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ABSTRACT
Several methods for mode shape expansion are investigated. In the first, the
dynamic equations of motions are used to obtein  direct solutions to the
expanded eigenvectors.  It is shown that these methods can be interpreted as
constrained optimization problems. Previously developed methods using
orthogonal projections can also be formulated through constrained
optimization. To account for uncertainties in the measurements and in the
prediction, new expansion techniques based on least squares minimization
techniques with quadratic inequality constraints (lSOl) are proposed. These
techniques are evaluated with the full set of experimental data obtained on
the MicroPrecision Interferometer testbed, using both the pretest and
updated analytical models. The robustness of these methods is verified with
respect to measurement noise, model deficiency, nunher of measured dofs and
accelerometer location. It is shown that the proposed lStll mathodhastha
best performance and can reliabfy  predict mode shapes, even in very adverse
situations.

NOTATION
a - measured dofs - aset dofs
o - non+neasured dofs - osat  dofs
f -a+o - full setofdofs
P - number of modes
T - notation used for actual test data
. - notation used forexpandect  test data

- no superscript used foranafytical  nwdeldet~
w, , +, - ~ analytical 1 test modal frequencies
@. np. -(8x1) Panafyticall test eigarrvactorat measuradctofs
@* 0, - / 0 .  /) P anafytiialltest  eigerwector at nommaasured  dofs
Q,v 0/, - //xpJ matrix of p analyticalftest eiganvactors at full set
e, - strain energy for mode i in element s
K - ( f x f/ full set stiffness matrix
M;, - / f . f) full set mats matrix
b4/ -/axr) partitioning matrix to select measured dofs from the full set
AW - @ x P/ urrconstrakrad  Iaast.squares projection matrix
P. - 1P  x P ) orthogonal Procnutes transformation matrix

1.0 INTRODUCTION
Physical and financial constrakrts typicalfy limit the tir of degrees of
freedom (dofs) monitored durii a dynamic stnactural  test, These Iiitatirm
includo laboratory or field restriitiorrs, such as available number of
accelerometers andlor data channels, structural constraints, such as

inaccessitiiity  of certain parts of the structure, or flight project constraints
for on.orbit identification. However, it is often desired to assess the modal
response of the full StNChIri?  at all  its dofs.  The most common and least
demanding reason is for mode shape visualization. Other reasons include
correlation of test and analysis results at all the dofs represented in the full
Finite Element Method (FEM) model of the structure. Model updating
techniques would benefit from the added information provided by mode shape
at all dofs. The full mode shape is also useful in predicting the response at
unmeasured dofs  for strcsctural  integrity and reliability asseswrrents to
dynamic loads such as earthquakes, impacts or explosions. Control needs
include computation of the strain energy distributions for optimal damper and
active mafier  placement in vibration attenuation problems. In addition, the
tuning of Multipfa  Inputl Multiple Output fMIMO) control parameters and gains
also requires an accurate model at all dofs,

A study is conducted to evatuata  the robustness and reliability of several
mode shape expansion methods. This includes previously reported, as well as
newly proposed methods, among which five methods are retained for
conqsarison  of mathematical end structural performance metrics. Sensitivity
studies are performed, using actual experimental data. The studies involve
taking a subset of the actual set of instrumented dofs,  and verifying the
accuracy of the  axpanded pradiitiorr.  The methods are evaluated as to their
sensitivity to corririnatkrns  of measurement error, distciiuted andlor localized
rnodalling errors. Sensitivity to rnodallii error is evaluated by using both the
approxknata  pra.tast  ftia element model and reconciled updated modal. The
performance of the modal expansion techniques u also estimatad  with respect
to sensor location assf  Mtity. It is shown that a new method based on
feast.squaras  miniizatien  tacfrniis with quadratic inaquslity constraints
provides by far the most  relile mode ;- estimates, aven m adverse
situations.

