1. Title – Enter a title, beginning with a descriptive reference to the specimen material or other characteristics specific to this data record, e.g. Polyvinyl Acetate Degradation During XPS Measurements. Please refrain from using titles beginning with the name of the spectroscopy, e.g. avoid titles like “AES Study of…”

CuCl by XPS

2. Authors, Institutions, and Locations (city, state, province, or country) – List authors and affiliations, in order of appearance in SSS.

Richard P. Vasquez
Jet Propulsion Laboratory
California Institute of Technology
Pasadena CA 91109-3099

Author
Institution
Location

Author
Institution
Location

Author
Institution
Location

Author
Institution
Location

3. Abstract – Summarize and include key information about the specimens and spectra, such as specimen material, measurement procedures, and significance of the research. The abstract will be reprinted verbatim.

X-ray photoemission measurements of high purity CuCl are presented. XPS studies of Cu compounds have been motivated in this laboratory by the need to identify species on high temperature superconductor surfaces which have been chemically etched (e.g., see Ref. 1).
9. Key Words - List selected phrases and words to help readers search for information in the database, e.g. Auger electron spectroscopy, oxidation, corrosion, surface segregation. Be selective, but thorough.

X-ray photo emission, copper (II) chloride, copper compounds

10. Spectra Category - Check the suggested category of the data record: Technical, Comparison, or Reference (see the overview of instructions for definitions). The editors may suggest an alternate category, based on the recommendations of referees.

☐ Technical ☑ Comparison ☐ Reference

11. References - List citations to articles related to the data record using the style of: "Vac. Sci. Technol.

SURFACE COMPOSITION TABLE

CuCl₁

CuCl₁ compressed on In

<table>
<thead>
<tr>
<th>Elem</th>
<th>Corr'd Flood Gun BE</th>
<th>Delta BE</th>
<th>Sens Factor</th>
<th># of eV/Scans</th>
<th>Area</th>
<th>Relative Area</th>
<th>Atom %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁₂p</td>
<td>199.03</td>
<td>0.0</td>
<td>1.97</td>
<td>2.385</td>
<td>137.5</td>
<td>12820</td>
<td>37.02</td>
</tr>
<tr>
<td>c 1s</td>
<td>284.92</td>
<td>0.0</td>
<td>-0.32</td>
<td>1.000</td>
<td>137.5</td>
<td>2205</td>
<td>18.71</td>
</tr>
<tr>
<td>N 1s</td>
<td>402.16</td>
<td>0.0</td>
<td>-3.16</td>
<td>1.678</td>
<td>137.5</td>
<td>750</td>
<td>3.39</td>
</tr>
<tr>
<td>o 1s</td>
<td>532.28</td>
<td>0.0</td>
<td>-0.28</td>
<td>2.494</td>
<td>137.5</td>
<td>2883</td>
<td>7.94</td>
</tr>
<tr>
<td>Cu2p3</td>
<td>932.45</td>
<td>0.0</td>
<td>-1.45</td>
<td>9.748</td>
<td>137.5</td>
<td>516676</td>
<td>33.26</td>
</tr>
</tbody>
</table>