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Abstract

This paper presents the use of a multilayer feedforward neural network and the Hopfield
network to emulate and identify the dynamics of ai1cduced order model of a large space
antenna-like. ground experiment structure located at the JPL/AY-P1, Large Spacecraft Con-
trol laboratory. Input-output relations are shown tobeclosel y replicated by a feedforward
network and inodal characteristics identified by aHopfield network.

1. introduction

Neural networks canbe used to emulate dynamical systems to facilitate bothanalysis and
simulation [3], [4], [5], [6], In particular, a multi-layer fcedforward network [1] with sigmoidal
activation functions canbe configured to mimic the dynamic behavior of a givensystemn.
The representation capability of the neural network results fromits ability to realize through
training the input/output relations of tile system. The training act determines the values of a
set of weights such that the desired input/output relations result. A very important theoreti-
cal underpinuing for suchan approach is provided by recent work that shows that ?nulti-layer
neural networks can approximate any continuous mapping to any desired approximation error
level.

Given a dynamic system a neural network can be used to inodel the system. The system
determinesa set of input/output pairs cither experimentally or analytically derived. To cffect
neural modeling of the dynamic system a training record is generated by assembling the inputs
and the corresponding outputs. The weights of the ncural network are then adjusted in a
supervised mode to nullify the error between the desired outputs and the output predictions
of the neural network.




Although fecdforward type artificial ncural networks are wellsuited for successfully learn-
ing input-output mappings they arc rarely studied as parameter estimators. This is due to the
fact that a systein’s parameters cannot be explicitly 1 et rieved froin a feedforward network’s
connection weights since the network learns only mapping functions.

On the contrary, one type of recurrent ncural network, namely, the Hopfield network [2] (
Figure1) does not suffer from such a drawback. Thus, it canbe used as a dynamicsysten’s
parameter estimator if one can create adirect cort espondence of tile architect ural form of
the Hopfield network to the dynamical structure of the problem at hand.

in the following sections the multilayer feedforward network is used for input-output
mapping characterization and the Hopfield network for modal parameters estimation.

2. System Characterization

The model used in this paper is that of anantenna-like flexible structure, located at the
JPL/AY-PL Large Spat.ec.raft Cont rol Labor story. This mnodel is sumnmarized here for con-
venience with its details presented in Appendix A. The state space cquation of the model
is

T= A,z + B, u (D)

where A, and I3, are the system matrices.
Table 1 shows the parametric. values of this model. T'he output equation is given by
v = Cp T (2)
with the output measurement matrix

C, = [-0.0729-0.1959 - 0.04495 0.2706 0.1164 0 0 0 0 O]

3. M ultilayer Feedforward Network Modeling

A three-layer feedforwardneural network with 60 nodes in cach hiddenlayer is used to model
the above dynamics. The neural elementsin tile first two layers have a sigmoidal activation
whose outputs lie between --1 and 1. The output layer utilizes lincar neurons so that scaling
of the outputs can be avoided. Backpropagation is used to train the multilayer network.

The ability of the network to learn arbitrary mappings is demnounstrated by Figures 2
through 7. Figure 2 shows the cvolutionin training of a desired map between a 100 clement
input vector and a 100 clement output vector. Theinput has a sinusoidal

u = cos(0.1Fk) 1< k<100 (3)
form while the desired output is nonlinear (i.e. with harmonics present)
y =cos( 0.1 k) 4 sin( 0."2 k)4 sin( 0.3 k) (4)

At cach epoch, the training data (i.e, tile desired output, represented by solid lines and the
corresponding input ) arc presented to thenetwork. The predictions of the network (dashed




lines) are connpared with the desired output. The error between the two is usedto adjust the!
network weighting. Initially, the network \vci.gilts are assuined to be random. The learning
history plots show the error as the square root of the suin-of-the-squ ares of the difference
between the actual and predicted output up to the epoch silo\;’]1.  Occasionally, there is a
loss of memory inthe training as evidenced by the presence of a spike inthe learning history
plot. This is due to zizagging behavior of the gradient based error minimization search. A
good match is observed after 200 training iterations.