2.0 MICRO.PRECISION  INTERFEROMETER (MPl) TESTBEO
The Micro.  Precision Intarfercmrater  (MPi)  testfmd at the Jet Propulsion
laboratory [JP1) is a Iiitfydanped  truss.structure  comprised of two booms
and a vertical tower with dmsions of 7m  x Mm  x 5.5rrr,  and wa@mg  210
kg (Fig. 1]. It is cqmsed  of 250 akxnknrm struts connected to 60 node
balls. The careful dat~ of the strut to node asserrksly  ansuras  hmrrty  m the
response [6]. The primary objjtiva  of the MPI i$ to perform system
integration of Crntrol.Structure  Intaractiorr (CSI) technologies to demonstrate
the enafto.errd  operation of a spacebased  optical interferomata~  [ 141  The high
imaging resolution of future space  rrissions will require a Iti FtMS control
of the optical pathlength ovar the 7m baselii  of the structure. Accurate



modelting and response prediction are essential for the successful
implementation of these control methodologies. Detailed modal testing and
model updating were performed on the MPI and a high fidelity model was
achieved for the first fifteen structural modes up to 60 HZ [6,71. For the
purpose of this analysis, only the first nine structural modes up to 50 HZ will
be considered

—.
gure 1 The MicroPrecision Interferometer Testbed.

The accuracy of the experimental procedures is substantiated by two
independent sets of modal tests, carried out with distinct equipment,
processors and personnel. The accuracy of the identified modal frequencies is
of the order of 0.5% and the Modal Assurance Criteria (MAC, Eq. 18)
between the two sets of mode shapes greater than 0.98 for most of the
modes. However, the accuracy of the identified mode shapes is only of the
order of 15% (Eq. 16). This infers that a high degree of uncertainty is
associated with mode shape values, even with precise test procedures,
excellent frequency repeatability, and better than average MACS.

Compared to the experimental data, the analytical pretest model has
frequency errors of the order of 5%, and mode shape errors of the order of
25%, with the largest errors in the higher modes. The model was later
improved by a combination of sub.corrponent testing and full model Bayesnrr
estimation [7]. The modal frequencies and mode shape errors was reduced to
approximately 1 % and 10% respectively, and are within the accuracy
expected from the experimental procedure.

Because of the rather large uncertainties in the mode shapes, (t IS
unreasonable to assume that there is an exact closed,form  expansion solutmm
New optimal methods are proposed which use constraint equations to that
take mto account existing uncertainties in the measured mode shapes. In the
process, II will be shown that most expansion methods can be mathematically
formulated in terms of a constrained optimization probfem.

3.0 DESCRIPTION OF MOOE  SHAPE EXPANSION METHOOS
3.1. Guyan  Static Expansion
This method is based on the assumption that the inertial forces actrng on the
nomrrwasured  dofs can be neglected with respect to the elaStiC force$  [21.
This leads to an exact analytical relationship between the mode shapes at the

measured and unmeasured dofs. U~ing the experimental mode shape data
obtained attheinstrumented dofs, @tithe  predicted mode shapesat  the full
set of dofs, @,, can thus be inferred from:

(1)

where b,, is the partitioning matrix between measured and unmeasured dofs
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An alternate and equivalent formulation results in solving the following
constrained minimization problem,

Eq. 3 can be interpreted as finding the expanded mode shape ~,, which
minimizes the total strain energy of mode i, such that the predicted mode
shape equals the test values at the measured dofs. lhe solution to Iq. 3 can
be shown to be:

if, = K,jl ba; (ba,  K,/’ ba~)-’  I$a, (4)

It is demonstrated that Eq. 1 and Eq4 yield equivalent solutions [151.
However, Eq. 1 only requires one matrix inversion, where as Eq. 4 requires
two. Eq. 1 is thus preferred for its computational efficiency.

3.2. Kidder Dynamic Expansion
This method was proposed by Kidder [31, and later used by Berman [5] to
update structural models. The inertial forces are no longer assumed to be
negligible, leading to an exact solution of themrxde  shapes at the unmeasured
dofs, 4W as a function of the t~st  modal frequency, U, , and the test mode
shapes at the measured dofs, 0, .

(I$fi = b; [K ‘%,

1
(5)
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Again, the Kidder dynamic reduction can be reformulated in terms of a
constrained optimization problem expressed as:

[
~in 1 “r “

6.
#wN’/l -  @;%A 1 (6)

Physically, Eq. 6 findt the expanded mode shape +$ which minimizes the
difference between the strain energy  and kinetic energy for mode i, such that
the predicted mode shape equals the test values at the measured dof$.
Equwalentfy,  Eq.6isthe  rrrinimizationof  the loss of modal energy resulting
from daqing.  The sokutionto  Eq, 6 can be shown to be:

‘$,, = (Kfl - CX:Mfl)-’  b,j [b,, (Kfl - G; Jffl)”’  b,!)]-’ i., ‘7 )

Again the dtrect sokztiort  irr Eq. 5 CM be demonstrated to be equivalent to the
soluton  m Eq. 7. Howaver,  Eq. 5 is preferred since it only involves one
mvefse and avoids the illmnditiorrirrg problem awwiated with inverting near.
singular matrices for til = w,.

