and modal
deficiencies. It was shown that the 1501 methods based on strain energy
minimization did not improve on the accuracy of the direct methods, while
imposing a significant computational cost. Computationally, the most efficient
expansion method is the Procrustes method. Along with the LSQI3 method,
it is the only method which can properly expand mods shapes which are not
completely represented in the selected instrument locations. However, the
Procrustes method can only achieve this if the analytical 8 experimental
modes are properly paired. Pairing is automatically guaranteed in the other
methods through the FEM modal and the measured modal frequencies.
Furthermore, the Procrustes method is very sensitive to measurement dof

location and selection, S Well as to the number of simultaneously expanded
modes, In an actual situation this is a big disadvantage as the real solution

i$ not known, and the variation in the error can be great.

The LSQ! expansion method with dynamic force minimization has the best all.
around performance. It is insensitive to moderate amounts of measurement
error, and is capable of predicting eigenvectors at unmeasured dofs with
greater accuracy than the noise-corrupted data measured at those locations.
LSQI3 is the only method which is capable of regularizing global and local
model errors, resulting in mode shapes of higher accuracy than the model
originally predicted, even in the presence of experimental noise, This makes
the LS0I expansion method with Dynamic Force Minimization ideally suited for
recursive model updating, damage detection and response prediction
technique. Its biggest disadvantage is in its computational requirements,
however, with the advent of faster and more powerful computers this is no
longer an issue.
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