Figures 8 through 13 show the network’s ability 1o learninput output relations directly

relevant to the JPL model. An input function lasting for 0.5 sees and consisting of the
superposition of sinusoids

‘U =0.03* cos( 10 1)-10.015sin( 20 1) 4 0.08 4 cos( 30 1) (5)

is constructed and the response of the Jb ’l, model to this function is noted. The input and
output functious are samnpled every 5 msecs. Theneural network is then trainedto yield
the same output function as the system for the identical input function. It is seen fromn the
Figure that after 200 iterations the agreement between the neural network’s response and
the actual system’s output is very close.

4. Structural identification Using a Hopfield Network

In this section an on-line identification scheme using the Hopfield network is used to estimate
the nodal parameters of the reduced order JPI,Model without prior knowledge, assuming
that the system states and their thne derivatives are available.

4.1 Circuit Dynamics of the Hopfield Network

The dynamic cquations of an analog Hopficld network model can be described as [2],

N
Ci dUi/dt = Y Ty V; - Uif Ri + I (6)
j=1
Vi = g(\ili)
U; = (]/)\,' )g—l(V,') ,1<i<N

where N is the total number of neurons, 73;is the connection strength between neurond and
7,Ci is the i- th neuron capacitance, and i, Ii arc the i—th neuron impedance and bias
input, respectively. The input-output relation between the i--th neuronstate U ,and output
V; is deterinined by the activation function g(z), where g(z) isa nonlinear sigmoid function.
The dynamics of (6) are influcnced by both the learning rate Ai and the activation function
g(z). Yor instance, in the high learning rate limit case, A -, oo and g(x) approaches a step
function.

The network’s Lyapunov function E, for cither synchronous or asynchronous update in
the state of the neurons is:

N N N N v;
E==1/23"3"05ViV; - Y LVi4 (1/X) >v:(]/]{,')v/0 g N(V)av )
121 FER | 1= 1 i=1



I is also called the computational energy of the network. By using syminetric network con-
nection strengths 73 = 7% and g() a monotonically increasing sigmoid function, Hopficld
demonstrated that the time evolution of V; will changeinthe direction such that the encrgy
function ' decreases.

4.2 Hopficld Based Neural Estimator Network

The state Of the neurons can be confinedto positive hypercubes Gi where Gi is defined as
Gi > 1, Gie Rt for 1<i< N.This approach is explained as follows. By using the
sigmmoid activation] function g(z) = tanh(z) for the ncurons, the input-output relation of
each mnecuron can be defined by

Vi = Gy tanh(X; U;) (8)
Ui o= -1/(2 ) I (f"!‘ s ) 1<i<N

1 1 (;" —i 1/’ Y -2 -
where the output of cach neuron, V;, is constrained within the subset of positive hypercubes
G’,. Therefore, with the network states representing the dynamical systemn’s paramneters, f,

the hypercube limits, G, must be chosen such that [p] < |G-

With the input- output relation for eachineuron defined by (8), the analog Hopficld
network dynamics (6), when operated in the high impedance and unit capacitance conditious,
canbe described purely in terms of the neuron output state’ variable V; by substituting U, Of
(8) iuto (6) as follows:

du;/dt = (QU;[8Vi) ( avi/dt) (9)

where 0Ui/0V;is given as

Hence, the dynamnic equations of the resulting neural network canbe formulated as

V = K(TV 41) (11)
K = diag.[ ki]
Ai (Giq4 V) (Gi -V
k= ___{__'_ (‘,,’..'M! 1’_2._(___‘___}12 ,1 <i<AT
G

wliere N is the total number of neurons, V is an N x 1columnu vector containing the 11C’'U101IS
output., and K is a diagonal mnatrix consisting of non- negative diagonal elements. Comparing
(11) and (6), it is noted that the necural network based estimator architecture of (11) has
preserved the primary structure of the analog Hopfield model defined in (6) as well as the
advantages of representing the system parameters directly without scaling.

In the case of a high- gain limiting condition where Ai -5 00, the corresponding network
computational energy F and its time derivative F are given by

E o= -Q12viTV 41V) (12)
dE/dl (EJOV )V
-(1TVA4L DK (rv4 1) <0

"

"
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where ()7 Inc’ails the transpose of amatiix. It is noted that the time derivative of the
netlwork’s computational energy F in (12) can be shown to be always non- positive, which
meansthat time evolutions of the state of ncuronV; stops at anequilibriumn point, where

di2/dt <0, and dE[dl = 0 - dV/dt= 0 (13)

since ¥ is a Lyapunov function of the system (11).