The “Kidder Dynamic Expansion’ method described herein, is not to be
confused with the “Oynarrxic Exparssiort M e t h o d ”  p r o p o s e d  by
O’Callaghan [10]. The latter adds a dynamic force correction term to the
Guyan expanded resuft (Eq. 1), expressed in terms of both the full FEM model
and the statically reduced FEM model for the observed dofs,  m, and k, :
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The dynamic expansion method has been shown to produce reasonable results
on actual test cases [1 1]. However, it is based on a series of equalion
manipulation which cannot be directly traced back to an actual physical
interpretation. Hence, it cannot be viewed in the perspective of a minimization
algorithm, and will not be considered herein. The same remark applies to the
“Hybrid Expansion” method proposed by Kammer [131.

3.3 LeastSquares Projection
3.3.a. Unconstrained least. Squaras Expansion Mathod
Both the Guyan and Kidder expansion methods require an a.priori  knowledge
of the FEM mass and stiffness matrices to predict mode shapes at
unmeasured dofs. Kammer [B], and later O’Callaghan [9] and Lallement  [121,
have proposed methods which only require a.priori knowledge of the analytical
mode shapes. These methods identify the Ieast.squares  projection AW that
minimizes the Frobenius  norm or quadratic error between the experimental and
analytical mode shapes at the measured dofs. The method is also known as
the “Modal Expansion” method. It is expressed as the unconstrained
minimization problem:

(9)
‘%

Eq. 9 has a unique solution only if the number of measured dofs exceeds the
number of modes, and 04 has full column rank p, Under those conditions, the
projection matrix Am is obtained from the least squares solution of the Moore.
Penrose pseudo.inverse,  and is then used to compute the expanded mode
shapes from the p measured modes and paired analytical modes. A variation
of this method is also possible, where the expanded dof are constrained to
match the experimental values at thf! measured dofs [121.

3.3.b. Procrustes  Expansion h!ethod
Smith proposes an expansion method expressed as a constrained Ieast.squares
minimization problem [4]. This method expands the mode shapes by orthogonal
Procrustes transformation of the experimental eigenvectors into the space
spanned by the predicted analytical eigenvectors at the measured dofs:

.
I subjtw tomin I @OP  - 

‘CP ‘PP 2 PP; PPP = 1 (10)
P,,

The Procnrstes  transformation is a miithernaticd  technique which rotates two
sets of same dimension into each other. The orthogonal transformation matrix
P“ is computed for the p experimental and pairad analytical mode shapes at
the # measured dofs throu@ a singular vaksa decomposition [4]. The
Procrustes transfomnation presewes  mass orthogonality and is mxnariially
efficient. However, it requires corrarrt  pairing between the analytical and
experimental eigenvectors, end selection of a set of rneasuremerrt  kxatiom
which fully spans the space of the p modes used for the expansion.
Furthermore, the expanded mods shqm at the irrslrcsnented  dofs no longer
equal the measured values. smith  hat atterrqztad a variation of the Procrustes
orthogonal expansion method by ratainisg the measured dof values and
t r a n s f o r m i n g  only the cmrmaasured dofs.  This mocfiftatiors  w a s  n o t
recommended since it resulted in a loss of ortftogorsality m the eigenvectors,
and a more jagged appearance in the mode shapes b?,g.,  “fess of smooth~m),

3.4. Least. Squares with Ouadratic Inaquslity  Conatrainta
The constrained minimization versions of the Guyan end Kidder expansion
methods im@ose that the value of the expanded mode shape at the measured

dofs, ~ti identically equals tha -!asured  values ~, (Eqs. l,!i). Existing
errors in the experimental values O. propagate errors in the estimates of the
mods shape at the unmeasured dofs & Furthermore, ordinary experimental
errors may impede optimization problems with equality constraints; when the
equality between the measured data and the optimized data cannot be met
individua//y  at every  dofs, the constrained optimization problem may either
have an impossible solution or the wrong solution. Although penalty methods
or generalized Ieast,squares  methods could be formulated to incorporate
uncertainties resulting from experimental or analytical errors, the solution is
dependent on the value of the relative weighting parameter r. While I_ is
theoretically related to the covariance of the measurement and model errors,
its correct value is difficult to assess.

