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ABSTRACT

This paper presents and discusses physical models for simulating some aspects of
nc ural mtelligence, and in particular, the process of coguition. The main deprarture from
classicalapproach here is inutilization of terminal versionof classical dynamics introduced
in [1 8.19]. Basced upon violations of the Lipschitz condition at cequilibriwin points, terminal
(lynmni('s attains two new fundamental properties: it is irreversible and non-deterministic.
Special attention is focused on terininal neurodynamics as a particular architecture of
termin al dynamics which is suitable for modelling of information flows. Terminal neu-
1odynamics p ossesses a well-orgamzed pr obal oilisite structure which can be analytically
predicted, prescribed, and cout rolled, and therefore, which presents a powerful tool for
modclling real- life uncertainties. T'wo basic plicnomena associated with ra ndom behavior
of neurodynamnical solutions are exploited. The first one is astochasticattractor - astable
stationary stochastic p rocess to which random solutions of closed syster n converge. As a
moclel of cognition process, a ‘s bcastic attractor can be viewed as a universa 1 tool for
generalization and formation of classes of pat terus, The concept of stochastic attractor is
applicd to model a collective brain paradigim explaining coordination between simple units
of mtelligence which performa collective task without direct exchange of information. T'he
se cond fundamental plien o1 nenon discuissed inthe pa per is terminal chiaos which oceurs in
open systeins. Applications of terminal ¢l aos to information fusion as well as to explana-
tion and modelling of coordination among neurons in biological systemns are discussed. 1t
shiould be cinphasized that all the models of terminal neurodynamics are inplementable
m analog devices, which meai is that all the cognmtion processes discussed i the paper are
reducible to the laws of Newtonian mechanics.,

1. INTRODUCTION

The process of human cognition represented by inforination flows on a certain time
sc ale, cam be viewed as a dynamical p rocess. On a time scale of seconds and minutes, this
process has a sequential character [8] (acceptance,rejection, or replacement of ideas). Ona
much smaller time scale (recognition of words and nnages) it can be represented by parallel
distributed processing. Henee, an underlying dynamical system which models the cognition
processes, should have @ compl ex multi-scale structure. But can such a dynamical systein
be derived from physical laws? Answer to this fundamental question devides the scientific
community mto reducti onists and their opponents. Accor ding to the reductionists, there



is an intrinsic unity of science, and ther e are no independent lovels of modelling, t.e., all
natural puacuonicuizs are reducible to physical laws, Most of the biologists and cognitive
scientists cxpress doubts about sucha possibility. T this PaDCrs yemaining neutral to
philosophical aspects of the problem, we will demonistrate the possibility to develop such a
dynamical systemn whicly, being implementable in analog devices, can simulate some aspeets
of the processes of huiman cognition.

2. BACKGROUND
a. General Remarks

One of the oldestand the most challenging pro blems in cognitive science is to under-
st and the relationships between cognitive phenomena and brain functioning, Since ancient
thmes a mystery of mind attracted philosophers, neuroscientists, psychologist s, and later,
mathematicians, physicists, cte. Onthe hne with attempts to understand and to siimulate
b rain activity itself, there have been many successes i developments of brain-style infor-
mation processing devices which focus on brain-inspired modelling rather than modeling of
brain as a part of a human body. The most powerful jyformation processing device of this
kind is a digital computer which has revolutionized scicnce and technology of our century
and even changed the life- style of t he whiole society.  The digital computer became the
first candidate for the huinan brain modelling.  Artificial imtelligence rescarchers predi cted
that "thinking machines™ will take over o117 mental work. Futurologists have proclaimed
the birth of a new species, machina sapiens that will share our place as the intelligent
sovercigns of our carthlv domain.

Notwithstanding some achievements in the "thinking machines” developments, it
scems very unlikely that digital computers, with their foundations on rigid, cold logic,
and full predict ability, can niodel even sinplest biological systems which are flexible, cre-
ative, and to a certain degree, irrational. In addition to that, the main brain characteristics
which contribute into information processing are different from those of digital computers.
Indeed, neurons, as the basic hardware of the brain, are i million times slower than the
information processing, clements of serial computers. This slow speed is compensated by an
extremely large nunber (up to a hundred of billions) of neurons as active processing unit s
which are highly mterconmected. Hence, the brain succeeds through massive parallelisin
of alargenunber of slow lImll’oils, andl therefore, the mechanising of mind are most likely
best understood as resulting from the cooperative activity of verymany relatively simple
processing units working in parallel rather than by fast, but sequential processing units of
digital computers. There are many indirect evidences that the structure of the computa-
tional procedures in digital computers and brains are also different: instead of caleulating
a solution using sequences of rigid rules, the primaryvimode of computation in the brain is
rather associated with a relaxati on procedure, i.e., with setting into a solution in the saime
way 1 which a dynamical systemn converges to an attractor. Another difference bhetween
a digital computer and the brain is i the mechanisiis of learning and memory storing,.
There is anumber of facts suggest ing t hat t he knowledge is in the conmections between
the neuron, rather than mthe Helll’oils thiernselves, whilethese conmections have a clear




geometric and topological structure. Such a distributed memory storage is responsible for
the graceful degradation phenomenon when the system performmance gradually deteriorates
as more and more neural units are destroved. but there is no single eritical point where
performance breaks down. Based upon this kind of representation of the distributed memn-
ory, the learning procedure can be understood as gradual modifications of the conmections
strenpths during a relaxation-type dynamical process.

Along with the abstract model of a computer as a formal machine that could be
programimed to carry out any cffective procedure, introduced by Alan Turing in 1936,
another potential candidate for brain shnulation has been developed: 11 1943 McCulloch an
Pitts published the paper *A Logical Calculus of the Ideas Iinmmnanent in Nervous Activity”
[6]. 11 this paper the authors oflered their formal model of the neuron as a threshold logic
unit. They demonstrated that each Turing machine program could be iimplemented using
a finite networks of their formal neurons. In support to the idea of neural networks, Hebb
published "The Organization of Behavior™ (1949) [4) which provided the inspiration for
many computation modecls of learning. However, it took about thirty vears until the neural
networks became a potential competitor to digital computers in regard to simulation of
the braimn performance.

Two main factors significantly contributed to the ”sccond birth” of the neural net-
works. The first factor is associated with the pioneering work of Carver Mead on the design
of neural networks and their implementation in analog VI.SI systams. In his work he has
shown how the powerful organizing principles of nervous systems can be realized in silicon
mtegrated cireuits. The second factor 1s based upon the progress in dvnamical system the-
ory. In the past, most theoretical studies of dynamical systemns have heen concerned with
modeclling of cnergy transformations. However, 1 recent years several attempts were made
to exploit the phenomenology of nonlinear dynamical systems for information processing
as an alternative to the traditional paradigm of finite-state machines.

There are many evidences coming {rom the analysis of electro-encephalogram data,
that the hwnan brain activity resembles a dissipative nonlinear adaptive system. In con-
tradistinction to finite-state machines which operate by simple bits of information, the
noulincar dynamics paradigin operates in termns of complex "blocks™ of information which
resemble patterns of practical interest.

b. Neural Net as a Dynamical System

The current artificial neural nets can be considered as massively parallel adaptive
dynamical systems modelled on the general features of biological neural networks, that are
intended to interact with the objects of real world inthe saine way the biological systeins
(10.

As adynamical system, neural net is characterized by nonlincarity and dissipativity
which provide the existence of, at least, several attractors. There are many different
modifi cations of neuralnets. In this paper we will be interested only in those neural net



architectures which do not contain any man-made devices (such as digital devices), and
therefore, are suitable for circuit ninplementations. Such neural nets (which in literature
arce called continuously updated recurrent neural nets) can be represented by the following
dynamical system:

Y L U 0(>:']',Jx1'j)‘ 7 >0 D
J

where x; are state variables, or incan soma potentials, characterizing the newron activities,
1;; arc constant control paramecters representing the weights of synaptic interconnections,
7; are suitable time constants, o(.) 1s a sigmoid function having a saturated nonlincarity
(usually o(2) = tanh Jx, where 3= const > 0 1s an additional control parameter).

Aninvariant characterizing local dissipativity of the system (1) is expressed explicitly
via its parameters:
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A nccessary (but not suflicient) condition that the system (1) has attractors, is that
there are some domains in phase space where the imvariant (2) 1s negative.

If the matrix 755 is symmetric

Ti; = 156 (3)

then Fqgs. (1) can be represented in the form of a gradient system, and therefore, it can
have only static attractors. In the basin of a static attractor, the mmvariant (2) must be
negative.

Since the systemn (1) is noulinear, it can have more than one attractor; consequently,
in some domains of phase space, the invariant (2) may be positive or zero.

Eqgs. (1) present the neural net inits “natural” form in the sense that a; and 135 cor-
respond to physical parameters: nearon potentials and synaptic interconuections, respec-
tively. However, it is himportant to emphasize that the relationship between the invariants
of the “vector” u; and the “tensor™ 7} are not preserved by the coordinate transformation,
e Fgs. (1) do not possess an invariant tensor structure. Consequently, the coluimm w;
and the matrix 755 caunot be treated as a vector and tensor, respectively.
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In the most of applications, the neural nets performance is associated with conver-
genee Lo attractors (pattern recognition, optinization, decision making, control, associative
mcmory, generalization, ete.). The locations of attractors and their bhasins i phase space
can be preseribed by an appropriate choice of the synaptic weights 755 1.c., by solving in-
verse dynamical problems, However, sinee the dimensionality of neural nets is usually very
high (in biological systemns it is of order of 101 with the number of synaptic interconnce-
tions of order of 101%), the straight-forward analytical approach can be very expensive and
time consuming. An alternative way to seleet synaptic weights in order to do specific tasks
was borrowed from biological systems. It is hased upon iterative adjustments of 755 as a
result of comparison of the net output with kuown correet answers (supervised learning)
or as a result of creating of new categories from the correlations of the input data when
correct answers are not known (unsupervised learning). Actually the procedure of learning
is implemented by another dynamical systein with the state variables 755 which converges

to certaim attractors representing the desired synaptic weights 75,
c.Limitations of Classical Approach

The biggest promisce of artificial neural networks as commputational tools lies in the hope
that they will resemnble the immforination processing in biological systems. Notwithstanding,
many successes in this direction, it is rapidly bhecoming evident that current models are
characterized by a number of lmitations. We will analyze these limitations using the
additive model as a typical representative of artificial neural networks:

i o= Y Tyole) 4 Iy i 1200 (4)
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in which ®:(1) is the mean soma potential of the ith neuron, 1;; arc constant synaptic
interconnections, o(x) is a sigmoid function, 1i is an externalinput.