4.3 Design Of the Hopfield Based Neural Estimator

The block diagram of the estimation schemne is depicted in Figure 14. Let the continuous
titne date space equation of the actual system be given as

= Apax 4 Bpu (14)

where A, and B,, are the actual system matrices, respectively. z is the state variable, and u
is the control actuation. 1)enoting by A, and H, the unknown adjustable system matrices,
the estimation error for a series- paralel estimation schieme can be written as

9 = Agz A Byu- Ke (15)
€ = X - ¥
The dynamic equation of the estimmation error ¢ is
é = (A, - Ag)z + (B, - B ))u+d Ke (16)

or
é = d— (Asz 4 By u) | Ke (17)

The objective is tominimize the time rate of change of the error,i.e.,é¢ . More specifically,
the minimizition criterion is the error energy function

] h g
E= (1/}:)/0 (1/2)é" ¢ dt (18)

However, the terin K'e in (17) introduces a dependency of éony (sincec=a -- y ) which
in turn depends on A; and B, . This leads to a complicated energy surface ! whose
global minimum may not be directly accessible. q'bus, K is set 1o zeroand ¥ becomes a
quadratic function of Agand B,

h
E - (1/11)/0 (1/2)é"¢ at (19)

h g
(1/1,)/0 (1/2)(G - Asz — By u)'(& - Agx - By u) dt

- /R QA < = AT 4(1/2) tr By < wyu? > BT
rA, < z,ul > ]fz' - 1rd, < m,drT > 1By <u &t > 4
(1/2) < &%,2>)

i
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wlhere < a, b > is defined as < a,b >:= (1/h) f3 a b dt with h as the sampling period and
ir denotes the trace of a matrix.

The state of the neurons, V, being identified with the elements of the A, and B, matrices,
the network computational energy, F, and its time derivative, F, can be expressed in terins
of the estimmated parameters, i.e, V, as follows:

E = -(12VY TV 41v)41/2) <, s > (20)
dEJdt = (OE[/8V )V
= - -(rvanK(rvi1)<o

where the last termn of F is determined by the time derivative of the state measurement
which is a non-11egative constant value withineach sampling time and has no effect on
dF [di. Consequently, with the computational energy F given by (20), the resulting network
can still retain the dynamics of the Hopfield network.

Thus, by associating the states of the neurons of a Hopficld network with the unknown
parameters of a dynamnic systemn and by invoking the configuration of Figure . we canachieve
convergence of the stable state of the network to the system’s parameter values. This is due to
the fact that the quadratic cost function corresponding to the derivative of the error squared
between the dynamic systemn’s state and tile adjustable systein’s state has been configured
to match the Hopfield network’s computational energy function which we know from theory
that it gets minimized by the evolution of the dynamics of the network.

4.4 Connection Strengths of the Neural Estimator

Generally, space structural systems can berepresentedin state space form with a number of
rigid plus flexural modes. The continuous time domain state space representation in (14)
would consist of a set of J decoupled secolld-order systems. The state vector z is of dimension
2J x1. Ay and By, of 14 are the system matrices of dimension 2J x 2J and 2J X r, respectively.

risthe dimension of control inputmatrix u, x3= [U, ug, . ... u,]¥. The system matrices
A, By, arc:

T ‘"1 §1 92 92 vt o )" (21)

0 1
~w? - 2Gw
0 1
~w§ —2(oun
A, =-
0 |
-wi 2wy

= blockdiag. [ Al Ay . . . A . . . Al

!



0, o,...0

h.], b],?’ e b],'r
o, O, . . .
];P = bQ»] ] b?12 s vt b?,r
Ol 0’ CEE 0

bJ,]) bJ,?, e bJ,'r

= |0 Bl 0 B .0 B ... 0 B}‘]T

where o = | gk Gr ] Jis the state vector, W < and(y, is the natural frequency and modal
damping associated with tile k-th mode, respectively. Ax={a.,}, 1<k<J,isa2 by 2
matrix associated with the k-th mode and a.qis the entries of Ay for 1 <e,g< 2. The
modal gain matrix corresponding to the k-th mode is defined as as By = {b, ,} where By is

of dimension 1 byr and b, ; is the entry of Brassociated with the k-th mode for 1 <s<r,