To circumvent these weaknesses, the modal expansion problem can be
reformulated as a quadratic function minimization with the undersl anding that
error in the expanded mode shape exists, and that it is bounded by the
expected measurement error. Mathematically, the expansion problcrn  could be
viewed as being a Ieast.squares  minimization problem with quadratic inequality
constraints (LSOI) of the general form:

(11)

The immediate advantage of the LSOI formulation is to allow convergence
within a domain of probable solutions, while taking into account uncertainties
associated with experimental errors. Mathematical techniques for solving this
problem have been published and are easily iwlemanted  [11. Three modal
expansion methods are proposed using three different 1S01 formulations.

3.4.a. Least.  Squarsts  Strain Enargy  Minimization with Ouadratic
Maasuroment  Error Irraquality  Constraint
The first LSOI formulation, is the counterpart of the constrained optimization
form of the Guyan method (Eq. 3). It finds the expanded mode shapes which
minimize the modal strain energy, under the provision that the qusrdratic  zrmde
shape error at the measured dofs is of the order of the experimental
uncertainty, Since the stiffness matrix K is a symmetric positive definite
matrix, there exists a unique upper triangular matrix G E R ‘“ with positive
coefficients m the diagonal, such that:

K= GT*G (12)

This is known as the Cholasky factorization. It is used to express the modal
strain energy as a quadratic function. The first formulation of the L.SOI
protrfetn  USU/1)  is then axpressed as:

(13)

As u -+ O, 1S0/1  converges to the Guyarr  static expansion (Eq. 1). Based on
the resufts  obtained from the two independent sets of experimental data
mentioned previously, a nominal vafua of 15% ia assumed for the expected
mode shape error parameter u used m the 1S01 expansion methods.

3.4.b. laast  Squares Strain Energy Minimization with Ocradratic
Expansion Error Inequality Constraint
A second LSOI forrswlatiorr US(V21 is proposed vhiih  minimizes the modal
strain energy, subject to the constraint that the quadratic error between the
optimally ex}aracfed mode shape, ofi and the mode shape obtained from direct
expansim  @’W is less than the expected experimental error. Oiroct  expansion



methods are those that have a closedfomr solution, such as the Guyan  static
and the Kidder dynamic methods (Eqs.  1,5). fSO/2  is then formulated as:

subject  rO U$,, - &~, 112 s a [$,, 12
As u + O, fSO/2 converges to the direct expansion solution ~ti

(14)

3.4.C. least Squaras Dynamic Residual Force Minimization with
Ouadratic  Measuramant Error Inequality Constraint
An LSOI formulation could be proposed, analogous to the Kidder method which
minimizes the loss of modal energy (Eq. 6). However, when the experimental
modal frequencies are almost identical to the predicted analytical frequencies,
quasi.singularities of the objective function would create ill.conditioning  of the
Choleski factorization. To circumvent this problem, the objective function is
redefined as the quadratic norm of the modal residual force, With this new
formulation, the LSOI problem is now to find the optimal ii that minimizes
the modal residual force such that the quadratic error between the expanded
mode shape and the experimental mode shape at the measured dofs is within
the bounds expected from experimental error.

m i n  I(K - rJAf)I$Ii12

t’” (15}

As u + O, fSO/3  indirectly solves the eigenvalue  problem for the given
experimental modal frequency and mode shape data at the measured dofs.

4.0 PERFORMANCE METRICS
A first error metric is proposed to evaluate the relative quadratic pornt40.point
error at each dof between the-predicted expanded mode shape q$fi and the
actual measured mode shape o,, for each mode k

*=~_y_-v12

li12”--
(16)

In comparing mode shapes at each point, normalization of the eigenvactors  is
achieved by least squares fit of the expanded mode shapa to the reference
mode shape. Alternatively, the mean cumulative error in tha mode $hape  as
a function of the mode n can be used to determine the modal number at
which the expansion methods start to break down :

(17)

The orthogonality properties of eigenvectors, as inferrad in the Modal
Assurance Criteria (MAC), can also be used as a performance metric. The
MAC matrix between two aigenvectors, @j and @i E R’ , is defksrd  as:

MAC,,  = –1’$w. . (18)

“’  1$; $,1 10:0,1
The MAC is used hereto verify the orthogonality  between the axpanded mode
shapes and tha actual mode shapes measured at all dofs.  The mass cross.
orthogonality  condition (MX) is also a potential performance metric. Howaver,
when applied to this case study, MX provided the same information as the
MAC, and therefore will not be used herarn.