Firstly, the neurons performance in this inodel is collective, butnot parallel: ally sinall
changeinthe activity of antth neuron instant ancously effects all other neurons:

Jda; do ,
R - g 'I, - ) r
0(1'1' 1 J / ( ('))

day

In contrast to that, all the biological systeins exhibit both collective and parallel perfor-
mances. Forinstance, the right and the left hands are niechanically independent (i.e., their
performance s parallel), but at the same time, their activity is coordinated by the brain;
that makes their performance collective.



Sccondly, the performance ot the model (-1 ) is {ully prescribed by initial conditions.
Thie system never “forgets” these conditions: it carries their ““lI)I11"dell” 11]) tofroo.In
01'(1(1 to change the system perforinance, the external input must overpower the “inertia
of the past”™. In contrast to that, the hiological systems are much more flexible: they can
forget (if necessary) the past adapting their behavior to environmental changes.

Thirdly, the features characterizing the system (4) are of the same scale: they are insu-
lated from the microworld by a large range of scales. At the same thne! biological systeins
mvolve mechanisims that span the entire range from the molecular to the macroscopic.

Can these mitations be removed within the framework of classical dynamies? The
answer 1s no. Indeed, all the systems considered here are based on classical dynamics and
satisfy the Lipschitz condition which guarantees the uniqueness of the solutions subject to
preseribed sets of initial conditions. For the systemn (1) this condition requires that all the
derivatives 02 /0x; exist and are bounded:

Dy
- < 00 (6)
d
The uniqueness of the solution
ryooai{t, et Xa)y i 1,2, 0n (7)

subject to the initial conditions a;(0, 24,... 2, ) = &; can be considered as a mathematical
interpretation of rigid, predictable behavior of the corresponding dynamical system.

Actually, all the limitations of the curre it neural net models mentioned above are
inevitable consequences of the Lipschitz concition (6) and therefore, of determinisin of
classical dynainics.

d. Terminal Dynamics

It has long been recognized that classical deterministic dynanies is not suitable for
capturing the truly dynamics behavior of real-world app lications, and i particular, the
dynamics of information flows, the dynamics of nulti-choice human behavior, etc. .4
primary reason is that this kind of dynamncal processes are characterized by uncertainties
which arise in a dynamic setting (for instance, when information that will be needed
i subsequent decision stages is not yet available to the decision inaker). Uncertainties
arc described for purposes of mathematical anal ysis by probability theory, and dynamics
simulating evolution of uncertainties would acquire stochast ic properties.

Turning to governing, equations of classical dynamics:
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where 1, 1s the Lagrangian, ¢;, ¢; arc the generalized coordinates and velocities, and R is the
dissipation function, one should recall that the structure of R{¢,, ... ¢,) 1s not prescribed
by Newtons laws: some additional assumptions are to be made in order to define it. The
"natural” asswmption (which has been never challenged) is that these functions can be
expanded in Taylor series with respect to equilibrium states: ¢, = 0. Obviously this
'R

requires the existence of the derivative: | Py
1] 1

|< ocat ¢ - 0

The departure from that condition was proposedin [1 8], where the following dissipa-
tion function was introduced:

1 - ~ Oy 1
T - - : - 9
]( 1\ '} ] >,4 iy ‘ >_/ (r)qj (1_] ’ ( )
! J
in which
b= - p <1, p>1 (10)
P2

while pis a large odd number.

By selecting large p, one can make & close to 1 so that Eq. (9) 1s almost identical to
classical one (when k= 1) everywhere excluding a sinall neighborlhiood of the equilibriwn
pomt ¢; = 0, while at this point:

9’R .
e p. |Fro00at g -0 (11)
04i0q;
Hence, the Lipschitz condition is violated, the friction force F; = - SR grows sharply

at the cquilibrium point, and then 1t gradually approaches its “classical” value. This
cffect can be interpreted as a mathematical representation of a jump from static to kinetic
friction, when the dissipation force does not vanish with the velocity.

It appcars that this “small” difference between the friction forces at k= 1 and k < 1
leads to fundamental changes in Newtonian dynamics. In order to demonstrate it we will
consider the relationship between the total energy F and the dissipation function R:
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t
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Within a small neighborhood of an cquilibrivin state (where the potential energy can
be set zero) the energy F)oand the dissipation function It have the order, respectively:

Ergl, Re g at 12250
Hencee, the asympotatical form of Eq. (5) can be presented as:

]]"I' )
¢ o AR At B0, A coust (13)
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If 4 >0 andk < 1, the equilibriin state 2/ = O is anattractor where the Lipschitz
condition (| dFE/dE |-» oo at F/ - > () is violated. Such a terminal attractor is approached
by the solution originated at E = AE, > (), m {inite time:

1-k
/0 dE 2N K,

1o = S
o, ARTY (- k)4

< 00 (14)

Obviously, this integral diverges in classical case A > 1, wheret, - oo, The motion
deseribed by Fg. (1 3) has asingular solution = 0 and a regular solution:

1- &

e [ANEt o c A1 k)t (15)

1

In a finite time the motion can reach the equilibrium and switch to the singular
solution ¥ = O, and this switch is irreversible, Fig. 1.

The coeflicient & can be found from experimental observations of the time 1,.

As well-known from dynamics of non-conservative systems, dissipative forces can
destabilize the motion when they feed the external energy into the system (the trans-
mission of encrgy from laminar to turbulent flow in fluid dynamies, or from rotations to
oscillations in dynamics of flexible systemns). In tenns of ¥ . ( 13) it would mean that
A > 0, and the equilibrium state /= O becomes a terminal repeller [18].

If the initial condition is infinitely close to thisrepeller, the transient solution will
escape it during a finite thime period:



while for a regular repeller, the time would be infinite, Fig. 1.

Expressing Fq. (13) in terns of velocity at 72 1,4y = v,

O BoXo e const > 0,

onc arnves at the following solution:

v {1 k)T (16)

As in the case of a terminal attractor, here the motion is also irreversible: the time-
backward motion obtained by formal time inversion ¢ -» - ¢ in Eq. (16) is Imaginary, since
p is an odd number (sce Eq. (10)).

But in addition to that, teriinal repellers possess even more surprising characteristics:
the solution (16) becomes totally unpredictable. Indeed, two different motions described
Ly the solution (11) are possible for “almost the same” (v, = 4¢ -»> 0, or v, = —¢ >
0 at £ : -> 0) initial conditions.

Thus, a terminal repeller represents a vanishingly short, bhut infinitely powerful “pulse
of unpredictability” which is pumped into the system via terminal dissipative forces. Ob-
viously failure of the uniqueness of the solution here results from the violation of the
Lipschitz condition at v = ().

Terminal dynamics can be introduced as a set of nonlinear ordinary differential cqua-
tions of the formn:

Iy = 1/(2’11 '1”21 coy)yts 1,2,..2/ (17)
i which
Do,
| »(l ]< 0 (18)
(f)(l'j

and i < 1.



Therefore,

(()H.T,'
(’)J‘j

. Qv
l: Jootk 1)(.’1'1,-'-;1‘,,) \ !

1

. |-» o if & - 0 (19)

and the Lipschitz condition is violated at all the equilibriun points

As inclassical case, the equilibrivin points are attractors if the real parts of the
cigenvalues of the matrix

OU'
el v (20)
.l]‘
arc negative, that is
Red; < 0 (21)

and are repellers if some of the eigenvalues have positive real parts.

Basic mathematical and physical aspects of terminal dynamics are discussed in [10-19].
Recently ananalog VLSI circuit was designed, which, when operatedinthe sill)tllesllc)lcl
domain, models the terminal attractor /repeller phenomena 1 7.

3. TERMINAL NEURODYN AMICS
a. General Remarks

Terminal neurodynamics is a particular version of terminal dynamics which is suitable
for modelling information flows. For that purpose, it has a well-organized probabilistic
structure which can be preseribed, predicted, and controlled.  Terminal neurodynamics

and its applications to information processing are discussed in [15-19].
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I't should be emphasized the fundamecntal differcnce bet ween probabilistic properties
o f terminal dynamics and those of stoclastic or chaotic differential equations. Indeed, the
randormaess of stochastic differential equations is consed by random initial conditions,
v a ndom force or ra ndom coeflicients; in chaotic equations small (but finite!) ra ndomn
chianges of initial conditions are amplified by the mechanism o ¢ instability. But in the
both cases the differential operator itseit remains deterministic.  In contradistinetion to
that, in terminal dynamics randonmess results from the violation o ¢ the wniqueness o f
the solution at equilibrivum points, and ¢ herefore, « he differential operator it self generates
random solutions.

Terminal neurodynamics is based upon a physical implementation of random walk
paradigim.

b. Random Walk Paradigm
Random walk 1s a stochastic process where changes occur only at fixed times; 1t
represeuts the position at time 1, of a particle taking a random “step™ 2, independently

of its previous ones.

Let us start with the following dynamical system:

1/3 _\/W
Q]

T Toysin rsinwt,y = Const,w = Const,a = Const. (22)

It can be verified that at the equilibrivm points:

nma .
: T -2, 1,001, 2,000 ete. (23)

1o ey -2,
\/UJ

the Tapschitz condition is violated:

Qi fOa - oc at a - wy, (24)
Ha: 0att= 0, then during the first period

Gt (25)
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the pomnt r, = 0 is a terminal repeller sinee sinwt > 0 and the solution at this point
splits 1nto two (positive and negative) branches whose divergence is unbounded [18] (see
Fq. (16). Conscquently, with an cqual probability @ can move into the positive or the
negative direction. For the sake of concreteness, we will assuine that it moves in the positive
dircetion. Then the solution will approach the second equilibriwn point @y = na/vw at

, B(1.1) el
t" = - arccosfl- - "7 7%
w 91/3 ~

i which B 1s the Beta function.