1<p<J.
The state of the ncurons V represents different elemnents in the A, and 13, matrices as
follows:
V = [V(l)T, YT .,1/(-7)7]7' (22)
‘/(L‘)z [a],l,"‘,GQ,Q,0,0,"‘,0,1)1,] LA '3b1,"' ]T

The network computational energy (18) is

h
E = (1/h) [D(l/z)é“‘é dt (23)

h
= (1/h) /0 (1/2)(E ~ Asz - By w)'(G~ Age ~ By u) di

= (V/B[(1/2)trAs < 2,27 > AT 4 (1/2)tr B, < w,u? > BT 4
A, < z,ul > ]?Z' ~trA, < z,80 > - trB, < u, i1 > 4
(1/2) < 27,4 >)

J

= (1/2) }_: ir [ Ap < :z‘;;,:zv;{' > A;f 4+ By < u,u? > BZ' -+

k=1

24 < ap,u? > Bl - 24 < zpyé] > - 2By < u, il > )
(1/2) < 27,4 >
J
= =3 (12 vOTRBYE) 4 JBT yB )y 1/9) < 676 >
k=1
= -(2VT T V4 TV Y4 /2 <éti>

The connection strength matrix 7 in 23 is a block diagonal matrix given by
1 = blockdiag. i'(’I,. - i’(k),. - 'j‘(JJ] JA<k<J (24)
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G EN I L e
0101175 1235 | 50.5 | 608
0.]0.]03% [ 03% | 03% | 03%

Mode Numbsk Number |1
Modal Frequency (rad/sec) radfsec) | 0.
Moldal Dampixg! Damping 0.

Table 1: Modal Characteristics of The Reduced Order Model.

and 7'(®) is the connection strength atrix associated with the k-th mode, whichis a deter-
mined by

. h
7 =y [ 0] (25)
0
Xy 17:[ 0 0
rE) = 0 Ty TZ z) ul
0 wal uwu”

where the dimension of 7'(%) depends on the state measurements zy, the time derivatives
Tk, as We]] as on the control variable u. Accordingly, the bias input weight matrix J can be
forinul ated as follows:

1:[j(l)?‘,...,jm",...,juﬂ']7 (26)

with 7} is defined as
_— h : . . ' T
TS (1/")/0 9ROk g gk ard Grde Gr v ] dt 27)

Hence, for a space structural systemn consisting of J modes, with » input channels, the
dimension of the neural estimator network connection strengths matrix, 7°,is J (4 4 7) x
J (4 + 1), the bias input weight matrix, I,isJ (4 +r) x 1, and the state of neurous, V, is
J (4 +7) x 1, respectively.

45 On-- Line Simulation

On-line estimation of the modal parameters of the JPLinodel arc conducted by implemnenting
(11). Between each sampling period, the state of the necurons, V, evolves to minimize the
network comnputational energy and thus the system parameters ( natural frequencies, Wk,
modal damping ratio, {x, and modal gains, By, (1 <k<J) associated with each mode),
being identical to tile neural network state elements, are the converged values.

Indemonstrating/validating the efficacy of this proposed neural estimation schemne, the
JPL reduced order model is employed. This reduced model preserves the principal dynamics
of the system. The mode] corresponds to the 5 flexural inodes listed in Table 1. One flexural
mode has a damping ratio of 0.12 and the remaining fiexural modes have a damping ratio of

0.01.



4.6 Simulation Results

The Hopficld network is trained to identify the modal parameters ( Table 1 ) with a single
input, The system state variable, its time derivative and the control signal are contaminated
with zero mean white noise.

In simulating a high- gain limiting case, a large leai ning rate is used for cach neuron with
Ai = 20e+44,7 =1, 2,... , 56. The state of thencurons evolves within the prescribed
hypercubes where the size of the hypercubes is chosen as Gi=:1.0e4 4, i = 1, 2,..., 30.
The upperbound, 30, represents the total number of states for the neural net since there are
5 modes and 6 states per mode (4 corresponding to the modal dynamics and 2 to the gain
matrix ). The capacitance is chiosenas Cy=1.0e4 4, i =1, 2, . . .. 30. Morcover, the initial
state of allneurons is assigned as - ] 0.0 except for those associated with the natural frequency
where positive initial values were assigned in complying with the physical structural model.
The initial guess of the natural frequencies corresponding to each mode is assigned as 10
radfsee CC-.