The last three performance metrics are global metrics describ~  the total
error throughout the whola set of dofs.  Errors can also be evaluated at the
local structural element Ieval by the strarn  energy distribution associated with
each element s and with each mods i, Analogous to MX which measuras  the

accuracy of the expanded mode shape ~fi with respe:t to the FEM mass
matrix M,, the element strain energy verifies the fit of @i with respect to the
FEM stiffness matrix K,h The alemerrt strain energy error between the
analytical 0,. and the expanded d, identifies the discrete dofs where the
expansion does not agree with the model. Such errors typically result from
localized modelling  errors or actual structural damage.

5.0. SENSITIVITY STUDY OF EXPANSION METHODS
5.1. Performance to Nominal Data Sat and Updatad hflodal

The expansion methods are first investigated for their reliability
and intrinsic performance when all experimental and analytical conditions are
favorable. The expansion is executed with the updated fi.e., “ideal”] analytical
FEM model and mode shapes, from a subset of the high quality experimental
data measurad on the MPL The measured data is not corrupted by additional
noise. Here, twelve locations have been retained as the “measured set”, and
are expanded to the full 240 dofs recorded during the actual test. The final
240 dofs locations represent 3 dofs at each of the 80 node balls forming the
truss structure. The location of the 12 dofs are optimally selected as to give,
for a Guyan reducad  model, the best MAC with respect to the predicted
analytical modes [6!. This particular set of instrument location is referred to
as “#sef&.  As will be demonstrated through the test cases, aser5 provides
enough information to identify tha first nine modes, with the e] ception  of
mode 6 whth is not properly represented. The expansion of missing mods 6
will thus provide a measure of the methods’ robustness to unmeasured modal
information. This survey will compare the following methods: Guyan, Kidder,
Procrustes, LSOI strain energy minimization with measurement error (1 S011),
and with expansion error (LSO12),  and LSOI residuat  dvnamic force
minimization with measurement error (LSO13).
,

Figuro 2 MAC Diasonal (measured vs expanded) - Expanaion  from
12 dofa (aaat5)  to 240 dofs with ideal model and no additional
maastzramant arror.

The MAC of ths mods shapes axpanded from experimental #set5  data (12
dofs) with respect to the actual full measurements (240 dofs)  is shown in
Fw. 2 for all fwa axpsnhrs rmthods.  The MAC of the ideal analytical model
with respect to the full 240 cbfs measurement set is also included in Fig, 2
for referenca.  Tha GuyM method czvs  only axpsnds the first 2 modsrs  properly,
with MAC’s greater than 0.66. LSOI1 produces mode shape estimates which
are slightfy worsa than the Guyan method, especially in the lower modes.The
Kidder method generates expanded mode shapes which have MAC’s greater
than 0.97 for seven of the nina modes, but could not ba identify mode. LSO12
yield the same Ieval of ~curacy as the Kidder expansion. The Procrustes
expansion method can predict mode 6, but only modes 1 and 3 are graater
than 0.95. The rmdiira  rasuhs are explained by the fact that all nine modes
ara axpanded skrxaftanaously  from the kiiial 12 dofs subset, It was observed
that the Procrustes method is vary sensitiva to the nudsar  of sinwltaneously
expanded modes and to the set of measurement locations.

LSO13 is the expansitm mtfuxt  that performs tkra best across all modes. It
is  capsbb of prediit~ wsrnaasured  m o d s  6  batter thcsn  tha Procrustes
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method. Foremost, it is the only expansion method investigated so far which
results in better MAC diagonals with respect to the measured da!a at all
dofs than the analytical model used to expand the modes. These observations
are consistent with the Performance demonstrated in Fig. 3 through the mean
cumulative mode shape “error of the first nine modes (e.g., c(9) Eq.  17).
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Fimrra 3 Mean ctrmulatitfo  mode shape error . Expansion trom 12
do_fs  (MU(5)  to 240 dofs with updated FEM model and no additional
measurement noise.

5.2. Sensitivity to Mode Shape Measurement Error
There are many sources of noise in the processing of mode shapes:
accelerometer accuracy, wire mass and damping, shaker coupling, method of
excitation... An additional error can bt introduced by the modal identification
method. It suffices to say that the measured mode is never pristine. It could
be desirable, therefore, to have a mode shape extrapolation procedure that is
not only insensitive to noise, but that can also filter it out too.