I can be verfied that the point 2y will be a terminal attractor at ¢ = 4 if

ot

o~ (A
1 < njw, by if J > - g:/J )\ﬂu (27)

O

Therefore, @ will remain at the point @y until it heconmes a terminal repeller, 1.e., until
{ > 1. Then the solution splits again: one of two possible hranclies approach the next
cquilibrium point @y = 2na//w, while the other returns to the point @, = 0, ete. The
periods of transition from one equilibriun point to another are all the same and are given
by Fq. (26), Fig. 2.

It is nmportant to notice that these periods t* are bounded only because of the failure
of the Lipschitz condition at the equilibiium points. Otherwise they would be unbounded
since the thime of approaching a regular attractor (as well as the thne of escaping a regular
repeller) is infinite.

Thus, the evolution of = prescribed by Fq. (22) is totally unpredictable: it has 2™
different scenarios where m = Kt /1), Fig. 3, while any prescribed value of @ from k.
(23) will appear eventually. (Here F is the integer part of the ratio t/1*). This evolution is
identical to random walk, and the probabihity f(a, 1) is governed by the following difference
cquation:

n 1 T (v 1 naQ
et - )= < fle- -, ) = Sl -, 28
flats Dye ptte e T ptea T (28)
For better physical interpretation we will asstune that
RO .
»\/ L L, <T) leyw - o0 (29)
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in which 1. and 7" arce the total length and the total time period of the random walk.

Setting

- 0017 - 0 (30)
one arrives at the Fokker-Planck equation

Oftrt) 1,5, 07 (et)

: D7 na?
o1 27 o ‘ (31)

Its unrestricted solution for the initial condition that random walk starts fromn the
origma = Qat = O

1 2
flays - expl- o

V(2 D?t) ) (32)

2124

qualitatively describes the evolution of the probability distribution for the dynamical equa-
tion (22). It is worth to notice that for the exact solution one should turn to the difference
cquation (28) since actually @ < oo,

q. (28) can be presented in the {following operator form:
N BT
[1’/1 - :_)(}'/) -1 ]'11 )]f = 0 (33)

where By and Fare Shift operators:

TGy

Ef(a, )= fla,t- 1), B f(at) = fla-t It), h- '\/w (34)
Utilizing the relationships between the shift and the diflerential operator 1):

a a

RIS N O} e kD, — - .
]/( E , ],1 ¢ R ])t = 0{71)1 ) 01 (35)

one can transfer from Eq. (28) to Fq. (31) if w - o0, 1e, 7, 00-5 0.
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For further analysis it will be more convenient to modify Eq. (22) as following;:

Ty sinh (v xSt (36)
\

assuming; that

b - 1 o 00 (37)

while 1 is an integer.

This replacement does not change the qualitative behavior of the dynamical systemn
(37): 1t changes only its quantitative bhehavior between the eritical points in such a way
that one has explicit control over the period of transition from one critical point to another
[19].

c.Stochastic Attractors inTerminal Dynamics

The dynamical system cousidered above exhibited an unrestricted random walk. As
a result of that, the probability density of the solutions vanishes at ¢ -5 oo, In this
scction we will deseribe a new phenomena - an attraction of the solution to a stationary
stochastic process whose density function is uniquely defined by the parameters of the
origimal dynamical system,

We will start with the following one- dimnensional dynamical system:

Ty sink(-\/w s ) sinwt (38)

O

It has the following equilibrium points:

. wa .
,‘1 arcsm( - m), Nz - 1,0,1,2,- - cte. (39)

Voo .

Obviously now the distances between these points depend upon the number of the
step e

* * . e . Ty
O le'('S]ll(' m) - '(n'csm[> (- 1)1, (40)
Vi Ve

£
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1et us mtroduce a new variable:

y o s (41)
Then
s o x naQ
3 ;- 42
yyu \/UJ“I‘ !/,,, . P \/u)’ ( )
This means that the probability as a function of y satisfies the following cquation:
S 1A g
[P (1 2, D] f(Hy) = 0 (43)
However, 1 contradistinetion to Eq. (33), here y is bounded:
|y ] [sina |<1 (44)
If the solution of FEq. (43) subject to the houndary condition (v1) is found:
I=1ty) (45)
then the solution to the original problem is:
*
f= flty(sina)] | cosa | (46)
For better physical interpretation of the solution (S0) consider a limit case when
Vew - o0, et i, -0 0 (4°7)
Then Eq. (43) transfer to the Fokker- Planck equation:
0 1..,0%1
—,f = D { (48)
ot 2 dy?
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with the boundary conditions:

of
Oy

af

b 0 ¢

|y: 1

Its solution subject to the intial conditions:

S|
F0,0) = wly), w(y) > 0 and / Ply)dy = 1 (50)
Joa
. 1 '\‘ ol atntaty nn
flty)= 5 D e cos o (1) y <0 (61)
1zl
! nx
a, = 2 / ¢(2)cos . (2 D)dzy 1= 1,2+ cte. (5?)
J- &
and, thercfore,
. 1
flty) -2 att - o0, [y |< (53)

Returning to the original variable 2, one obtains instead of (53):

7 T

f@)=051y" |05 cosa, - 5 < &< 5 (54)

Hcnee, any solution originated within the int erval

7 ie
’? < r < '? (55)

alway s approaches the same stationary stochiaistic process (5-1 ) which plays thie role of a
st ochastic attractor.
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It should be emphasized that this is a new phenomena which does not exist in classical
version of nonlinear dynamics. Unlike chaotic attractors, here the probability density can
be uniquely controlled by the parameters of the original dynamical system, while the it
stochastic process does not depend upon the initial conditions if they are within the basin
of attraction.

Now one can generalize Eq. (38) by requiring that its solution should have a stochastic
attractor with a presenbed density function f(2) under the only restrictions that

N
f(a): Ofor|a|> N, N < o0 and / fla)de = 1 (56)
JoN

Based upon Eq. (51), one arrives at the following equation instead of Fqg. (38):

. Lk \/&‘
2oz 7y 81 [ -
4}

p(.z')] sinwt, pla): ?/ T(EdE - 1 (57)
J-N

Indeed, introducing a new variable (compare with Fq. (41)):

one obtains instead of Fq. (54).

1 1dp

f(a) - 5 RE 5 e (58)

Turning to an - dimensional dynamical system, we will confine onrself by a special
form:

)

N T 2NN IR 3
&0 oyesint 2 piys)] sinwt (59)
a
whare
T
Yi - >J'J',‘J';1'j, Ti; = const (60)

J:]




It will be assumed that

Ipi or <N
dpi {>() for |y <V, N, < o (61)

dy; = 1 :0 for |y, |> N,

and 735 form a syninetrie positive-defimte matrix. The last property provide stability (if
sinwt < 0) or instability (if sinwt > 0) of the system (59) at terminal equilibrimm point.

Based upon that one concludes that the system (59) will be locally stable, or locally
unstable, depending upon the sign of sinwt, and that syuchronizes the conversions of
terminal attractors into terminal repellers, and vice-versa.

Fxploiting the result (5 8), one obtains that the solution to Eqgs. (59) has the following
density functions m terms of the variables y,

. 1 dp
Flanseun) = 102y, (62)
In terms of the variables @, the joint density of the solution is:
flag,ay) s WL pi(yi). det | 755 ] (63)
where y; 1s expressed via @y by Fq. (60).
d. Examples
1. We will start with the following problem: find a dynamical systeimn whose solution
is attracted to a stoch astic process with the normal density:
- 1 _=a)?
faye =7 e et (64
( S o o )

where o and o are the mean and the standard deviation, respectively, and z(y) is the
standard normal density function. In order to apply M. (08), first of all, Fq. (64) should
be modified, since it does not satisfy the restriction (5G).

We will introduce a truncated standard normal density function:

- 3 U
Am:{>4m1””KA N <o (65)

0 if |y|> N,
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11011, withreference to Fq. (7). one obtains:

[TRAEaR ' . ? Yy
&= A sink \ﬁ erf( I\/?: )] simwl, orf(y): -\/ﬂ /“ Hu)du (66)

Thus, Fq. (66) represent a dynainical system whose solution is attracted to a stochas-
tie process with the density function (65). For a sufliciently large N it will be close to a
Gaussian process with g and o as the mean and the standard deviation, respectively.

2. Let us assume now that the density f(a@) of a sought stochastic process is characterized

by jt = ji,,0 = pp and higher central moments g, Utilizing the Gram-Charlier series
A o / , 1 )

CXpansion:

. 1\~ -
e L2
fleys S e 20! o (67)
= 0
where
1 1 .
Co = 1,¢1 = o= Oycg s - - jta,cq (14 - 3)
3! 41 (m)
1 1 . .
5 T - ;'(/15 = 10pg),c6 = =, (pte - 1dpq 4 30) cte.
. G'
1" Z(y)
.. A 69
dy’ (6
and applying Eq. (57) one obtains:
s ¢
: gV N Ty .
xXr = S - N - ]t 1%
@ = ysin®{ . [(7[( \/)0) '>::( ( , )} sina (i)

Hence, the solution to the dynamical system (70) is attracted to a stochastic process
whose density function is characterized by the moments g,
3. In this example we will pose the following problem: find such a dynamical systemn
wh ose solutions a;(1) are attr acted to a stochastic process characterized by the colummn of
1 reans and the matrix of moments:
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Muri= yig, 055+ Moy pidlay - py), 60) 1.2,

First of all, one can find such an orthogonal transformation:

Yi: o *|> TijCey - pj),

that

1 P S
1 11 ¢ =

nooon
~ % i (
My, - ;= 0, O:k - >_4 >J(}J(']"_J.f[‘“ Y FT i
J= 1 L= 1

where y; are non-correlated standard normally distributed variables.

Combining Fqs. (59), (60) and (G6) onc obtains:

\ﬁ‘;) —— 1

&y i siuk[-d (:7"1({;))] sinwt, ;= >:'J',-]'(.rj - ji5)

)71

Some comments concerning the stability of ¥Egs. (76) should be made.

orthogonal matrix, the real parts of the cigenvalues of 755 are

. Vit
ReAi= cospi>0for 0 << 5

where ¢, are the angles of rotation of the coordinate axes. and since

d -~ _ _ '
a fly, ) >0 {for | U ’< N,
dy,

0 of ik

(t?)