The results depicted in Figures15 through 21 show the estimated by the Hopfield network

parameters versus their true values with the input to the network signals (i.e., the state
variables, their time derivative and tile control actuations) contaminated by noise.

5. Conclusions

This paper presented examples showing the successful application of neural networks to struc-
tural modeling and identification. The powerful properties of neural networks can thus be
utilized to ad the modeling of dynamic systems for cither control or simulation applications.
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Appendix A: System Dynamics Mode]

The model used for this paper is a large space allte]l]la-like ground experiment structure
located at tile JPL/AY-P], Large Spacecraft Control laboratory (L SCL). A {inite eleient
model for this structure has been developed by JPL personnel.

Description of the Experiment Structure
Configuration

A schematic. diagram of of the alltell]la-like structure is depicted inl}igure 22. The mnain
component of the apparatus consists of a centra hub to which 12 ribs are attached. ‘I’he
diameter of the dish structure is 18.5 feet, the large size being necessary to achieve the low
modalfrequen cy desired. The ribs are coupled together by two rings of pretensional wires.
Functionally, tile wires provide coupling motion in the circumferential direction which cannot
be provided by the hub. The ribs arc each supported at two locations along their freelength
by levitators. Each levitator assembly consists of a pulley, a counterweight, and a wire
attached to the counterweight which passes over the pulley and attaches to the rib, The hub
is mounted to the backup structure through a gimbal platform, so that it is free to rotate
about two perpendicular axes in the horizontal plane. A flexible boom is attached to the hub
and hangs below it, and a feed mass, siinulating the feed horn of an antenna, is attached at
the free end of the boom. The boom for our current experiment is 3-foot long.

Actuators

Each rib can be individually excited or controlled by a rib-root actuator. Each rib-root
actuator has a solenoid design which reacts against amount that is rigidly attached to the
hub. In addition two hub actuators are provided to torque the hub about its two gimbal
axes. The hub torques do not provide torque directly, but rather arc linear force actuators
which provide torqueto the hub by pushing at its outer circuinference. The torque provided
is equal to the force times the leval arm about tile axis of rotation. The placement of these
actuators guarantees good controllability of all of the flexible modes of motion. The location
of the actuators arc shown in }Figure 23.

Sensors

The sensor locations are also shown inFigure 23. First each of the 24 levitators is equipped
with anincremental optical encoder whichincasures the relative angle of the levitator pulley.
The levitator sensors thus provide, inanindirectmanner, tile measurement of the vertical
motion of the corresponding ribs at the points where the levitators arc attached. ‘1’ here
are also four evenly spaced lincar variable differential t 1 ansformers (LVDT) rib-root sensors
colocated with four rib-root sensors. The hub angular positions are measured by two rotary
variable differential transformers (RVDT) mounted directly at the gimbal bearings. Note
that each hub sensor measures the structural responsetothie actuator mounted orthogonal to
itself. Hence, athough the actuator/sensor pairs HA1/H S1and HA10/H S10 are physically
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collocated, it is H A1 /H S10 and H A10/11 Althat aie collocated in the sense of “dual”
variables about a common axis.

Dynamic Model

The system modes can be obtained using finite element analysis. Each rib, and the boom, is
divided into 10 becm)n-type elements and the hub is modeled as a very stifl plate. The normal
modes and their frequencies can be obtained by solving a generalized cigenvalue problemin
standard form:

Kz =w'Mz

where K is the stiffness matrix, M is the mass matrix, and z is the eigenvector with frequency
w

The symmetry of the structure makes it possible to separate variables and write the
circular dependence of a given mode shape by inspection. For a given mode, tile displacement
of the itk rib is given by ,

. . . DQmwik
displacement of i - 1hr1b:co7$é~—|¢)
(4

where 71 is the number of ribs, and ¢ is a phase angle deterinined by the coordinate systemn
trausformation. Here k is a circular wave number associated with a given mode.