A sensitivity analysis is performed herein to evaluate the performance of the
mode shape extrapolation methods with respect to distributed measurement
noise. For lack of a better model, the noise is represented as an additive
random error superirrwosed upon the true mode shape. Future work should
investigate the effect of norr.Gaussierl measurement errors representative of
a defective sensor or a consistent operator error. Spatially localized errors will
be considered later in the context of isolated modelliig errors and damage.

The quadratic difference bet ween the mode shapes obtained from the two
independent tests were of the order of 15%. This level serves es a basis for
the following error analysis, and effects of additive mode shape errors of the
order 15%, 25% and 50% are investigated. To infer the mean predmticm,
Monte Carlo simulations are performed with 30 averages. The analysis reveals
that LSOI1 and LSO12  methods which are based on strain energy minimization
provide, at a very high corrqwrfat”mal  cost, only a minor krxprovemerrt b the
predicted expansion co~ared  to the Guyarr or Kidder methods. The followitg
evaluation is thus Iiited to the Guyan, Kidder, Procnsstes  and LSO13
methods.

The mean quadratic error between the expanded and fully measured modes
shapes is compared for the first nine modes of the MPI as a function of noise
level for each of the expansion methods (Fig. 4). The expansion is from #$#f5
with 12 dofs up to the full 240 dofs,  and is achieved with the updated
“ideal” FEM model and eigertproperties.  The error between the “idati
analytical mode shapes and the measured mods shapes at all dof$ with ad
without added measurement noise are also included for Cwarison.

As expected, the performance of the expansicm methods grows worse as the
noise in the measured data increases. As before, the Guyarr method has the
overall worse performance, followed by the Kidder and the Procrustes
methods. The Kidder method is the most sensitive, for which the error kr the

morle  shape increases linearly with the measurement error. The Guvan,
Procrustes  and LSOI methods are equally sensitive to measurement noise.
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gure  4 Mean mode shape error as a function of
measurement noise - Expansion of nine modes from 12 dofs
(asetS) to 240 dofs with updated IIXM model.

As in the ideal situation, the error in the modes expanded with the Guyan,
Kidder, and Procmstes  method are greater or equal than the error in the’
measurement. Only the LSO13  method is capable of expanding mode shapes
to a greater level of accuracy than the measured data, even when the original
data is corrupted by significant amounts of noise. In fact, for moderate
amounts of measurement noise, e.g., less than 25%, the first nine modes
expanded with the LSOI 3 method from only 12 instrument locations are
almost as accurate as the noise.free  mode shapes measured at all dofs.

5,3. Sm’raititfity  to Selection of DOF Location and Ounntity.
Five different sets of instrument locations and quantities are considered, h.,
met’s,  as smrized  in Table i. The data measured at the MC?(  location is
expanded to the full 240 dofs, representing an expansion ratio 1 to 80 for
aset  /, 1 to 40 for aset 2 and 3, and 1 to 20 for asef  4 and 5. The
instrument location is setected either according to engineering judgernent at
the dofs of highest deformation, r%., the tip of the booms, or according to
optimal criteria such as best MAC fit from a static reduction or best mode
shape fit over multiple modes.

ASH’ # NUMBER OF

- - l

l,OCAT1ON
INSTRUMENTS CRITERIA

I 3

d

1 per booni ti

2 6 best mode l&2

3 6 ~12 per boom ti s

4 12 tziax @ boom ti s

s 12 optimal MAC

Tablt  V Sumrrrwy  of Instrument Location Cases.

As expected the expansion error decreases as the nu&trer of k$tmmented
location increase (Fig. 5). Agarn, the Guyan method has the worst
performance over all cases.  Procmstes  is the most sensitiva to the aser
selection, as shown by the 75% decrease in error from ase//  to 0set5.
Expansion with the Kidder rrwthorf  only benefits sli@tly from thsr increase in
the rrunbar of tfofs.  AS before, onfy the LSO13 method is capable of
expandii  the mode shape to the sarna degree of accuracy as the measured
data, regerdlass  of the selected met. Fii. 5 elso shows the sensitivity of the



expansion  error to dof location. 4s0/2 and #set3 include the same number of
dofs, but located at different points on the structure. Whereas, the
performance of the Kidder method improves from 4s0(2 to 8ser3, the
Procrustes  method worsens. This implies that for optimal performance, each
expansion method should have its OWII dof selection criteria.
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Figure 5 hlean mode shape error as a function of amv
selection - Expansion of nine modes to 240 dofs with updated
IIWM  model and no additional measurement noise.