Since 75: 18 an
j

(126)

i.c., the condition (61) is satisfied, Eqgs. (76) lincarized with respect to their equilibrivin
points, have cigenvalues whose real part ave all positive (if sinwt > 0 )01 negative (if
sinwt < 0), and that synchronizes conversions from terminal attractors to terminal re-

pellers, and vice-versa.
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Thus, the solution to the dynamical systemn is attract ed to a stochastic process with
preseribed probabilistic structure (71 ) it the nntial conditions are within the basin of
attraction: |y, |[< N,.

4. STOCHASTIC ATTRACTOR AS A TOOLFORGENERALIZATION

Random activity in the human brain is a subject of discussion in many recent pub-
lications [3,7]. The interest in the problem was promoted by discovery of strange attrac-
tors. This discovery provided a plhienomenological framework for understanding, electroen-
cephalogram data in regimes of multiperiodic and random signals generated by the brain.
An understanding of the role of such random states in the logical structure of the hunan
brain activity would significantly contribute not only to the brain science, but also to the-
ory of advance computing based upon artificial neural networks, In tlis section, based
upon properties of terminal neurodynamics discussed above, we propose a phenomenolog-
1cal approach to the problem: we demonstrate that a stocastic attractor mmcorporated in
neural net models can represent a class of patterns, 1.e., a collection of all those and ouly
those patterns to which a certain concept applies. Formation of such a class is associated
with higher level cognitive processes (generalization). This generalization i1s based upon a
set of unrelated patterns represented by static attractors and associated with the domain
of lower level of brain activity (perception, memory ). Since a transition from a set of
unrelated static attractors to the unique stochastic attractor releases many synaptic inter-
conmections hetween the neurons, the formation of a class of patterns can be “motivated”
by a tendeney to minimize the munber of such interconnections at the expense of omitting
some significant features of imdividual patterns.

Let us first consider a deterministie dissipative nonlinear dynamical systeins modelled
hy coupled sets of {first order diflerential equations of the form:

‘. - (7 .. r l. . " i . s

v Vila, T55), 40 2 1,2, 0000 (77
mm which @; is an n-dinensional vector function of time representing the neuron activity,
and 735 1s a constant matrix whose elements represent synaptic interconnections between
the neurons,

The most iinportant chiavacteristic of the neurodyna mical systems (77) is that they
arc dissipative, i.e., their motions, 011 the average, coutract phase space volunes onto
attractors of lower dimensionality than the original space.

So fill” only pointattractorshave heen utilized in the logical structure o f neural net-
work performanice: ¢ hey represent stored vectors (patterns, computational objects, rules).
The idea of storing patterns as point attractors of neurodynamics huplies that initial con-
fipurations ot nceurons in some ncighborliood ot a memory state will he attracted to it
Hence, a point attractor (ora set of point attractors) is a paradigim for neural net perfor-
mance based upon the phenomenology of nonlinear dynamical systemns. This performance
is associated With the domain of lower level brainactivity sueli as perception and memory.
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It s casily venifiable that a st of polut attractors imposes certain coustraints upon
the synaptic cocflicients 735, Indeed, for a set of e fixed points #5(k = 1,2, 1) one

1
obtains 1 X n constraints following from Eq. (77):

0= Vi(#s, T g = 1.20n, k= 1.2, (78)

I order to provide stability of the fixed points :ﬁ the synaptic cocflicients must also
satisfy the following 1 X 1 inequalitics:

Re AV < 0i: 1,20 00, b= 1,2, (79)

R |
in which A¥ are the cigenvalues of the matrices |0fi/0xj] at the fixed points ik,
How can a neural network minimize the munber of interconnections 7, without a

significant loss of the quality of a proscribed performance?

1 .ctusassume that ¢ he vectors f'}k have some charac teristies in con nnon, for instance,
their ends are located 011 the same cirele of aradius,, i.c., (after proper choice of coor-
dinates):

CENE 2 e 100 (80)

If for the patterns represented by the vectors & the property (80) is much more
important then their angular coordinates 5% o/ %2 if Iy o/ ko), then it is “reasonable”
for the neural net to store the cirele » = 1, instead of storing m poiut attractors with at
least 2 X synaptic coeflicients 73;. Iudeed, in this case the neural net can “afford” to
climinate unnecessary synaptic cocflicients by reducing its structure to the simplest form:

Feor(re 1) - 21,) ., 8= w= Const (81)

Fas. (81) have a periodic attractor

' = T, 0= it (8..1)



which generates harmonic oscillations with frequency w. But what is the role of these

oscillations i the logical structure of neural net performance? The transition to the form

(81) can be interpreted as a generalization procedure in the course of which a collection of

IN
i .

m terms of symbohie logic, the cirele r = 1, 1s a logical form for the class of vectors to

unrelated vectors @7 1s united nto a class of veetors whose lengths are equal to r,. Henee,
which the concept (80) applies. In other words, the oscillations (82) represent a higher level
coguitive process associated with generalization and abstraction. During these processes,
the point deseribing the motion of Fgs. (81) in the phase space will visit all those and only
those vectors whose lengths are equal to r,; thereby the neural network “keeps in mind”
all the members of the class.

Suppose that a bounded set of 1solated ponit attractors which can be wmted i a class
occupies a more complex subspace of the phase space,1.C.. instead of the circle (80) the
conceptdefining the class is:

St ah o iEy s e ke 12,0 0 (83)

(]’((l'],.l"_;. C ..I',,):I' (84)

as a limit set of the neurodynamics, while all the synaptic cocflicients 73 which impose
constraints on the velocities along the surface (84)) will be eliminated.

The character of the motion on the lmt set depends upon the propertics of the
swrface (84 ) If (by proper choice of coordinates) this surface can be approximated by a
topological product of (12- 1) circles(i.c., by an (10 - 1 )-dimensional torus) then the motion
is quasi-periodic: it generates oscillations with frequencies which are dense in the real. I
the surface (84 ) is more complex and is characterized by a fractial dimension, the motion
on such a limit set must be chaotic: it generates oscillations with continuous spectrumn.
I both cases the motion is ergodie: the point describing the motion in the phase space
sooner or later will visit all the points of the hmit set, 1.e., the neural net will “keep in
mind” all the members of the class.

‘1°1111S, it can be concluded that artificial neuralnetworksare capable of performing
highlevel cognitive processes such as formation of classes of patterns,i.c., formation of
new logical forms based upou generalization procedures. In terins of the phenomenology
of nonlinear dynamics these new logical fors are represented by it sets which are more
complex than poiut attract ors, i.e., by periodic or chaotic attractors. 1t, is shown that
formation of classes is accompanied by elimination of alarge number of extra synaptic
mterconnections. This means that these high level cognitive processes incerease the ca-
pacity of the neural notwork. The pr-ocedure of formationof crasses canbe initiated by

)
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a tendency of the neural network to minimize the munber (or the total strength) of the
synaptic interconnections without a significant loss of the quality of preseribed perfor-
mance; such a tendency can be incorporated into the learning dynamics which controls
these interconnections [12].

In addition, the phenomenological approach presented above leads to a possible ex-
planation of random activity of the Inunan braing it suggests that this activity represents
the high level cognitive processes suchi as generalization and abstraction.

Turning to terminal neurodynamics represented by Fgs. (59) aud (60), one can view
a stochastic attractor as a more unmversal tool for generalization. Indeed, in contradis-
tinction to chaotic attractors of deterministic dynamics, stochastic attractors can provide
any arbitrarily preseribed probability distributions (63) by an appropriate choice of (fully
determimstic!) synaptic weights 7755,

The information stored in a stochastic attractor can be measured by the entropy H
via the probabilistic structure of this attractor:

H(N{ Xoy o Xo) s = > o> flay ) og f(ay, - ) (85)
\-l \'n
where the jont density f(ay, ... 2y, ) is uniquely defined by the synaptic weights 755 by

mcoans of Eq. (63).

For instance, the information stored by the dynamical system (66) is mecasured by the
entropy:

H = log, Vorea? (86)

since this system hasa stochastic attractor with normal density distribution (64).

As shown in [20], terminal neurodynamical systeins can have several, or even, infinite
number of stochastic attractors. For imstance, a dynamical system

iy sy sinf [V sin(ay - ry )] sin wt (87)

&y e sinf[Vwsin(ay a9 )] sinwt (88)

has stochastic attractors with the following densit its:

[AV]
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flay,ae) = 0.5 [eos(ay 1 wa)cos(ay - o). (89)

g (g - 2) m oy RITEED

< X -1 Iy < . < £y < 90
. LTy ) 5 L (90)

ey s oo - 1,3, 1,0,9, ecte ey s oo - 5, - 1,383,507, -+ cte. (91)

The solution (89) represents a stationary stochastic process, which attracts all the
solutions with initial conditions witlin the area (90). Fach pair g and g from the
scquences (91) defines a corresponding stochiastic attractor with the joint density (89).

Hencee, the dynamical systemn (87), (88) is cupable of discrimmination between different
stochastic patterns, and therefore, it perforins patternrecognition onthe level of classes.

5. COLLECTIVE BRAIN PARADIGM

In this section the usefulness of terminal newrodynamics, and in particular, of a
new dynamical phenomenon - stochastic attractor - will be demonstrated by simulating a
paradigm of collective brain.

a. General Remarks

The concept of the collective hrain has appeared pecently as a subject of intensive sci-
entific discussions from theological, biological, ccological, social, andmathematical view-
points [5,9]. It can be introduced as a sct of simple units of intelligence (say, neurons)
which can communicate by exchange of mmformation without explicit global control. The
objectives of ecach unit may be partly compatible and partly contradictory, i.c., the units
can cooperate or compete.  The exchanging information may be at times inconsistent,
often imperfect, non-deterministic, and delayed.  Nevertlhieless, observations of working
inscet colonies, .social systems. and scientific commuuitics suggest that such collectives
of single units appear to be very successful inachicving global objectives, as well as in
learning, memorizing, generalizing and predicting, due to their flexibility, adaptability to
environmental ¢l ianges, and creativity.

In this Section collective activities of a set of units of intelligence will be represented
by a dynaimical system which iimposes upon its variables different types of non-rigid con-
straints such as probabilistic correlations via the joint density. It is reasonable to assuine
that these probabilistic correlations are learned during a long-term period of perforining
collective tasks. Due to such correlations, cach unit can predict (at least, m teris of
expectations) the values of parameters characterizing the activities of its neighbors if the
direct exchange of information is not available. Thercefore, a set of units of intelligence

I
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possessing a “knowledge base” in the form of joint density function, is capable of perform-
mg collective purposeful tasks in the course of which the lack of information about current
states of units is compensated by the predicted values characterizing these states. This
means that actually i the collective hrain global control is replaced by the probabilistic
correlations hetween the units stored in the joint density functions.