Mode shapes of the structure can be grouped according to their circular wave number F,
which rail.ge fromk = O to k= 6. Solutions with k= 0O, 23,4, 5 and 6 are symmetric about
the hub, inthesense that al reaction forces on the hub caused by the ribs exactly cancel out.
Insuch modes, which are called “dish modes’, neither the hub nor the boom participates
in modal motion. On the other hand, modes in which k= 1 arc asymmetric with respect
to reaction forces on the hub. These modes, whichare called “boom dish modes'), involve
motion of the boom, hub and dish structures together. The lower frequency modes are listed
in Table 1 and Table 2, respectively.

1



Boomn-dish modes
Frequency, Hz
Mode No, | Axis 4-10 Subsystemn| Axis 1-7 ~ubsyst&il'| k
i 0.091 ‘ o 0.001 1
2 0.616 0.628 1
3 1.685 1.687 1
4 2577 2.682 1
5 4.558 4.897 1
6 _9.822 9.892 1

Table 2: Norinal Boom-Dish Modes

A finite element model consisting of the first 30 flexible modes, 6 actuator inputs, and 30
sensor measurements is provided by JP1. Only SIX sensor outputs Will be used for our inves-
tigation. The available sensors and actuators are listedinTable 3 and Table 4, respectively.

12




-~ Dishmodes
Frequency (Hz)
0.210- ©

2 0.253*"
3 0.290"
4 0.322*
5 0.344"
6 0.351
7 1.517
8 1 .533¢
9 1.550”
10 1.566”
11 1.578*
12 1.583
13 4.656
14 4.658"
15 4.660*
16 4.661"
17 4.662*
18 4.663
19 9,474
20 9.474"
21 9.474*
22 9.474*
23 9.474*
24 9.474

“ two-fold degenerate modes

Table 3: Normal Dish Modes
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ndex Nuimnber

Actuator

RA1 Rib root actuator at rib No. 1
RA4 Rib root actuator at rib No. 4

RA7 Rib root actuator_at rib No. 7
RAIO Rib root actuator at rib No.10
| HAIO Hub actuator aboutrib 4-10 axis

11A] Hub actuator aboutrib 1-7 axis

Table 4: Available Actuators

]ndcx ‘Number

Cousnu,

o 1-12

Inner ]kmviﬁab@mnbidmp]acmnenhscnsm sILLI -1,112

13-24

Outer levitatod 1ib ¢ dlsp]dcunenb sensors 1,01 - LO12 "

HS1Hubrrotationsensonr (éﬂmﬁtnb» 1 -7 axis)

26

HS1OHubrsosaian ssensor (@tmut 111b44-1Q axis)

2

RST hith toatt dmpldcem(nuscneonm b No. 1

R4 Rlb root dmp]dcem(nt scusor att mlb N@ 4

RSl(D]Rlb]fmﬂt cdxsp]dc(‘ln(nt«eemor at nb NO 10

Table 5: Available Sensors
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Figure 1. Schematic of the Hopfield Neural Network
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Figure 14. Parametric Estimation Scheme Using a Hopfield Neural Network.

28

L e—

Hopfield Network | @———




Frequency Identification

~~ ]8 L] T H T T T
% 16 = ..‘ L meiemeesmmommemoE T e ; T
= 14 LT ~ =
; : ]
3, 12| /- S U
S ' N | i |
10, i . e : I |
50 100 150 200 250 300 350 400 450

Number of iterations

Figure 15. Estimated 4th Modal Frequency of the Reduced Order System.
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Figure 16. Estimated 4th Modal Damping of the Reduced Order System.

30



Gaio

1 % ] ¥ T
FVas : | |
Wy T i ! i
) 1 1
0.5t b ddan o S e L S DU WSS SN NN SR
0 Ty, o~ W ; B = :
o i [ i . i i {
A 1 u i T i T
i H H
0 e - e PR | 1 - 1 Pou m o i‘;.; ‘, . U . .-! - tod
2
! 1 i
s N T S MRS WS
| | | | i |
-1 : i

; ! i
0 50 100 150 200 250 300 '350
Number of lterations

Figure 17. Estimated 4th Modal Gain of the Reduced Order
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Figure 17. RMS Value of 4th Modal Parameter Estimation Error.
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Figure 18. Estimated 5th Modal ¥requency of the Reduced Order System.
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Figure 19. Estimated 5th Modal Damping of the Reduced Order System.
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Figure 20. Estimated 5th Modal Gain of the Reduced Order System.
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Figure 21. RMS Value of 5th Modal Parameter Estimation Error.
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