A separate analysis demonstrated that tha Procrustes method is not only
sensitive to the met selection, but also to the number of modes used in the
simultaneous expansion and to the pairing between the analytical and
experimental modes. This is a disadvantage corrqsared  to the Guyan,  Kidder
and 1S013 methods which expand the modes irdivklua/& without the need for
mode pairing. In these latter methods, the mode pairiig  is indirectly
accomplished through the FEM model and does not require any user input or
engineering judgerrwnt.

5.4. Sensitivity to Model Error
All the modal expansion methods proposed herein use an analytical model to
predict the mode shapes at the unmeasured dofs. The FEM model plays an
important role in the regularization  of spurious information, the filteriig out
of the measurement error, and the prediction in the event of insufficient
information. This is especially true of the Kidder and the LSO13 methods
which rely heavily on the full dynamic equations. In the following, both
distributed ( i.e., global), and localized errors are investigated.

Distributed errors in the analytical mesa or stiffness matrix, such as errors
resulting from the uniform structural properties ~.f., rr&s density or modulus
of elasticity), only scale the eigenvalw  problem by a muftipliiative constant,
and have little influence on the modal expansion pred~tion. Another form of
global model error can be introduced by deficiencies in the model form, as
would typically occur in a pretest nuxtal, To this effect the actual pretest
model of the MPI is used for damonstratiort. It is cwrwMsad  unquafy  of rod
elements, and can only predct the first 4 modat. The “idea~  updated modal
used in the previous expansion analyses is constructed uniquely of bar
elements, and can accuratrrfy pradiit the first nine modes. As shown in Fig. 6,
the mean cumulative mode shape error over nksa modes is 20% for the pre-
test model, and is only 10% for the updated modal. The errors m the Guyan,
the Kidder, the Procrustes,  arrd the 1S013 methods expandad with the pretest
model from usef5 to the full 240 dofs are also shown in Fig. 6. As expected,
the level of error is slightly worse wfsen the eiganvectors are expandad with
the prs-test model than with the updated model, especially in the higher
modes where the pretest and updated modal start to diverge (Fig. 3). The
Guyan and the Procrustes  methods display little sensitivity to model form
error. The Kidder method is the most sensitive, as is shown by the sharp
increase in the error beyond mode 3 resuft.hg in a mam error which is twice

as high than that obtained with the updated model expansion. Although the
performance of the 1S013 has also worsened, it is still the best by a factor
of two relative to the other expansion methods, and it remains the only
method which is capable of expanding mode shapes to a higher degree of.-
accuracy than the model,

~
~ 8 m41~

i : : : ;,.+?’~ 6WE4!  1

i
40m41

.,
., .W’ ‘ / , J ? ? ” : *. -

-  3LW.01. . . . . . ...>.1
d  2@X4!.

Updml.  d Med*l
Owstcm ,,.  .<4+  ,,

1 2 34 5 07 8s

MODE NUMBER

Figura 6 Mean cumulative mode shape error - Expansion
from 12 dofs (asef5)  to 240 dofs with pre-test  FItM model
and no additional measurement noise.

Spatially localized model error, such as would occur from local enors in the
model form or properties, or from changes m the actual structure resulting
from fatigue or damage are also expected to affect the predictability of the
expanded mode shapes. To simulate this situation the stiffness of the longest
strut in the pretest model, connecting the tower to the optics boom, is
decreased by half. This only change$  the pre-test frequencies of modes 5 and
6 by less then 3%, while keeping all other frequencies almost the same.
However, the effect of this localized error on the analytical mode shapes is
sigrrifiiant,  as shown in Fig. 7 where major @rsp for mode 5 and 6
correspond to a 300% increase kr the mode shape error relative to the
“undamaged” pretest model. Afthough  the effect on the analytical modes is
extreme, none of the expended mode shapes are affected, and the expansion
errors for each method is almost the same as those obtained previously with
the “undamaged” pretest model (Fig. 6). The fact that the expansion error
does not increase from the “undamaged” pretest model case implies that the
expansion errors are more sensitive to global modal form errors than to
localized element errors.

5.5 Sonaitivity  To Maasuromorrt  And Model Error
Finalfy the parformarrce  of the expansion methods is assessed for the
previous corrbination of global and local modelling  error with an additional
25% error m the maasurad mode shape vahras.  The results ara summarized
in Fig. 8. The solii  fiis represent the accuracy of the dtiferent  forms of the
MPI model with respect to the tnsa test data at aff dofs,  and the dashed lines
represent the expended mode shapes from a$et5  to the full 240 dofs  using
the damaged pre.tast model end noise corrupted measurements.