Since classical dynamies can offer only fully deterministic constraints between the
variables, we will turn to its terminal version discussed in the previous Sections. Based
upon the stochastic attractor phenomenon as a paradigim, we will develop a dynamical
system whose solutions are stochastic processes with preseribed joint density.  Such a
dynamical systemn introduces more sophisticated relationships between its variables which
rescemble those in biological or social systeins, and it can represent a mathematical model
for the knowledge base of the collective hrain.

b. Model of Collective Brain

Let us first turn to an example and consider a basketball teamn.  One of the most
significant property of the success in the ganes is the ability of cach player to predict
actions of his partners even if they arc out of his visual ficld. Obviously, such an ability
should be developed in the course of training experience. Hence, the collective brain can be
mtroduced as a set of simple units of intelligence which achieve the objective of the team
without explicit global control; actions of the units are coordinated by ability to predict
the values of parameters characterizing the activities of their partuers based upon the
knowledge acquired and stored during long- time experience of performing similar collective
task.

We will start with the mathematical formulation of the collective brain for a set
of two units considered in the previous section and described by Fgs.  (87), (8 S). As
shown there, this system has random solution which eventually approaches a stationary
stochastic process with the joint probability density (89). For further analysis we will take
my = 1,me = S1E]7C)]] Eq. (92).

As follows from the solution (89), one can find the probability density characterizing
the behavior of one unit (say a; ) given the behavior of another, e, a5,

Liet us assume now that the umt ay does not have mformation about the behavior of
the unit @2. ‘1’hell the umt @1will turn to the solution (89) which is supposed to be stored
i its memory. From this solution, the conditional expectation of a5 given ay can be found
as.

Eleg Jay = ay)- / Tofoay |y )dag = &g (92)

o0

m which the conditional density:



folag [ ay) = ’ 93
1) Jitar) 93)
where the marginal density

Hiley) - / flap,wyg)day (94)

Actually the integration with respect to vy in (53) and (89) is taken over the square
ABCD, Fig. 4,

Substituting (94) and (93) into (92) one obtains:

7

Ty & oo 0 <ay <= (95)
siimlarly,

. 7

e, 0<ayp<a (96)

Clearly this result should be expected based upon the svinmetry of the square ABCD
and the joint probability density (89) with respect to the lines (95) and (96).

It should be noticed that 1 general case

By = dg(ay) and &y = @p(ap) 97)

Substituting (95) and (96) into (87) and (88), respectively, one obtains:

Ty oMy sink[\/wsin(;z'l | 7;)] s wt (98)
. .k i .
Tg =y sint[Vwsin(- - xg)]sinwt (99)

<

The systemn (98), (99) represents collective brain derived from the original system (87),

"
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Both Fqgs. (98) and (99) are sclf-contained: they are formally independent since the
actnal contribution of the other unit is replaced by the “memory™ of its typical perfor-
mance durng previous (shmilar) collective tasks, This memory is extracted from the joint
probability density (89) in the form of the conditional expectations (95), (96).

The probability densities for the performances of @y and w1 the collective brain are:

\,71(~T]): %/(‘()S’(.I'] - ‘j)/, ()_<‘1'] < w (1 00)
0 otherwise

1 . (n . .
ool as) - {5(05(-? - ry), O0<a,<n (101)

O otherwise

and therefore, their joint probability density:

ey (,I’],.{*) - { i/(‘()ﬁ(."['] -1 “j) ('US(’; - .I'Q)/, 0 _< Ty, I § ks (]0?)
() otherwise

Obviously, ¥q. (102) is diflerent from Eq. (89), and thercfore, strictly speaking,
the performance (100), (101) of the units &y and @y in the collective brain (98), (99) is
different from their original performance {89) when all the information about the other
unit is available. However, this difference should not be significant if a new task belongs
to the same class for which these units were traimed.

The dynamical paradigin described above can be easily generalized to an n-dimensional
system,

1
. .k VW . ~,
i sn'lk[—\/'——p,-(yi)] smwt, x; = > Tij,¢5,t;5 = const, (103)

it 1

while

1. , _ 7.
. dpi {>0 for | y; |< N; LN < oo (104)

pi '(I'Ul- ) =0 fo \y,' l> N;

As shown above, the solution to Eqgs. (1 13) is random, and it eventually approaches
a stationary stochastic process with the joint probability density (63).
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Following the previous example, we will assume that the ith unit @; has actual input
only from the units a5y, b < 1, so that the rest inputs should be predicted based upon the
Joint probability density (63) which was learned by cach unit in the course of the previous
collective tasks. Now instead of Eqs. (103) one can introduce the collective brain:

. . . (2= * .
Fis oAy sint [ pily, )] s wt. (100)
a
k(1) n
» - g Al Al -~ ry
Y- >_J.[,]yj -+ ]/( >,4 _I,Jl/, ‘.1',’,"‘([';\.(,’)) (10(3)
71 k(i)41
Here the unavailable input from the unit a4y, . . . 2y, is replaced by their conditional
expectation given way,.. - ag;). Asinthe two-dimensional case considered above, this ex-

pectation is uniquely defined by the jomt probability distribution (63). In the extreme
case h:mn -1, ie, when the actual information from other units is not available, kq.
(106) reduces to the following:

vz v ]-}(}__:'j'l]-vj | uy) (107)
I

while the condition al expectation in (107) depends only on @, This means that all the
units 1 the collective brain ( 105), (106) are formally independent . But as in the example
considered above, their performances are coupled by the “memories™ of previous collee tive
tasks st ored in the form of conditional expect ations.

It should be stressed that the main advantage of the collective brain is i its univer-
sality: it can perforin a purposeful activity without global control, 1.c. with only partial
exchange of information between its units. That is why the collective brain can model
many collective tasks which occurinreal life. Obviously the newtasksaresupposed o be-
long to thesame crass for which the units were trained. In other words, too many noveltices
in a new task may reduce the effectiveness of the collective brain.

c. Collective Brain with Fuzzy Objective

So far we were concerned with t he st ructure of the model of collective brain regardless
of t heobjective of its perfornmance. Inthis section we will discuss the collective brain with
objectives for its performance. Usually the objective of a perforinance is reduced to the
minimization of a function or a functional subject to some constraints. In this way the
problem has, at least, a rigorous mathematical formulation, although its solution may be
not simple. However, in the most practical, real ife problems (for instance, i operation
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rescarch) the information about the objective is vague, imprecise, and uncertain. In math-
cmatical terms it means that the analytical structure of the function (or the functional)
to be minimized 1s not available. Clearly, these kind of problemns is the best “mateh?” for
the collective brain whose low precision is compensated by a high degree of universality.
Actually the main motivation for the development of the mathanatical model of collective
brain was its ability to perforin in a more “huwnan™ way, when rigid rules are replaced by
the ordering of multi-choice actions with respeet to “preference™.

In this section we will discuss fuzzy objectives which are given by a system of inequal-
ities. We will start with a two-dimensional exainple, and turn to Fgs. (87), (88). However
now we will assume that w ' const, and in particular

i

W{O S (108)

wo it O > () "

The inequality (108) can be implemented by the following dynamical equation []9]:

. A 1,
D fwlwe - @] w00 (109)

("This kind of dynamical systems will be discussed in the next scctions).

Here € can be an arbitrary function of 23 and a5, for instance:

O (- a)? 4 {as- ar) - a2, (110)

where ay, ag and @ are given constraints,

As follows from Eq.(1 10), all the states of the system (87),(88) and (108) which are
mside of the circle

2 2 2

(y - ay) + (g - an) = o, (111)

will correspond to its equilibria, since then 8 < 0 and w = 0. But since the solution to
these equations is random, it can approach an equilibrivm at diflerent points inside of this
circle, i.e., the final equilibrivin point will be characterized by some uncertainty.

It is worth cinphasizing that this uncertainty is not explicitly nmposed by any rigid

rule: it is generated by the dynamical systenitself as a result of the randommness of its
behavior, and the fuzziness of the objective function
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0 <() (112)

Obviously the cirele (111) (or, at least, its part) must be inside of the square ABCD
(Fig. 4). For that one can take, for instance,

b = vy =0 - (]]3)

The objectives of the units wy and wy are not necessarily identical, bhut they must be
compatible. For instance, instead of Eqs. (87), (88), (108) and (109) one can have;

&y = oy sinf{y ey sin(ay ry)) sinw (114)

Ty = 9 sink[\ wo sIn(y - ay)] sinwyt (115)

Howcever, now we will assuime that w,; ¥ const, and in particular

0 ifé, <0 .
gy = . B 2
- {wg ifo, >0 (119)
while
= (a 7;)2 4 (g - 7;)') a? (117)
by = (a- 0)° - (a7 - 9) (@2 - ‘2) (118)

I this case the area of the equilibria of the system (114 )-(1 18) is withinthe ring of
the width ¢:

(01— 202 (-

o (- ,)  (a- () (119)

ot

and therefore, the solution cariapproach any of its points.
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We can give the following mterpretation of the performance of this system. Let us
assume that the units vy and uy were trained to perform certain class of collective tasks
which led to formation of the soft constraints:

Ty =1, T -1, Ty Thy s 1 (120)

[N
2o
"

so that the random behavior of @y and @y eventually approaches a stationary stochastic
process with the joint probability density (89). Let us also assume that a new task (which
helongs to the same class of tasks for which the system was previously trained) is to
optimize somce process which depends upon the values o and o, Here we will be interested
m the cases when this dependence is given in an uncertain, imprecise way, which is typical
for the problems in decision making processes. The simplest mathematical formalization
of such a dependence is expressed by the “yes-or- no” relationship with respect to a certain
discrnmnation surfaces

O;(xy,a9,): 0, 71:= 1,2...n (121)

I particular, the values vy and oy are optimal if

6, <0 (122)

and non-optimal if

0.>0 (123)

As follows from Fgs. (1 14 )-2 16), 1n the case (122) the dynamnical systemn will remain
in the equilibrium, while i the case ((123) this system will evolve until it approaches the
arca(122).