As expected, addii measurement noise to the damaged pretest model
worsens the performance of all the expansion methods by approximately 50%
(Fws.  7). In the presaoca of both modal error and measurement noise, the
GUYM and the Kidder method perform equally poorfy, and generate mode
shapes which ara worse than predicted by the darnaged pretest model. The
Procmstes method performs better than the Guyrn and the Kidder methods,
especially at the higher modes, and can prarfiit  the bwer modet to the same
fevel of accuracy as the noise contaminated data. Once again, the LSO13
method parforms  excaptionalty  well, It generates mods shapes which are only
off by 15%, afthough  the data used is contaminated by 25% noise and the
model has the wrong form and a darnaf@  member. Furthermore, comparison
between the ebrnard  strain energies of the dernaged pretest modal and the



1S013  expanded mode shapes show that the largest differences occur at the
“damaged” strut location. Thus, the mode shapes errpanded with the LSO13
method are also capable of identifying damaged members or localized model
error, even in the presence of measurement noise.—.
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Figure 7 Mean cumulative mode shapa error . Expansion from 12
do~s (aset5J to 240 dofs with damaged pra.tast FEM modal and 25%
additional measurement noise.

6.0. CONCLUSION
Several mode shape expansion methods have been proposed and investigated.
These expansion techniques fall into three main categories. The first one uses
direct solutions of the static and dynamic equations to obtain a closed.fomr
equation. This category includes tha Guyan and the Kidder methods. It is
shown that these direct methods can also be written in terms of an
unconstrained minimization problem. The second category uses Ieasl.square$
method to minimize the error between tha measured and modelled
eigenvectors. Within this category, the Procmstes  method irnPose$
orthogonality of the mode shapes. The third catego~ formulates the
expansion as a Ieast.squares  minimization problem, in which measurement or
expansion error is incorporated as a quadratic inequality constraint.

The trade study demonstrated that the 1S01 method based  on minimization
of the dynamic force equation and subject to bounds i~osed  by measurement
noise has the best performance. The Procrustes method has an average
performance, whereas the direct methods are the worst. Tha LSOI  methods
based on strain energy minimization yield results comparable to the Guyan  or
Kidder methods, even in the presence of large measurement noisa, and
without any computational advantage.

It was shown that the Guyan method can only properfy  expand the first faw
modes. To get suitable expansion with the Guyan method, a minii ratio
of 3 to 4 accelerometer per mode is required . as conrnonly  practiced
experimentally. lower ratios of ksWumarsted dofa to modes and bettar
performance can be achieved with the Pmcrustas, the Kidder and the LSO13.
Under ideal experimental and analytical conditions, the Kidder method cars
correctly expand all modes rapresented in the data sat. This method ia not
sensitive to the ad selection, but is axtremety sansitiva to noisa and modal
deficiencies. It was shown that the 1S01 methods based on strain anergy
minimization did not irsqzrova  on the accuracy of th direct methods, wtib
imposing a significant computational cost. Ccmrputationally, the most effiiiant
expansion method is the Procrustas method. Along with the LSO13 method,
it is the only method which can properly axpand  mods shapes wtsiih are not
completely represented in the salectarl instrument locations. However, the
Procrustes method can only achieve this if the analytical ml experimental
modes are properly paired. Pairiig is automatically guaranteed in the other
methods through the FEM modal and the measured modal frequencies.
Furthermore, the Procrustes  method is very sensitive to measurement dof

location and selection, as well as to the number of simultaneously expanded
modes, In an actual situation this is a big disadvantage as the real solution

is not known, and the variation in the error can be great.

The LSOI expansion method with dynamic force minimization has the best all.
around performance. It is insensitive to moderate amounts of measurement
error, and is capable of predicting eigenvectors at unmeasured dofs with
greater accuracy than the noise,corruptad data measured at those locations.
1S013 is the only method which is capable of regularizing global and local
model errors, resulting in mode shapes of higher accuracy than the model
originally predicted, even in the presence of experimental noise, This makes
the LSOI expansion method with Oynamic Force Minimization ideally suited for
recursive model updating, damage detection and response prediction
technique. Its biggest disadvantage is in its computational requirements,
however, with the advent of faster and more powerful computers this is no
longer an issue.
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