In general, the criterion of the optimality may change in time
(’).,‘(.‘1?],‘1‘2,1): 0 (]?4)
while i is a slow function of time in asense that

0

o
| o |< Ow (89)
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If the system (114)-(116) was in an cquilibriun, eventually it will he activated again
when the inequality (122) will change to (123). and then 1t will evolve until a new equilib-
rivin in the arca (122) will be approached again, cte.

In the most general case the parameters which define the criterion of opthnality may
themselves be governed by a dynamical process which is controlled by the original dynain-
ical system, for instance:

ay A sink[\/Q] sin(ay - ay)] sin €4 (120)

ap = Ay si“k[\/szz sin(ay 4 ay )] sin 1 (127)

0 if], < ()
VR ' 28
’ {w‘() if I‘, > () (1 8)
0; in (116) and I'; in (128) arc expressed as:
0; = Oi(xy,00,a1,a2),1'; = Tilay,az,ay,29) (129)

The relationship between Fqgs. (1 14)-(1 16) and (126)-(129) represents a dynamical
gaine which ends when simultancously:

8 < 0, andl, <o (130)

Heunce the equilibrium values of a1, 29, a1, and ag are given by the intersections of the
inequalities (129), and they densely fill up a part of the space @y, 292, ay,a2. Despite the
fact that the dynamical behavior of the parameters @y, «; is characterized by uncertainties
(coming from the randomness of the solutions and the fuzziness of the optimmality criteria),
the end of the game, i.c., the stationary values of @; and «; can be predicted in a prob-
abilistic terns since these values should belong to the stochastic attractor of the system
(114)-(116), (126)-(129) whose joint probability density 1s uniquely defined by the synaptic
iterconnections  120).




l.et us now return to the model of collective bram, and start with the dynamical
system (114)-(115), (113). In reducing these system to the model of collective brain, one
should assuine again that cach unit does not have explicit information about another, and
thercfore, the values of @, in Fq. (174) and the values of @y in Fq. (115) must be replaced
by the conditional expectations @, and &y, respectively (sce Eqgs. (95) and (96)). But in
addition to that, onc has to introduce different rhythis wy and we which are controlled
by different functions 8 and €, respectively:

T

i1 Ay sinf [V sin(ay 5 )] sinee t (131)

o 0 if 8, <0
e W ]f (}, > () )

while 8; and 6, are obtained from Eq. (110) as a result of replacing @y and 27 by their
conditional expectations &9 and a7y, respeetively:

0, = (21 - (1‘1)2 - ('Z - 3'2)2 - db (134)

Fgs. (1131), ( 132) haverandom solutions which are attracted to stationary stochastic
process with independent probability densities (1 00) and ( 101 ), respectively. The system
will approach an equilibrium state if siimultancously

f; <0, and 8, <0 (136)

For ay = agp = I, the arca of possible equilibria is the square A’B’CD)

n n
Ty 4 oa, ag = 5 4 a (137)

Recalling that for the original system (114) and (1 15), the areca of possible equilibria
is inside of the circle of radius « (Fig. 4), onc cansee that the performance of collective
brain is sufliciently close to the original performance.
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It should be stressed that the success of the collective brain performance depends
upon how close is the new task to the class of tasks for whicli the system was trained. This
means that the colleetive brain may fail if the new task has too many “novelties™. In the
sclected example, the training arca (sce the square ABCD in Fig. 4) is compatible with
the objective (the cirele with the center 0 1n Fig. 4), and therefore, the performance of the
collective bram (the square A'B'C'D™ i Fig. 4) 1s satisfactory.

5 OPENSYSTEMS A" TERMINAL NKURODYNAMICS

The neurodynamical models discussed in the previous sections ave similar to closed
thermodynamical systems in a sense that their entropy can only increase until it reaches
its maximun at the stochastic attractor. In this section we will introduce open systems
which are maintained in their specific states by an mflux of energy, so that information
stored in the dynamical system, can change, and in particular, can incrcase.

Let us assumne that the dynamical system (22) 1s driven by a vanishingly small input

(1)
. . ; W .
&= ysin'/? \/ rsinwt A (1),  |e(t)] <y (138)
a
This input can be ignored when @ # 0, or when & = 0, but the systemn is stable,
Leo @ na/w,3na/Jw,..cte. However, it becomes significant during the instants of

instability when @ = 0 at @ = 0,2na/\/w,..ctc.

The function () << v can be associated with a microsystem which controls the
nceuron behavior through a string of signs [15].

Indeed, actually the only important part in this input is the sign of #(f) at the critical
points. Consider, for example, Fq. (13 S), and suppose that

; k
sen e(Bk) =4, by L - - ctesat s - n. o (139)

W
L= 0,1,2,...ctc

Thie values of ¢(t) in between the eritical points are not important since, by our
assumption, they are small in comparison to values of the derivative &,and therefore,
can be ignored. Hence, the only part of the input ¢(¢) which is siguificant in determining
the motion of the neuron (138) is the sign string ((139): specification of this string fully
determines the dynamies of Eq. (138).

Figure & demonstrates three diflerent scenarios of motions for the different strings:

-
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cr oeosin U, Qfw s V0.2,V2 and V20, respectively

It should be emphasized that, although these three sohttions are bounded and aperi-
odic, they are fully deterministic in a sense that cachi of then is uniquely defined by the
corresponding mitial conditions.

Supposc that

s(t): - 2a, 20 (140)
i.e.
TN sin!/? -\/‘b wsinwt - 22 s, 00 (141)
[}

It can be verified that the solution to Eq. (141) will oscillate about the point 2 = 0.
Indeed, when the point @ = 0 becomes a terminal repeller, e, when sinwt > 0, the
solution escapes to the neighboring (right or left) cquilibrium point. However, & < 0 at
¥y ona/\w >0, and @ > 0 at &y = - na/y. Therefore, in both cases the solution

returns to the original point @ = 0. The amplitude and the period of the oscillations about
a = 0 can be found from Eqgs. (23) and (26), respectively.

However,mmcontrastto a classical versionof Fq. (1 141),

P (142)

where @ = O is a static attractor, the same point 2 = () IS not a static, and not even a
periodic, but a stocastic attractor. H(ICc(l, t hercareseveral equally probable patterns of
oscillations:

0,1,0, - 1,0; (),-1,0,1,0; 0,1.0,1,0,; O, - 1.0, - 1.0, . . (143)

which can follow each other in an arbitrary order. In probabilistic terms the oscillations

can be characterized as: a = 0 at f - ?:]”,

while



on - i
]’7'{.1' {t : (Zrt 1) } : - 1} = 0.0 (144)

so the probability of any commbinations of the patterns (143) can be found from Eq. (144).

It should be emphasized that the random stationary process (144) can be considered
as a stochastic attractor which is approached by the solution to Y. (141) regardless of
initial conditions. But in contradistinction to the stochastic attractors in closed system
considered in the previous sections, where intial disorder could only micrease, here the
entropy of the mitial distribution of @ can be higher than those of the attractor (144),
i.c., the dynamical system (141) may increase the initial information. This fundaimental
difference between closed and open neurodynamical systems is caused by the fact that
evolution of closed systems is driven by pure diffusion (sce Eq. (31)), while evolution
of open system is driven by both diflusion and convection. Indeed, the evolution of the
probability density of the solution to Eq. (141) (for Jw -» oo) is governed by the Fokker-
Planck equation with the drift term:

af

of 1 ,0°f
ot

Py, 15T 50

- avke(q - (145)

where p and ¢ are the probabilities that the process is directed to the right, or to the left,
respectively, at each eritical point.

Obviously, the last (diffusion)term survives only if

(p- 1)~ - -2 0 (146)

As follows froimn Eq. (141),

_ . [signa ifad0 G- ]

and therefore, Kq. (145) can be rewritten as:

of

I oo G 2907 3
o (1\/0,00151&111 4 - 7a (')‘1"3()[ (p- q)] (148)

where §is the Dirac function.



Let us assuie that the initial density of @ 1s uniform

0 otherwise

L) o g
_/‘0(‘17) - {( - li l{ I Jd ‘< ( (149)
Then, the solution to Fq. (148) 1s:

Tolr - (aJwsign )t] - 5"(“"(‘5(()) if 0 < ¢ s (150)

LSO B it -

<
¢
Vi

The Dirac function é6(o) in the solution (150) provides the normalization condition:

/‘) flr)dy = 1 ’ (151)

X

The process of the probability density evolution can be interpreted as following: the
initial uniform density (149) “moves™ (with the velocity 4 o/ ) toward the point o = 0,
being absorbed there, At the samne time, the Dirac function grows out of the point = 0
in such a way that it compensates the “loss of the area” enveloped by the density f(a).
Henee, eventually, the solution approaches the attractor @ = 0, while the transition period

7= -
«

(
- 0if Vw - (Ix?)
)

However, for

. (
Cayw

the dr ft term disappears (sec Fq. 147), and diffusion takes over. For finite w it leads
to the random oscillations described by Fq. (144).
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1t should be emphasized that the stochastic attractors in open systemn (see Fq. (144))
are different from those in closed systems considered in the previous sections.  Firstly,
they may have an entropy which is smaller than the initial entropy. Secondly, the time of
approaching these attractors is finite (see Eq. (162). T order to distinguish these two types
of stochastic attractors, those i the open systems were called terminal chaotic attractors,
or terninal chaos [16]. The similarity hetween the random oscillations (144) and chaotic
attractors in classical dynamics is in the fact that in hoth cases the phienomena are bhased
upon combined effects of stability and instability. However, in terminal chaos (144) the
mechanisis of stability and instability act sequentially: during the first period the neuron
1s attracted to the point @ = 0, then it is repelled from it (in one of two possible directions).
Secondly, the time of approaching the center @ = 0 is finite (due to failure of the Lipshitz
condition at x = 0). That is why this attractor is terminal. Clearly terminal chaos is
characterized by a well organized probabilistic structure (sce Fq. (144)) which siiplifies
its prediction and control. More general properties of terminal chaos were analyzed in [16).
In order to illustrate some of themn let us consider two independent newrons which have
the following microdynamics:

Iy s Y sin]/3 e 2y sinwt - c‘z.l'l \ 6? -2 0 (153)
€3
w! .
2o = ysin'/® T, sinwt 4 e222(0.5~ ag)(ag - 1) (154)
a

As shown above, the first neuron performs chiaotic behavior with respect to the center
xy = 0, while the second neuron has two ceuters of terminal chaos: at x5 = 0 and a9 = 1.

Let us introduce now a sccondary scale microdynamics with the order of 81 -5 () which
couples Fgs. (153) and ( 154):

. . g W . 2 ;
iy = oysint Ty sinwt - 2ay 4 elay, (155)
(43
. SR VAR . 2 . ! e
ro = ysm /T g sinwt A fowe(0.0 - v ) - 1) A4 g (156)
Q

The last terins in these equations are ceffective only when all the other terms are zero, i.c.
at the centers of chaotic attractors vy = 0,29 = 0, and a9 = 1 where the behavior of
the ncurons is unpredictable. Due to the coupling via the secondary scale microdynamics,
the second neuron makes decision for the first one at @y = 0 as well as the first neuron
makes decision for the sccond one at 2o = 0 and x5 = 1. In other words, the chaotic
structure of the neurons with the primary microdynamics (153) and (154) reserves a room
for a match between these two neurons if they work in parallel, without changing their
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primary microdynamices. In the same way cach of these neurons can work in parallel with
other neurons while the adjustinent hetween them is carried out by the secondary scale
microdynamics due to chaotic structure of their primary microdynamices.

The secondary order microdynamics does not necessarily eliminates chaos. Indeed,
if in Fgs. (185), (156) @y =- 0 and a5 = 0 simultancously, then the behavior of the first
neuron at ay = 0 1s still unpredictable, and the third order scale microdynamics should
be incorporated.  Hence, one arrives at multi-scale microdynamical chains by means of
which different neurons are adjusted to cach other in their parallel performance on the
level of a certain order scale microdynamics. However, the roomn for such an adjustment is
provided by chaotic structure of microdynamics of uncoupled neurons via the redundancy
of available “free” parameters.

Now we will make the next step toward the neurodynamics complexity and replace
Eq. (141) by the two-scale microdynamics:
1 A A

i oysin!/? = syt - corsined (157)
Qg
Wo & w) (158)
Diuring theperiod
t < ”l (159)

the solution to Fq. (167) behaves exactly as for Fq. (141 ):
it has a chaotic attractor ata = () since
sgna = sgu(asinwst) at ¢t < n/ws (160)

Butincontrast to the ratter. the solutionto K. (107 ) 1s notlockedupin this chaotic
attract or: eventually it drifes away from the point = () since

sgh = - sgn (wsinwet) at 1 > 71 fwy (161)

and the scenario of the chaotic oscillations can be the following:
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0.1 .0.- 1,0.1,2,1,2.3,4,3,4,5,- - -ete.or

01, 0- 1 .,0-1, 2-1,- 2,-3, -2, -3. -4, ([( (162)
This drift can be bounded if one modifies Eq. (157) as following:

. NRVEE S . 2 . .
T4 sin /3 rsimayt - 20 sinwst - :‘{l).z' (163)
(@]

The last term representing the second-order microdynaimices will return the solution
to the chaotic attractor o = 0 after the period € > @ /wsy; and the scenario of the "double-
period” chaotic oscillations will bhe for wy = Owq) :

0,1, 0,- 1.0.1,2.3.4.5,4.3.2,1,0.- 1.0,- 1,- 2,- 3 d.cte. or
0,1, (,- 1,- 2,-3.-4- 5, --1.-3,- 2.- 1,0),1,0,- 1.- 2.- 3,-4 ctc. (164)
Hence, despite the fact that the solution to q. (164) has a 11101(" complextemporal
structure and a larger number of unpredictable clements, it is still characterized by global
coherence: it oscillates chaotically with respect to a2 = 0, while the amplitudes of this

oscillations also clia nges chaotically from 1to 5.

In the same way one can introduce a multi-scale dynamics:

. . : W . 9 . N . R
i oy sinS I e sing 1 slasinwyt - Slusinwgt - 20 ete. (165)
(e8]
Wy > we > wacte, g, -0 0
whose complexity will be proportional to the number of microscalese?, ¢3, ... or the numnber
of local times
iy T : .
te = - hok= 1,2, (166)
(O

This Inlllti-scale model can be associated with cascade of intrimsic rhythins which
characterized the temporal architecture of mental process(2).
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Looscly speaking, one can conclude that a neurodynamics with limited munber of
local times, or microscales, has limited complexity in the seuse that it is locked up in a set
of behaviors which belong to a certain class of patterns, and it can escape this class only
if the next micro level (with the corresponding local time) is added.

In this connection an interesting question can be posed: can a microdynamics “im-
prove” itsell by producing additional micro- levels, or the munber of such levels is “genct-
ically” preseribed? So far we do not no the answer.

The structure (165) is the simplest way to increase the complexity of coherent temporal

behavior. More sophisticated approach can he based upon nonlinear effects[16]. In order
to illustrate that, Iet us turn to Fq. (138) and exploit the following microdynamics:

(1) == 20 (0 - 1.B)(7- )4.5-2)(a - D) (167)

n

Here the soluion to Eq. (138) possesses two different terimnal chaotic attractors.
The first one has its center at @ = 0 and is characteri zed by the probabilit ies (166). The
sccond one has two centers: o= 4 and ¢ = 5 and is characterized by the probabilitics:

Po(a=4): Iy(e=5):1/3, Pa=3): P (v 6)= 1/6 (168)

Omne can verify that their basins of attraction are, respectively:

r < 1.5 anda>1.5 (169)

Suppose that the mcerodynamics (167) includes some extérnal input f(1) which can
be interpreted as an outside massage:

e(t) =e2[a(a- 0.5)(a-4)( 4. 5- .2°)(,7"- B)4 (1)), €0 - O, (170)

T
f)y>21at o = 1 (171)

and the solution which originally was trapped in the first attractor @ = 0, will escape it
and will move to the second attractor with two centers: @ = 4 and a = 5.

Conversely, if
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flt) <-185ate- 3 (17

-
|S)
~—

the solution will return to the first attractor

Actually the dynamical systems of this type can be regarded as an implementation
of a concept of processing of information which includes semantie. This concept is based
upon the idea that a meaning to a message can be attributed only if the response of the
receiver (a dynamical attractor) is taken into account. In this coutext the mequalities
(171) and (172) can be utilized for evaluation of the "relative importance”™ of the messages
delivered by the outside input f(1).

Let us make the next step toward the complexity of temporal structures and show
that under certain conditions the solution can change its attractor; morcover, it can create
a new attractor and climinate the old one. In order to illustrate that let us consider the
followimg dynamical system:

q W

. L 1/3 W . :
Iy T o7 sin'/?: ry sh wt - c‘;:;z', (173)
vy
. . w9 . 5
G s e sint /7 4y sinwat - eolaa(ay - 0.5) (22 - 1)(a; + 0.5)] (174)
(D)
m which
v ey ~
A.T] = - . = /\.TQ = 1, wy << wo (115)
W (0]

Eq. (1 73) is identical to Fiq. (141): it has a terminal chaotic attractor atxy= () with
the patterns of oscillations (143). The solution to Eq.(174) has morc complex behavior: it
hasaterminal chaotic attractor az:= 0 if #; < 0.5, but this attractor disappears as soon as
a1 > 0.5, and the solutionapproaches a new terminal chaotic attractor @2 = 1. obviously
such a transition has random nature since the oscillations of ayare chaotic. However the
probability of this transition can be found based upon the probability of a; given by Fq.
(144).

More general types of microdynamics andtheir applicationsto information processing
are described in [16]. Inconclusion of this section we will discuss opensystems with spatial

cohierence.
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As shownin [21], spat ial self-organization in actual (physical) space can be achieved
by imtroducing a special type of local interconmections siimulating diffusion, dispersion, and
conveetion, while the underlying continnous (1n time and space)model is described by field
cquations in which local interconmections are represented by spat ial derivatives of neuron
potentials. In this section we will incorporate the diffusion-type local imtercommections into
the microdynamics assuning that the nc uron potential discrete distribution x; over the
ndices @ can be represented by its continuous analog (s ).

Then the nearodynamies is represented by one partial differential equation:

: 3 . -0 ~
PR sin'/? T sin et 0% gy (176)
a
i which
Ox 0%x
Ty Xgg = =0 o5 (x = conust
(f)[ b 081 b 77

while the finite- dimensional version of a, is:

Tos O Tiq1 - 20 4. (177)

We will select the parameters a and w such that

| #1ax | Ta
Dimax | 7

12! (€

in which 1 is the number of neurons. In this case the changes of the neuron potential per
unit length and per unit of (local) time are of the same order.

Without 10ss of generality one canintroduce tile following initial and boundary con-
ditions:

2(s,0) =0, 2(0,1)=2(1,t): 0 (279

Then wge = 0 at t = 0, aud the solution to Eq. (176) starts with totally unpredictable
behavior: at t = n/w it approaches the values 4 na /w which are randomly distributed over
x, and therefore, the function
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) (180)

may have a monstrous configuration. During the next perlod n/w < t < 27 /3w those
points at the curve (180) where 4, > 0 (and therefore a2 < 0,) will go up to & = 0, and
those points where xyy < 0 (and therefore, @ > 0) will go down to v = 0. However, as
follows from Eq. (177), those point ; for which

Loz s 2l (181)

will have

Teez 0 (182)

The probability of the appearance of such points is:

pr (o1 @y s wiyy) = (06)° 20,120 (183)

These particular points may return to @ = 0, but with the equal probability they can
move away to the value

NE 'y

2 2na : - -
ai(t = 57T)= { 3% ra i it ) >0 (1s4)

- SaL if.T,‘('[: 7,)<0

w
£
¢

Thus, each point of the curve (I SO) with the probability 0.9375 will return to the initial
configuration a = 0,and withithe probability 0.0625will i)\ G(Ivi\jflolll it. Actually the
curve

=

) (185)

RN
£

x = als,

will be close to @ = 0 in terms of the mean square distance:

! s
P / .1'2(5,‘ '3 ‘)(I’S - 0. (]86)



it will coincide with the initial configuration alinost everywhere excluding some solitary
sharp peaks.

The next step of the evolution will he almost the same as the first step: the solution
will approach the configuration with the values 4 ma/w randomly distributed over 2, while
the probability that this configuration is identical to (180) has the order ~ 27" (1 is the
number of neurons). The solitary peaks where the magnitude of @, is large will e pushed
back toward a = 0, cte.

Thus, the solution to Eq. (176) with the initial and boundary conditions (179) chaot-
ically oscillates about the initial configuration @ = 0. Iu other words, it preserves the
mean square configuration @ = 0, while the actual configuration 2(s) remains random and
unpredictable,

It is worth mentioning that the attraction of the solution to its mean square value is
provided by the stability of the solution @ = 0 to the underlying diffusion equation:

Tss (187)

subjeet to the conditions (179) which ¢ he obtained by @ superposition of terms wit h
exponentially decaying multipliers:

>0
T 244, .
x(s,t) = L(‘,,(" p) & inwns -y 0 at t -y oo (188)

p=1

Let us introduce now variable boundary conditions (instead of (1 79)) assuming that
they are governed by another dynamical system:

P N () 1 ) N
x(0,1) = 'ysinl/"[uv‘o}( ! )]Sinwt - 07x(0,1) (189)
a :
£ ],f . -9
xe(1,t) - v'sin]/3[wo-lr( ")]snm.'f =67 2(1,1) (190)
O
where
Wy << W (191)

Since the general solution to Eq. (187) is a family of straight lines:
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oS (192)

one concludes that the solution to Eq. (176) with the boundary conditions (189), (190)
will oscillate chaotically with respect to different straight lines of the family (192) while
the change of these lines s also chaotic (in accord to changes of the boundary conditions
following from the dynamies (189), (190)).

Hencee, the solution to Fq. (176) with variable boundary conditions has more unpre-
dictable features, but it still preserves the following property: the mean square solution is
always a straight line. In other words, the hehavior of the system (176), (189), and (190)
represents the general solution to Fq. (187) as a mean square of chaotic oscillations, while

the beliavior of the svstem (176), (179) represent one of its particular solution @ = 0.

H one replaces Eq. (176) by the following:

X sint/® y r sinwt - 53(\7.93 - »"321') (]93)

(&3

then the solution to the system (1133), (189)and (190) will oscillat e chaotically with respect
to the curves of the family:

r= ¢y sign 35 o epcoshAs (194)

The stability of thiese oscillations follows from the stability of the underlying diflusion
cquation with chain reactions:

Ty = 5(2)(-7'33 - /32'1') (195)

whose exponential decay is defined by the eigen-values:

Ap = - (B2H4ap)ét p= 1,2, - ete. (196)

A's inthe previous case, the choice of the curve from the fanily (1 194) is made by
the boundary conditions which are controlled by Eqgs.  (1s9), ( 190 , andtherefore,are
oscillating chaotically about the values:

2(0.1) = (. «(1,1)= () (197)
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Again, despite a large number of unpredictable elements, the solution to Eq.  (1193) pre-
serves its closenessto curves of the family (1194 ).

6. NEUROIYNAMICAL MODEL OF INFORMATION FUSION

In this scection we will apply open terminal neurodynamical systems {for simulating
information fusion.

Let us first consider two uncoupled closed systems of the type (6G6):

Ty ¢ 4 sin [ A (;f(.\/‘llo ]sinwt (198)
S

R sin“[}:"ﬁ_f‘(y‘f; ] sinwt (199)
20,

Solutions to these equations arc random, and they approacl stationary stochastic
processes with the normal distributions, respectively:

1 . _,“"fQ 1 - -"%2
filwy)= - e UL fylrg) s - e 2 (200)
03 \/27r 0, \[277
Since x; and a2 are independent, their joint density will be:
1 o
fiz = ¢ fo ier (201)

Suppose now that Eqs. (198) and (199) arc coupled via the following microdynamies:

= 53(12 - Jj), Sg = Sg(l] - JQ), Ez -5 0 (202)

(42
—
'

@y = ysin® Pﬁw ;7\f(—\/1;01 )] sinwt 4 eX(ay - 1) (203)
iy = ysinf [V f (- 00 )] sinwt 4 2(ay - aa), (204)
G ?0-_)



Global behavior of this system is defined by the belhavior of an associated dyvnamical
systemn:

ry = fo(Tp - wy), ro oz fo(ay - a9) (205)

Iy Ty, (2006)

All of them are stable since the roots of the corresponding characteristic equation are
not positive:

)\] = U, /\2 = -2 (?07)

When the solution to Eqs. (203), (204) approaches the attractor (206), the dynamical
system (203, (204 ) formally reduces to Fgs. (19 S), ( 199) with the joint density (201).

However,nowin ONCIST Set:

X1 X9 X (208)

Substituting (208) into (201), and redefining the constant from the normalization
condition, one obtains the following probabilistic property of the solution to Egs. (203,
(204) at t —» o0

flo s = ag)z = e e (209)

1m which
o’ = . <ol.ol (210)

Hence, the neurodynamical system immplements fusion o f information coming from
two independent sources about thesamme object, As a result of that) fusion, the commbined
information is characterized by an entropy which is smaller than the entropies of cach
original components of information,i.c., the knowledge about this object is improved.
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This paradigm can be generalized to fusion of 1 independent sonrces of information:

: VW . 2
Ty =y s [‘ or f(\/ )] sinwt - (g - )
20,

[N
~—

~ sink[}/ cr /( )] sinwt 4 £2(as (211)

\/0)

. ok LL'/".
Xy, =y s [“

(\/o )] sinwt 4 2(a; ay)
1

The solution to this system approaches a stationary stochastic process with the prob-
ability density (209), where

o = : (212)

In the previous examples, the normal distributions were chosen onty forthe sake
of analytical simplicity: any other distributions can he utilized with the sar ne effect o ¢
nnprovement of the combined information.

The next paradigm of information fusion is associated with pattern recognition. In
this scction, pattern recognition will be considered as a multistep process. Inthe first step,
the pattern is received at a global level when it can be simulated by a multidimensional
stochasticattractor. This attractor represents a class to which the pattern belongs. In the
sccond step, when some additional information becomes available, the original stochastic
attr actor is replaced by a lower dimension stochastic attractor which represent a subclass
to which the pattern belongs, ete. A chainof such attractors of lower and lower dimension-
alitics which identifies the pattern with higher and higher accuracy. can be implemented
by terminal neurodynamics as following,.

Consider a dynanical systemn (87 ), (SS) which has a stochastic attractor (89), and
assume that, as anadditional information, the regression of x5 onwy is givenin the form:

€T (2]3)

Then, modifying Eqgs. (87), (SS) as following;:

0
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RIS sink[\/wsin('.z'l ty )] st o

(214)
. 1
€Ty =

2 sink[\/wsin(.‘r] 4 )] sinwt 4 22 51 = az)

(215)
and applying the saine line of argumentation as those for Fgs. (203, (204), once conclude
that the solution to Eqs. (214) and (215) app roaches all one-dimensional attractor which
is obtained from (S89) as a resultof replacing

by its expressionfrom (213):

f(l’l) . { c ] cos 37 L cos 'z

v 3 <, <
0 0111(1\\'150

(216)

and the constant ¢ is found from the normalization condition

o ] 3v/3

. - 217
~/7r"/3 | cos 251 cos 2 S de; 8 (217)

One can verify that the entropy of the attractor (216) is smaller thanthe entropy of
the original attractor (89).

In terms of pattern recognition, the original attractor (S9) can be ident ified with

class of patterns in which each pat tern is characterized by t he parameters @y slid x5,
Any combination of these parameters has a certain probability to appearin a particular
pattern. A n addit ional informat ion about dependence bet ween vy and ap for t he pat tern
to be recognized extracts a subclass of pattern (216) to which this pattern belongs

Inorder toillustrate a chain of stochastic attractors

, start with the dynamical systemn
(76) fox 7= 1,2,3 andintroduce the following two-cascade microdynamics

Ty = 7sin"[\/

/

\/ )] sinwt 4 e2(ay 4 g — 1) (218)
S w R . 9
2 :75111%'{ er f( JS)]Smw 4 oeg(ar - g - ag) 4 eh(ay T2) (219)
. Vo
a3 7%111"[ o (:7f(-\/3§)]5111wt b e2(ay - as - v3) 4 eday  @3) (220)



If ¢, == 0, then the solution to this system converges to a three-dimensional stochastic
attractor with the joint density given by Fq. (63) at 0= 3.

When ¢, # 0 (but ¢, -» 0), the solution to this system first converges to a two-
dimensional attractor on the plane

Xy =Xy - 3 (221)

with the joint density given by Fq. (63) at 1= 3 after subsituation of Kq. (221) instead
o f a; and redefining the constant from the normalization condition.  Then the solution
converges to a one dimuesional attr -actor which dwells on the line

of the plane (221).
CONCLUSION

This paper presents and discusses physical models for simulating some aspects of
ncural intelligence, and in particular, the process of cognition. The main departure from
classical approachhereis inutilization of terminal versionof classical dynamicsintroduced
in [18,19]. Based upon violations of the Lipschitz condition at equilibriwn points, terminal
dynaimics attains two new fundamental properties: it is irreversible and non-deterministic.
Special attention is focused on terminal neurodynamics as a particular architecture of
terminal dynamics which is suitable for modelling of information flows. Terminal neu-
rodynainics possesses a well-organized probabilisi te structure which can be analytically
predicted, prescribed, and controlled, and therefore, which presents a powerful toed for
modelling rea - life uncertainties. Two basic phenomena associated with randoimn behavior
of neurodynamical solutions are exploited. The first one is a stochastic attractor - a stable
station ary stochastic process to which random solutions of closed system converge. As a
model of coguition process, a stochastic attractor canbeviewed as a universal tool for
generalization and formation of classes of patterns. The concept of stochastic attractor is
applied to model a collective brain paradigim explaining coordination between siimple units
of intelligence which performm a collective task without direct exchiange of information. The
scecond fundamental phenomenon discussed in the paper is terminal chaos which occurs in
open systems. Applicatio ns of terminal chaos to informa tion fusion as well as to explana-
tion and modelling of coordination among ncurons in biological systems are discussed. 1t
should be emphasized that all the models of terminal neurodynamics are implementable
manalog clm’ices, which means that all the cognition processes discussed in the paper are
reducible to the laws of Newtonian mechanics.
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Figure 1. Behavior Of terminal attractor and repeller.
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Figure 3. Unpredictable evol ution



Figure 4 COLLECTIVE BRAIN WITH FUZZY OBJECTIVE
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Figure 5. Tenporal Patterns and Their Codes



